Computational Nanophotonics: Band diagrams and Eigenproblems

Steven G. Johnson

MIT Applied Mathematics

Nanophotonics:

classical electromagnetic effects can be greatly altered by λ-scale structures especially with many interacting scatterers

easy to study numerically (methods are "practically exact"), well-developed scalable 3d methods for arbitrary materials

Just solve this:

 macroscopic Maxwell's equationsFaraday: $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \quad$ Ampere: $\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}$

Gauss:
$\nabla \cdot \mathbf{D}=\rho$
$\nabla \cdot \mathbf{B}=0$
constitutive equations (here, linear media):

electric permittivity
$\varepsilon_{\mathrm{r}}=\varepsilon / \varepsilon_{0}=$ relative permittivity or dielectric constant $=n^{2}$ (square of refractive index if $\mu=\mu_{0}$)
ε, μ depend on frequency (dispersion), i.e. * $=$ convolution
...negligible for transparent media in narrow bandwidth

$$
c^{2}=1 / \varepsilon_{0} \mu_{0}
$$

theorists:
often $\varepsilon_{0}=\mu_{0}=1$ and/or $\varepsilon_{\mathrm{r}}=\varepsilon$

Limits of validity at the nanoscale?

- Continuum material models (ε etc.) have generally proved very successful down to \sim few nm feature sizes
[For metal features at $<20 \mathrm{~nm}$ scale, some predictions of small nonlocal effects (ballistic transport), but this is mostly neglected]
- Phenomena from resonant $\sim \mathrm{nm}$ features $\ll \lambda$ (e.g. spontaneous emission) usually can be incorporated perturbatively / semiclassically
(e.g. spontaneous emission \sim stochastic dipole source, spontaneous emission rate \sim local density of states
\sim power radiated by dipole)
first, some perspective...

Development of Classical EM Computations

(1) Analytical solutions

vacuum, single/double interfaces various electrostatic problems, ...

Lord Rayleigh
scattering from small particles, periodic multilayers (Bragg mirrors), ...
... \& other problems with very high symmetry and/or separability and/or small parameters

Development of Classical EM Computations

(1) Analytical solutions

2) Semi-analytical solutions: series expansions

e.g. Mie scattering of light by a sphere

Also called spectral methods:
Expand solution in rapidly converging Fourier-like basis

- spectral integral-equation methods: exactly solve homogeneous regions (Green's func.),

Gustav Mie (1908) \& match boundary conditions via spectral basis (e.g. Fourier series, spherical harmonics)

- spectral PDE methods: spectral basis for unknowns in inhomogeous space (e.g. Fourier series, Chebyshev polynomials, ...) \& plug into PDE and solve for coefficients

Development of Classical EM Computations

(1) Analytical solutions
2) Semi-analytical solutions \& spectral methods

Expand solution in rapidly converging Fourier-like basis e.g. Mie scattering of light by a sphere

Strength: can converge exponentially fast

- fast enough for hand calculation
- analytical insights, asymptotics, ...

Gustav Mie Limitation: fast ("spectral") convergence requires (1908) basis to be redesigned for each geometry (to account for any discontinuities/singularities
... complicated for complex geometries!)
(Or: brute-force Fourier series, polynomial convergence)

Development of Classical EM Computations

(1) Analytical solutions
2) Semi-analytical solutions \& spectral methods
(3) Brute force: generic grid/mesh (or generic spectral)

PDEs: discretize space into grid/mesh

- simple (low-degree polynomial) approximations in each pixel/element
integral equations:
- boundary elements mesh surface unknowns coupled by Green's functions

lose orders of magnitude in performance ... but re-usable code $€$ computer time $\ll € € € €$ programmer time

Computational EM: Three Axes of Comparison

- eigenproblems: harmonic modes $\sim e^{-i \omega t} \quad(\mathbf{J}=0)$
- What problem is solved? - frequency-domain response: \mathbf{E}, \mathbf{H} from $\mathbf{J}(\mathbf{x}) e^{-i \omega t}$
- time-domain response: \mathbf{E}, \mathbf{H} from $\mathbf{J}(\mathbf{x}, t)$
- PDE or integral equation?
- finite differences (FD)
- What discretization? - finite elements (FEM) / boundary elements (BEM)
infinitely many unknowns - spectral / Fourier
\Rightarrow finitely many unknowns $\quad-\ldots$
- dense linear solvers (LAPACK)
- What solution method? - sparse-direct methods
- iterative methods

A few lessons of history

- All approaches still in widespread use
- brute force methods in 90% + of papers, typically the first resort to see what happens in a new geometry
- geometry-specific spectral methods still popular, especially when particular geometry of special interest
- analytical techniques used less to solve new geometries than to prove theorems, treat small perturbations, etc.
- No single numerical method has "won" in general
- each has strengths and weaknesses, e.g. tradeoff between simplicity/ generalizability and performance/scalability
- very mature/standardized problems (e.g. capacitance extraction) use increasingly sophisticated methods (e.g. BEM), research fields (e.g. nanophotonics) tend to use simpler methods that are easier to modify (e.g. FDTD)

Understanding Photonic Devices

Model the whole thing at once? Too hard to understand \& design.

Break it up into pieces first: periodic regions, waveguides, cavities

Building Blocks: "Eigenfunctions"

- Want to know what solutions exist in different regions and how they can interact: look for time-harmonic modes $\sim e^{-i \omega t}$

$$
\begin{aligned}
\vec{\nabla} \times \vec{E} & =-\mu \frac{1}{\mu} \frac{\partial}{\partial t} \vec{H} \rightarrow i \omega \vec{H} \\
\vec{\nabla} \times \vec{H} & =\varepsilon \frac{\partial}{\partial t} \vec{E}+\vec{j}^{0} \rightarrow-i \omega \varepsilon \vec{E}
\end{aligned}
$$

First task: get rid of this mess

$$
\underset{\substack{\text { eigen-operator } \\
\text { (Hermitian for lossless/real e!) }}}{\boldsymbol{\nabla} \times \frac{1}{\boldsymbol{E}} \nabla \times \overrightarrow{\boldsymbol{H}}=\omega^{2} \overrightarrow{\boldsymbol{H}}} \underset{\text { eigen-value }}{\begin{array}{c}
\text { + constraint } \\
\nabla \cdot \vec{H}=0
\end{array}} \text { "eigen-field" }
$$

Electronic \& Photonic Eigenproblems

nonlinear eigenproblem
(V depends on e density $|\psi|^{2}$)
(+ nasty quantum entanglement)

Photonic

$$
\nabla \times \frac{1}{\varepsilon} \nabla \times \vec{H}=\left(\frac{\omega}{c}\right)^{2} \vec{H}
$$

simple linear eigenproblem (for linear materials with negligible dispersion)
-many well-known
computational techniques

Hermitian ... real $E \& \omega, \ldots$ Periodicity $=$ Bloch's theorem...

Building Blocks: Periodic Media

periodic in one direction

periodic in two directions

common thread:
translational symmetry

Periodic Hermitian Eigenproblems

[G. Floquet, "Sur les équations différentielles linéaries à coefficients périodiques," Ann. École Norm. Sup. 12, 47-88 (1883).]
[F. Bloch, "Über die quantenmechanik der electronen in kristallgittern," Z. Physik 52, 555-600 (1928).]
if eigen-operator is periodic, then Bloch-Floquet solutions:

$$
\text { can choose: } \vec{H}(\vec{x}, t)=e^{i(\vec{k} \cdot \vec{x}-\omega t)} \vec{H}_{\vec{k}}(\vec{x})
$$

Corollary $1: \mathbf{k}$ is conserved, i.e no scattering of Bloch wave
Corollary 2: $\vec{H}_{\vec{k}}$ given by finite unit cell, so w are discrete $\omega_{n}(\mathbf{k})$

Electronic and Photonic Crystals

strongly interacting fermions

weakly-interacting bosons
... many design degrees of freedom

A 2d Model System

Solving the Maxwell Eigenproblem

Finite cell $\boldsymbol{\rightarrow}$ discrete eigenvalues ω_{n}
Want to solve for $\omega_{n}(\mathbf{k})$, \& plot vs. "all" \mathbf{k} for "all" n,

$$
\begin{gathered}
(\nabla+i \mathbf{k}) \times \frac{1}{\varepsilon}(\nabla+i \mathbf{k}) \times \mathbf{H}_{n}=\frac{\omega_{n}{ }^{2}}{c^{2}} \mathbf{H}_{n} \\
\text { constraint: }(\nabla+i \mathbf{k}) \cdot \mathbf{H}_{n}=0
\end{gathered}
$$

where field $=\mathbf{H}_{n}(\mathbf{x}) e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}$
(1) Limit range of \mathbf{k} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis
(3) Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 1

(1) Limit range of \mathbf{k} : irreducible Brillouin zone
$\bigcirc \bigcirc \bigcirc \bigcirc-$ Bloch' s theorem: solutions are periodic in \mathbf{k}

$\bigcirc \bigcirc \bigcirc \bigcirc$

first Brillouin zone
$=$ minimum $|\mathbf{k}|$ "primitive cell"

irreducible Brillouin zone: reduced by symmetry
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis
(3) Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2a

(1) Limit range of \mathbf{k} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis (N)

$$
|\mathbf{H}\rangle=\mathbf{H}\left(\mathbf{x}_{t}\right)=\sum_{m=1}^{N} h_{m} \mathbf{b}_{m}\left(\overleftarrow{\mathbf{x}_{t}}\right) \quad \text { solve: } \hat{A}|\mathbf{H}\rangle=\omega^{2}|\mathbf{H}\rangle
$$

finite matrix problem: $\quad A h=\omega^{2} B h$
inner product:
Galerkin method:

$$
\langle\mathbf{f} \mid \mathbf{g}\rangle=\int \mathbf{f}^{*} \cdot \mathbf{g} \quad A_{m 1}=\left\langle\mathbf{b}_{m}\right| \hat{A}\left|\mathbf{b}_{1}\right\rangle \quad B_{m 1}=\left\langle\mathbf{b}_{m} \mid \mathbf{b}_{1}\right\rangle
$$

(3) Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2b

(1) Limit range of \mathbf{k} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis

- must satisfy constraint: $(\nabla+i \mathbf{k}) \cdot \mathbf{H}=0$

Planewave (FFT) basis
$\mathbf{H}\left(\mathbf{x}_{t}\right)=\sum_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i \mathbf{G} \cdot \mathbf{x}_{t}}$
constraint: $\mathbf{H}_{\mathbf{G}} \cdot(\mathbf{G}+\mathbf{k})=0$
uniform " grid," periodic boundaries, simple code, $\mathrm{O}(N \log N)$

,	
	constraint, boundary conditio
	Nédélec elemen
	[Nédélec, Numerische Math. 35, 315 (1980)]
	no
	e arbitrary boundarie
	mplex code \& mesh, $\mathrm{O}(\mathrm{N}$

(3) Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 3a

(1) Limit range of \mathbf{k} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis
(3) Efficiently solve eigenproblem: iterative methods

$$
A h=\omega^{2} B h
$$

Slow way: compute $A \& B$, ask LAPACK for eigenvalues

- requires $\mathrm{O}\left(N^{2}\right)$ storage, $\mathrm{O}\left(N^{3}\right)$ time

Faster way:

- start with initial guess eigenvector h_{0}
- iteratively improve
$-\mathrm{O}(N p)$ storage, $\sim \mathrm{O}\left(N p^{2}\right)$ time for p eigenvectors (p smallest eigenvalues)

Solving the Maxwell Eigenproblem: 3b

(1) Limit range of \mathbf{k} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis
(3) Efficiently solve eigenproblem: iterative methods

$$
A h=\omega^{2} B h
$$

Many iterative methods:

- Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization

Solving the Maxwell Eigenproblem: 3c

(1) Limit range of \mathbf{k} : irreducible Brillouin zone
(2) Limit degrees of freedom: expand \mathbf{H} in finite basis
(3) Efficiently solve eigenproblem: iterative methods

$$
A h=\omega^{2} B h
$$

Many iterative methods:

- Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization
for Hermitian matrices, smallest eigenvalue ω_{0} minimizes:
variational
/ min-max theorem

$$
\omega_{0}^{2}=\min _{h} \frac{h^{*} A h}{h^{*} B h}
$$

minimize by preconditioned conjugate-gradient (or...)

Band Diagram of 2d Model System

irreducible Brillouin zone

(radius $0.2 a$ rods, $\varepsilon=12$)

TM
${ }^{\circ}{ }_{E}$
gap for
$n>\sim 1.75: 1$

The Iteration Scheme is Important

 (minimizing function of $10^{4}-10^{8}+$ variables!)$$
\omega_{0}^{2}=\min _{h} \frac{h^{*} A h}{h^{*} B h}=f(h)
$$

Steepest-descent: minimize ($h+\alpha \nabla \boldsymbol{f}$) over $\alpha \ldots$ repeat
Conjugate-gradient: minimize $(h+\alpha d)$
$-d$ is $\nabla f+$ (stuff): conjugate to previous search dirs
Preconditioned steepest descent: minimize $(h+\alpha d)$ $-d=\left(\right.$ approximate $\left.\mathrm{A}^{-1}\right) \nabla f \sim$ Newton's method

Preconditioned conjugate-gradient: minimize $(h+\alpha d)$ $-d$ is (approximate A^{-1}) $[\nabla f+($ stuff $)]$

The Iteration Scheme is Important (minimizing function of $\sim 40,000$ variables)

Much more on iterative solvers: 18.335 at MIT

See also Numerical Linear Algebra (Trefethen \& Bau), Templates for the Solution of Linear Systems, Templates for the Solution of Algebraic Eigenproblems, PETSc and SLEPc libraries, etc.

The Interfaces are Tricky

$\backslash \mathbf{E}_{\|}$is continuous
$\longrightarrow \mathrm{E}_{\perp}$ is discontinuous
($\mathbf{D}_{\perp}=\varepsilon \mathbf{E}_{\perp}$ is continuous)

Use a tensor ε :
[Meade et al. (1993)]
\(\left.\left(\begin{array}{lll}\langle\varepsilon\rangle \& \&

\& \langle\varepsilon\rangle \&

\& \& \left\langle\varepsilon^{-1}\right\rangle^{-1}\end{array}\right) \right\rvert\,\)| $\mathbf{E}_{\\|}$ |
| :--- |
| |
| |
| |
| |
| \mathbf{E}_{\perp} |

The ε-averaging is Important

correct averaging changes order of convergence from Δx to Δx^{2}
reason in a nutshell: averaging
$=$ smoothing ε
= changing structure
.. must pick smoothing with zero $1^{\text {st }}$-order perturbation
[Farjadpour et al. (2006)]

Closely related to anisotropic

 metamaterial, e.g. multilayer film in large- λ limit

$$
\varepsilon_{i j}^{\text {eff }}=\frac{\left\langle D_{i}\right\rangle}{\left\langle E_{j}\right\rangle}=\frac{\left\langle\varepsilon E_{i}\right\rangle}{\left\langle E_{j}\right\rangle}=\frac{\left\langle D_{i}\right\rangle}{\left\langle\varepsilon^{-1} D_{j}\right\rangle}
$$

key to anisotropy is differing continuity conditions on \mathbf{E} :
$\stackrel{\uparrow}{\longrightarrow} \mathrm{E}_{\|}$continuous $\Rightarrow \varepsilon_{\|}=\langle\varepsilon\rangle$
$\mathrm{D}_{\perp}=\varepsilon \mathrm{E}_{\perp}$ continuous $\Rightarrow \varepsilon_{\perp}=\left\langle\varepsilon^{-1}\right\rangle^{-1}$

Intentional "defects" are good

microcavities

waveguides ("wires")

Intentional "defects" in 2d

(Same computation, with supercell = many primitive cells)

waveguides

(boundary conditions \sim irrelevant for exponentially localized modes)

Computational Nanophotonics:
 Cavities and Resonant Devices

Steven G. Johnson
MIT Applied Mathematics

FDTD: finite difference time domain

Finite-difference-time-domain (FDTD) is a method to model Maxwell's equations on a discrete time \& space grid using finite centered differences

$$
\begin{array}{cl}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J} \\
\mathbf{D}=\varepsilon \mathbf{E} & \mathbf{B}=\mu \mathbf{H}
\end{array}
$$

K.S. Yee 1966
A. Taflove \& S.C. Hagness 2005

FDTD: Yee leapfrog algorithm

2d example:

1) at time t: Update D fields everywhere using spatial derivatives of H, then find $E=\varepsilon^{-1} D$

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{x}}+=\frac{\Delta \mathbf{t}}{\varepsilon \Delta \mathbf{y}}\left(\mathbf{H}_{\mathbf{Z}}^{\mathbf{j}+0.5}-\mathrm{H}_{\mathbb{Z}}^{\mathrm{j}-0.5}\right) \\
& \mathrm{E}_{\mathbf{y}}=\frac{\Delta \mathbf{t}}{\varepsilon \Delta \mathbf{x}}\left(\mathbf{H}_{\mathbf{Z}}^{\mathbf{i}+0.5}-\mathbf{H}_{\mathbf{Z}}^{\mathrm{i}-0.5}\right)
\end{aligned}
$$

2) at time $t+0.5$: Update H fields everywhere using spatial derivatives of E

$$
\mathbf{H}_{\mathbf{z}}+\frac{\Delta \mathbf{t}}{\mu}\left(\frac{\mathbb{E}_{\mathbf{X}}^{\mathbf{j + 1}}-\mathbf{E}_{\mathbf{x}}^{\mathbf{j}}}{\Delta \mathbf{y}}+\frac{\mathbb{E}_{\mathbf{y}}^{\mathbf{i}}-\mathbb{E}_{\mathbf{V}}^{\mathbf{i + 1}}}{\Delta \mathbf{x}}\right)
$$

CFL/Von Neumann stability: $\mathrm{c} \Delta \mathrm{t}<1 / \sqrt{\Delta \mathrm{x}^{-2}+\Delta \mathrm{y}^{-2}}$

Free software: Meep

http://ab-initio.mit.edu/meep

- FDTD Maxwell solver: 1d/2d/3d/cylindrical
- Parallel, scriptable, integrated optimization, signal processing
- Arbitrary geometries, anisotropy, dispersion, nonlinearity
- Bloch-periodic boundaries, symmetry boundary conditions,
+ PML absorbing boundary layers...

Microcavity Blues

For cavities (point defects) frequency-domain has its drawbacks:

- Best methods compute lowest- ω eigenvals, but N^{d} supercells have N^{d} modes below the cavity mode - expensive
- Best methods are for Hermitian operators, but losses requires non-Hermitian

Time-Domain Eigensolvers

(finite-difference time-domain $=$ FDTD)

Simulate Maxwell's equations on a discrete grid, + absorbing boundaries (leakage loss)

- Excite with broad-spectrum dipole (\uparrow) source

decay rate in time gives loss

Absorbing boundaries?

Finite-difference/finite-element volume discretizations need to artificially truncate space for a computer simulation.

In a wave equation, a hard-wall truncation gives reflection artifacts.

An old goal: "absorbing boundary condition" (ABC) that absorbs outgoing waves.

Problem: good ABCs are hard to find in $>1 d$.

Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an artificial absorbing layer that is analytically reflectionless

Works remarkably well.
Now ubiquitous in FD/FEM wave-equation solvers.

Several derivations, cleanest \& most general via "complex coordinate stretching"
[Chew \& Weedon (1994)]

Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an artificial absorbing layer that is analytically reflectionless

Even works in inhomogeneous media (e.g. waveguides).

PML Starting point: propagating wave

- Say we want to absorb wave traveling in $+x$ direction in an x-invariant medium at a frequency $\omega>0$.
fields $\sim f(y, z) e^{i(k x-\omega t)}$

(usually, $k>0$)
[rare "backward-wave" cases defeat PML (Loh, 2009)]
(only x in wave equation is via $\partial / \partial x$
terms.)

PML step 1: Analytically continue

Electromagnetic fields \& equations are analytic in x, so we can evaluate at complex x \& still solve same equations

PML step 2: Coordinate transformation

Weird to solve equations for complex coordinates \tilde{x}, so do coordinate transformation back to real x.

$$
\left.\begin{array}{cc}
\tilde{x}(x)=x+\int^{x} \frac{i \sigma\left(x^{\prime}\right)}{\omega} d x^{\prime} \\
\begin{array}{c}
\text { (allow } x \text {-dependent } \\
\text { PML strength s) }
\end{array} & \\
\text { fields } \sim f(y, z) e^{i(k x-\omega t)} \rightarrow f(y, z) e^{i(k x-\omega t)-\frac{k}{\omega}} \int^{x} \sigma\left(x^{\prime}\right) d x^{\prime} \\
\partial \tilde{x}
\end{array}{ }^{(2)}\left[\frac{1}{1+\frac{i \sigma(x)}{\omega}}\right] \frac{\partial}{\partial x}\right]
$$

PML Step 3: Effective materials

In Maxwell's equations, $\nabla \times \mathbf{E}=i \omega \mu \mathbf{H}, \quad \nabla \times \mathbf{H}=-i \omega \varepsilon \mathbf{E}+\mathbf{J}$, coordinate transformations are equivalent to transformed materials (Ward \& Pendry, 1996: "transformational optics")

$$
\{\varepsilon, \mu\} \rightarrow \frac{J\{\varepsilon, \mu\} J^{T}}{\operatorname{det} J}
$$

$$
\begin{gathered}
x \text { PML Jacobian } \\
J=\left(\begin{array}{ccc}
(1+i \sigma / \omega)^{-1} & & \\
& 1 & \\
& & 1
\end{array}\right) \\
\left(\frac{\partial x}{\partial \tilde{x}}\right)
\end{gathered}
$$

for isotropic starting materials:
effective $\{\varepsilon, \mu\} \rightarrow\{\varepsilon, \mu\}\left(\begin{array}{ccc}(1+i \sigma / \omega)^{-1} & & \text { conductivity } \\ & 1+i \sigma / \omega & \vdots \\ & & 1+i \sigma / \omega\end{array}\right)$
$\mathrm{PML}=$ effective anisotropic "absorbing" ε, μ

Photonic-crystal PML?

FDTD (Meep) simulation:

ε not even continuous
in x direction,
much less analytic!

Analytic continuation of Maxwell's equations is hopeless

- no reason to think that PML technique should work

Photonic-crystal PMLs: Magic?

[Koshiba, Tsuji, \& Sasaki (2001)]

(b)

[Kosmidou et al (2003)]
$11 a$

\& several other authors ...
Low reflections claimed

- is PML working?

Something suspicious:
very thick absorbers.

Failure of Photonic-crystal "pseudo-PML"

1d test case:
(pseudo-)
PML in periodic ε reflection doesn't $\rightarrow 0$ as $\Delta \mathrm{x} \rightarrow 0$
... similar to non-PML scalar σ

Redemption of the pseudo-PML:

 slow ("adiabatic") absorption turn-on[Oskooi et al, Optics Express 16, 11376 (2008)]

Back to absorption tapers

- Suppose absorption is: $\sigma(x)=\sigma_{0} s(x / L)$, say $s(u)=u^{d}$
- Fix the round-trip reflection: $R_{\text {round-trip }}=e \quad{ }_{0} \quad \Rightarrow \sigma_{0} \sim \frac{1}{L}$
$\Rightarrow \ldots \Rightarrow$ transition reflections $\sim O\left(L^{-2 d-2}\right)$

Reflection vs. Absorber Thickness

What about DtN / RCWA / Bloch-mode-expansion / SIE methods?

- useful, nice methods that can impose outgoing boundary conditions exactly, once the Green's function / Bloch modes computed
challenge problem for any method: periodic 3d dielectric waveguide bend in air (note: both guided and radiating modes!)
....

... DtN / Green's sunction / Bloch modes (incl. radiation!) expensive

Computational Nanophotonics:
 Sources \& Integral Equations

Steven G. Johnson

MIT Applied Mathematics

How can we excite a desired incident wave?

Want some current source to excite incident waveguide mode, planewave, etc...

- also called transparent source since waves do not scatter from it (thanks to linearity)
- vs. hard source = Dirichlet field condition

Equivalent currents
 ("total-field/scattered-field" approach)

[review article: arXiv:1301.5366]

known incident fields

$$
\mathbf{f}^{+}=\binom{\mathbf{E}}{\mathbf{H}}
$$

in ambient medium
(possibly inhomogeneous,
e.g. waveguide or photonic crystal)

want to construct surface currents

$$
\mathbf{c}=\binom{\mathbf{J}}{\mathbf{K}}
$$

giving same \mathbf{f}^{+}in Ω

do simulations in finite domain + inhomogeneities
/ interactions
$=$ scattered field \mathbf{f}^{-}

The Principle of Equivalence in classical EM

(or Stratton-Chu equivalence principle) (formalizes Huygens' Principle) (or total-field/scattered-field, TFSF)
(close connection to Schur complement [Kuchment])
[see e.g. Harrington, Time-Harmonic Electromagnetic Fields]
[review article: arXiv:1301.5366]

starting point: solution in all space

6-component fields:

$$
\mathbf{f}^{+}=\binom{\mathbf{E}}{\mathbf{H}}
$$

solve (source-free) Maxwell PDE (in frequency domain):

$$
\left(\begin{array}{cc}
& \nabla \times \\
-\nabla \times &
\end{array}\right) \mathbf{f}^{+}=-i \omega\left(\begin{array}{ll}
\varepsilon & \\
& \mu
\end{array}\right) \mathbf{f}^{+}=-i \omega \chi \mathbf{f}^{+}
$$

constructing solution in Ω

construct \mathbf{c} so that \mathbf{f} is a new solution:

Exciting a waveguide mode in FDTD

- compute mode in MPB, then use as source in Meep

[review article: arXiv:1301.5366]

Problems with equivalent sources

(if not solved, undesired excitation of other waves) [review article: arXiv:1301.5366]

- Discretization mismatch: at finite resolution, solutions from one technique (MPB) don' t exactly match discrete modes in another technique (Meep) - leads to small imperfections
- solvable by using the same discretization to find modes
- Dispersion: mode profile varies with ω, so injecting a pulse $p(t)$ requires a convolution with $\hat{\mathbf{c}}(\mathbf{x}, \omega) \underset{\text { Fourier }}{\leftrightarrow} \mathbf{c}(\mathbf{x}, t)$

$$
\operatorname{currents}(\mathbf{x}, \mathrm{t})=p(t) * \mathbf{c}(\mathbf{x}, t) \approx p(t) \hat{\mathbf{c}}(\mathbf{x}, \omega)
$$

narrow-bandwidth

- convolutions expensive, can be approximated by finite-time (FIR/IIR) calculations using DSP techniques - specialized methods are known for planewave sources (have numerical dispersion!)

Shortcut: Subtract two simulations

example: 90° bend of single-mode dielectric waveguide

constant-amplitude
line-current J

want incident, transmitted, and reflected energy-flux spectra:
incident: Poynting flux of $\hat{\mathbf{f}}_{\text {straight }}^{2}$ transmitted: flux of $\hat{\mathbf{f}}_{\text {bend }}^{2}$
reflected: flux of $\hat{\mathbf{f}}_{\text {bend }}^{1} \hat{\mathbf{f}}_{\text {straight }}^{1}$

Shortcut: Subtract two simulations

example: 90° bend of single-mode dielectric waveguide

Shortcut: Planewave sources

 for periodic media[review article:
arXiv:1301.5366]

trick \#1: incident \& scattered fields are Bloch-periodic/quasiperiodic
trick \#2: $e^{i k_{x} x}$ current source produces planewave

Reflection spectra example for periodic media

(Fano resonance lineshapes)

Fun possibilities in FDTD:

 moving sources [= just some currents $J(x, t)$]

Doppler shift from moving oscillating dipole

$$
v=1.05 \mathrm{c} / n(0.35 \text { pixels } / \Delta t)
$$

Cerenkov radiation from moving point charge in dielectric medium

Cerenkov radiation

Cerenkov radiation in photonic crystal

excites radiating mode $\omega\left(k_{x}, k_{y}\right)$
if $v=\omega\left(k_{x}, k_{y}\right) /\left(k_{x}+2 \pi m / a\right)$ for any integer m
\Rightarrow no minimum v
[Smith-Purcell effect]

A

B

very different radiation patterns \& directions depending on v, due to interactions with 2d PhC dispersion curves
[Luo, Ibanescu, Johnson, \& Joannopoulos (Science, 2002)]

Surface-integral equations (SIEs) and

boundary-element methods (BEMs)
[see e.g. Harrington, Time-Harmonic Electromagnetic Fields]
Harrington, "Boundary integral formulations for homogeneous material bodies," J. Electromagnetic Waves Appl. 3, 1-15 (1989)

Chew et al., Fast and Efficient Algorithms in Computational Electromagnetics (2001)].

Exploiting partial knowledge of Green' s functions

a typical scattering problem:

suppose that we know Green' s functions

in infinite medium 0 or medium 1

- known analytically for homogeneous media
- computable by much smaller calculation in periodic medium

Can exploit this to derive integral equation for surface unknowns only.

The Principle of Equivalence in classical EM

[see e.g. Harrington, Time-Harmonic Electromagnetic Fields]

Maxwell PDE:

$$
\left(\begin{array}{ll}
& \nabla \times \\
-\nabla \times &
\end{array}\right) \mathbf{f = - i \omega \chi ^ { (0 , 1) } \mathbf { f }} \begin{aligned}
& \text {... we want to partition } \\
& \text { into separate medium } 0 / 1 \\
& \text { problems \& enforce continuity } \ldots
\end{aligned}
$$

Constructing a medium-0 solution

The Principle of Equivalence I

The Principle of Equivalence II

convolution with
6×6 Green's function Γ^{1}
of homogenous medium 1
[e.g. Harrington, Time-Harmonic Electromagnetic Fields]

Surface-Integral Equations (SIE)

Discretizing the Maxwell SIE

$$
\begin{aligned}
& \qquad\left.\quad\left(\Gamma^{0}+\Gamma^{1}\right) * \mathbf{c}\right|_{\text {tangential }}=-\left.\mathbf{f}^{0+}\right|_{\text {tangential }} \\
& \text { pick some basis } \mathbf{b}_{\mathrm{n}}(n=1, \ldots, N \rightarrow \infty) \\
& \text { for surface-tangential vector fields } \\
& \qquad \mathbf{c}=\sum_{n} x_{n} \mathbf{b}_{n} \begin{array}{c}
N \text { discrete } \\
\text { unknowns } x_{n}
\end{array} \Rightarrow N \text { equations }
\end{aligned}
$$

[e.g. Harrington, Time-Harmonic Electromagnetic Fields]

Discretizing the Maxwell SIE

Galerkin method - require error \perp basis:

$$
\left\langle\mathbf{b}_{m} \mid\left(\Gamma^{0}+\Gamma^{1}\right) *\left(\sum_{n} x_{n} \mathbf{b}_{n}\right)\right\rangle=\left\langle\mathbf{b}_{m} \mid-\mathbf{f}^{0+}\right\rangle
$$

pick some basis $\mathbf{b}_{\mathrm{n}}(n=1, \ldots, N \rightarrow \infty)$ for surface-tangential vector fields

$$
\begin{gathered}
\mathbf{c}=\sum_{n} x_{n} \mathbf{b}_{n} \begin{array}{c}
N \text { discrete } \\
\text { unknowns } x_{n}
\end{array} \Rightarrow N \text { equations } M x=s \\
M_{m n}=\left\langle\mathbf{b}_{m} \mid\left(\Gamma^{0}+\Gamma^{1}\right) * \mathbf{b}_{n}\right\rangle=G_{m n}^{0}+G_{m n}^{1} \\
s_{m}=\left\langle\mathbf{b}_{m} \mid-\mathbf{f}^{0+}\right\rangle
\end{gathered}
$$

[e.g. Harrington, Time-Harmonic Electromagnetic Fields]

Discretized SIE: Two Objects

\Rightarrow linear equations $M x=s$

$$
M=G^{0}+\left(\begin{array}{cc}
G^{1} & \\
& 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \\
& G^{2}
\end{array}\right)
$$

$\ldots+$ straightforward generalizations to more objects, nested objects, etcetera

SIE basis choices

- Can use any basis for $\mathbf{c}=$ any basis of surface functions
... basis is not incoming/outgoing waves
\& need not satisfy any wave equation
- Spectral bases: spherical harmonics, Fourier series, nice for high symmetry
\sim uniform spatial resolution
- Boundary Element Methods (BEM):
localized basis functions defined on irregular mesh

"RWG" basis (1982):
vector-valued \mathbf{b}_{n} defined on pairs of adjacent triangles via degree-1 polynomials

BEM strengths

especially small surface areas in a large (many- λ) volume, e.g.:
surface plasmons (metals): extremely sub- λ fields

[Johannes Feist, Harvard]
complex impedance of passive structures

[Llatser et al. (2012)]

Graphene
\sim delta-function surface conductivity
${ }_{D} \downarrow=$ jump discontinuity
$(\sim \mathbf{E})$ in \mathbf{H} field

The bad news of BEM

- Not well-suited for nonlinear, time-varying, or non-piecewise-constant media
- BEM system matrix $M_{m n}=\left\langle\mathbf{b}_{m} \mid\left(\Gamma^{0}+\Gamma^{1}\right) * \mathbf{b}_{n}\right\rangle=G_{m n}^{0}+G_{m n}^{1}$
- singular integrals for overlapping $\mathbf{b}_{m}, \mathbf{b}_{n}$
...special numerical integration techniques
$-M$ is not sparse, but:
often small enough for dense solvers ($\lesssim 10^{4} \times 10^{4}$)
+ "fast solvers:" approximate sparse factorizations (fast multipole method, etc.)
- lots of work every time you change Γ
(e.g. 3d vs. 2d, periodic boundaries, anisotropic, ...)
... but independent of geometry

The good news of BEM: You don' t have to write it yourself

Free software developed by Dr. Homer Reid (collaboration with Prof. Jacob White @ MIT)

SCUFF-EM

[http://homerreid.ath.cx/scuff-EM]

SCUFF-EM is a free, open-source software

SurfaceCUrrent / Field Formulation of
 ElectroMagnetism

 implementation of the boundary-element method of electromagnetic scattering.SCUFF-EM supports a wide range of geometries, including compact scatterers, infinitely extended scatterers, and multi-material junctions.

The SCUFF-EM suite includes 8 standalone application codes for specialized problems in EM scattering, fluctuation physics, and RF engineering.

The SCUFF-EM suite also includes a core library with $\mathrm{C}++$ and PYTHON APls for designing homemade applications.

http://homerreid.com/scuff-EM

* to be released by end of October-ish

SCUFF usage outline

The steps involved in solving any BEM scattering problem:

1. Mesh object surfaces into triangles.

Not done by SCUFF-EM; high-quality free meshing packages exist (e.g. GMSH).
2. Assemble the BEM matrix \mathbf{M} and RHS vector \mathbf{v}.

SCUFF-EM does this.
3. Solve the linear system $\mathbf{M k}=\mathbf{v}$ for the surface currents \mathbf{k}.

SCUFF-EM uses LAPACK for this.
4. Post-process to compute scattered fields $\{\mathbf{E}, \mathbf{H}\}^{\text {scat }}$ from \mathbf{k}.

SCUFF-EM does this.
Innovations unique to SCUFF-EM:

- Bypass step 4: Compute scattered/absorbed power, force, and torque directly from \mathbf{k}
- Bypass steps 3 and 4: Compute Casimir forces and heat transfer directly from \mathbf{M}

Geometries in SCUFF

A gold sphere and a displaced and rotated SiO 2 tetrahedron:

The geometry:

The .scuffgeo file:

```
OBJECT TheSphere
        MESHFILE Sphere.msh
        MATERIAL Gold
ENDOBJECT
OBJECT ThePyramid
    MESHFILE Pyramid.msh
    MATERIAL SiO2
    DISPLACED 0 0 -1
    ROTATED 45 ABOUT 0 1 0
ENDOBJECT
```

\Longrightarrow Handle displacements and rotations without re-meshing.

Geometries in SCUFF

(discretization of SIE at junctions of 3+ materials is a bit tricky)

Periodic geometries in SCUFF

(implementing periodicity is nontrivial: changes Green's function!
SCUFF: periodic $\Gamma=\Sigma$ (nearest neighbors) + Ewald summation)

Using SIE/BEM solutions

Solving the SIE gives the surface currents \mathbf{c}, and from these (via $\Gamma^{*} \mathbf{c}$) one can obtain any desired fields, but...

It is much more efficient to compute as much as possible directly from $\mathbf{c}(\sim \mathbf{n} \times$ surface fields). Examples:

- Scattering matrices (e.g. spherical-harmonic waves in \rightarrow out):
obtain directly from multipole moments of "currents"
- Any bilinear function of the surface fields can be computed directly from bilinear functions of \mathbf{c} :
- scattered/absorbed power, force, torque, ...
- Net effects of quantum/thermal fluctuations in matter can be computed from norm/det/trace of M or M^{-1} :
- thermal radiation, Casimir (van der Waals) forces, ...

Resonant modes (and eigenvalues)

- BEM scattering problems are of the form $\mathrm{M}(\omega) \mathrm{x}=\mathrm{s}$. Resonances (and eigenvalues) are ω where this system is singular, i.e. the nonlinear eigenproblem

$$
\operatorname{det} \mathbf{M}(\omega)=0
$$

For passive (\Rightarrow causal) systems, solutions can only occur for $\operatorname{Im} \omega \leq 0$.

- Various algorithms exist, including an intriguing algorithm using contour integrals of $\mathrm{M}(\omega)$ [Beyn (2012)].

Computational Nanophotonics: Optimization and "Inverse Design"

Steven G. Johnson

MIT Applied Mathematics

Many, many papers that parameterize by a few degrees of freedom and optimize...

Today, focus is on large-scale optimization, also called inverse design:
so many degrees of freedom $\left(10^{2}-10^{6}\right)$
that computer is "discovering" new designs.

Outline

- Brief overview/examples of large-scale optimization work in photonics
- Overview of optimization terminology, problem types, and techniques.
- Some more detailed photonics examples.

Outline

- Brief overview/examples of large-scale optimization work in photonics
- Overview of optimization terminology, problem types, and techniques.
- Some more detailed photonics examples.

Topology optimization

Given two (or more) materials A and B, determine what arrangement

- including what topology optimizes some objective/constraints.

Continuous relaxation:
allow material to vary in $[A, B]$
continously at every point

- Not uncommon for optimum to yield A or B almost everywhere
- Possible to add "penalty" to objective for intermediate values

Discretizing Topology Optimization

 for computer, need finite-dimensional parameter spacesome computational grid

Level-set method: value of
"level-set" function $\phi(\mathbf{x})$ varies continuously at each pixel
\Rightarrow material A or B if $\phi>0$ or <0
...or...

Continuous relaxation: material varies in $[A, B]$ at each pixel
e.g. in electromagnetism, let ε at each pixel vary in $[A, B]$.

Dobson et al. (Texas A\&M)

$\begin{array}{llll}- & \circ & \circ \\ - & \circ & \circ \\ - & \circ & \circ \\ - & \circ \\ - & \circ & \circ\end{array}$

TM gap, bands 3 \& 4

(maximizes $\sim \Delta \omega$, not fractional gap!)
(square lattices only)
TM bands 6 \& 7

SIAM J. Appl. Math. 59, 2108 (1999)

optimize TM localization in supercell SIAM J. Appl. Math 64, 762 (2004)

J. Comput. Phys 158,

214 (2000)

2d (TE or TM) transmission optimization

Sigmund, Jensen, Pederson et al. [www.topopt.dtu.dk]
crossings (2d TE) Elec.Lett. 42, 1031 (2006)

OE 12, 5916 (2004)

T-junctions JOSA B 22, 1191 (200
low-index
(scalar approx.)
dispersioncompensating fibers JOSA B 25, 88 (2008)

Dispersion optimization

Sigmund, Jensen, Pederson et al. [www.topopt.dut.dk]

:::optimized 2d scalar phononic crystals [Phil. Trans. Roy. Soc. London A 361, 1001 (2003)] optimized phononic gap $\Delta \omega$ bands $1 \& 2$
...also band gaps for $2 d$ (scalar) phononic crystals...

Kao, Osher, and Yablonovitch

 2d TM and TE square-lattice gaps via level set: Appl. Phys. B 81, 235 (2005)

TM gap, bands 6 \& 7
(maximizes $\Delta \omega$, not fractional gap!)

TE gap,
bands 5 \& 6

2d TM "directional" emission
via level-set method
Frei, Opt. Lett. 32, 77 (2007)

Other Topology Optimizers

2d TM bend
[Tsuji, Phot. Tech. Lett. 20, 982 (2008)]

Optimization with many discrete degrees of freedom

moving cylinders around
(steepest-descent)
Seliger, J. Appl. Phys. 100, 034310 (2006)]
2d TM "lens" design
genetic algorithms: moving cylinders around
[Håkansson, IEEE J. Sel. Ar. Commun. 23, 1365 (2005)

Outline

- Brief overview/examples of large-scale optimization work in photonics
- Overview of optimization terminology, problem types, and techniques.
- Some more detailed photonics examples.

A general optimization problem

ninin $f=r(x)$ $x \in \mathbb{R}^{n}$

subject to m constraints

$$
\begin{gathered}
f_{i}(x) \leq 0 \\
i=1,2, \ldots, m
\end{gathered}
$$

x is a feasible point if it satisfies all the constraints feasible region $=$ set of all feasible x

Important considerations

- Global versus local optimization
- Convex vs. non-convex optimization
- Unconstrained or box-constrained optimization, and other special-case constraints
- Special classes of functions (linear, etc.)
- Differentiable vs. non-differentiable functions
- Gradient-based vs. derivative-free algorithms
- Zillions of different algorithms, usually restricted to various special cases, each with strengths/weaknesses

Global vs. Local Optimization

- For general nonlinear functions, most algorithms only guarantee a local optimum
- that is, a feasible x_{o} such that $f_{0}\left(x_{\mathrm{o}}\right) \leq f_{0}(\mathrm{x})$ for all feasible x within some neighborhood $\left\|x-x_{0}\right\|<R$ (for some small R)
- A much harder problem is to find a global optimum: the minimum of f_{0} for all feasible x
- exponentially increasing difficulty with increasing n, practically impossible to guarantee that you have found global minimum without knowing some special property of f_{0}
- many available algorithms, problem-dependent efficiencies
- not just genetic algorithms or simulated annealing (which are popular, easy to implement, and thought-provoking, but usually very slow!)
- for example, non-random systematic search algorithms (e.g. DIRECT), partially randomized searches (e.g. CRS2), repeated local searches from different starting points ("multistart" algorithms, e.g. MLSL), ...

Convex Optimization

[good reference: Convex Optimization by Boyd and Vandenberghe, free online at www.stanford.edu/~boyd/cvxbook]

All the functions $f_{i}(i=0 \ldots m)$ are convex:

$$
f_{i}(\alpha x+\beta y) \leq \alpha f_{i}(x)+\beta f_{i}(y) \quad \text { where } \begin{gathered}
\alpha+\beta=1 \\
\alpha, \beta \in[0,1]
\end{gathered}
$$

For a convex problem (convex objective \& constraints) any local optimum must be a global optimum
\Rightarrow efficient, robust solution methods available

Important Convex Problems

- LP (linear programming): the objective and constraints are affine: $f_{i}(x)=a_{i}{ }^{\mathrm{T}} x+\alpha_{i}$
- QP (quadratic programming): affine constraints + convexquadratic objective $x^{\mathrm{T}} A x+b^{\mathrm{T}} x$
- SOCP (second-order cone program): LP + cone constraints $\|A x+b\|_{2} \leq a^{\mathrm{T}} x+\alpha$
- SDP (semidefinite programming): constraints are that $\sum A_{k} x_{k}$ is positive-semidefinite
all of these have very efficient, specialized solution methods

Non-convex local optimization: a typical generic outline

[many, many variations in details !!!]
At current \mathbf{x}, construct approximate model of f_{i}
-e.g. affine, quadratic, ... often convex
Optimize the model problem \Rightarrow new \mathbf{x}

- use a trust region to prevent large steps

3 Evaluate new \mathbf{x} :

- if "acceptable," go to 1
- if bad step (or bad model), update trust region / model and go to $\mathbf{2}$

Important special constraints

- Simplest case is the unconstrained optimization problem: $m=0$
- e.g., line-search methods like steepest-descent, nonlinear conjugate gradients, Newton methods ...
- Next-simplest are box constraints (also called bound constraints): $x_{k}{ }^{\text {min }} \leq x_{k} \leq x_{k}^{\text {max }}$
- easily incorporated into line-search methods and many other algorithms
- many algorithms/software only handle box constraints
- Linear equality constraints $A x=b$
- for example, can be explicitly eliminated from the problem by writing $x=N y+x$, where x is a solution to $A x=b$ and N is a basis for the nullspace of A

Derivatives of f_{i}

- Most-efficient algorithms typically require user to supply the gradients $\nabla_{\nless} f_{i}$ of objective/constraints
- you should always compute these analytically
- rather than use finite-difference approximations, better to just use a derivative-free optimization algorithm
- in principle, one can always compute $\nabla_{x} f_{i}$ with about the same cost as f_{i}, using adjoint methods
- gradient-based methods can find (local) optima of problems with millions of design parameters
- Derivative-free methods: only require f_{i} values
- easier to use, can work with complicated "black-box" functions where computing gradients is inconvenient
- may be only possibility for nondifferentiable problems
- need $>n$ function evaluations, bad for large n

Removable non-differentiability

consider the non-differentiable unconstrained problem:

$$
\min _{x \in \mathbb{R}^{n}}\left|f_{0}(x)\right|
$$

equivalent to minimax problem: $\min _{x \in \mathbb{R}^{n}}\left(\max \left\{f_{0}(x),-f_{0}(x)\right\}\right)$
...still nondifferentiable...
...equivalent to constrained problem with a "temporary" variable t :
$\min t$
$\min _{x \in \mathbb{R}^{n}, t \in \mathbb{R}}$
subject to:
$t \geq f_{0}(x) \quad\left(f_{1}(x)=f_{0}(x)-t\right)$
$t \geq-f_{0}(x) \quad\left(f_{2}(x)=-f_{0}(x)-t\right)$

Example: Chebyshev linear fitting

find the fit that minimizes the maximum error:
$\min _{x_{1}, x_{2}}\left(\max _{i}\left|x_{1} a_{i}+x_{2}-b_{i}\right|\right)$
... nondifferentiable minimax problem

equivalent to a linear programming problem (LP):

$$
\begin{array}{lc}
\min _{x_{1}, x_{2}, t} t & \text { subject to } 2 N \text { constraints: } \\
& x_{1} a_{i}+x_{2}-b_{i}-t \leq 0 \\
b_{i}-x_{1} a_{i}-x_{2}-t \leq 0
\end{array}
$$

Gap Optimization via nonlinear constraints

we want: $\max _{\varepsilon}\left(2 \frac{\left[\min _{\mathbf{k}} \omega_{n+1}(\mathbf{k})\right]-\left[\max _{\mathbf{k}} \omega_{n}(\mathbf{k})\right]}{\left[\min _{\mathbf{k}} \omega_{n+1}(\mathbf{k})\right]+\left[\max _{\mathbf{k}} \omega_{n}(\mathbf{k})\right]}\right)$
not differentiable at accidental degeneracies
an equivalent problem:

$$
\max _{\varepsilon}\left(2 \frac{f_{2}-f_{1}}{f_{2}+f_{1}}\right)
$$

subject to:
...with
(mostly) differentiable nonlinear constraints:
$f_{1} \geq \omega_{n}(\mathbf{k})$
$f_{2} \leq \omega_{n+1}(\mathbf{k})$

Optimizing 1st TM and TE gaps for a triangular lattice with 6-fold symmetry (between bands $1 \& 2$)

48.3% TM gap $(\mathrm{e}=12: 1)$

51.4% TE gap $(\mathrm{e}=12: 1)$

30 iterations of optimizer

+ some local minima

good news: only a handful of minima (in 10^{3}-dimensional space!)

Relaxations of Integer Programming

If x is integer-valued rather than real-valued (e.g. $x \in\{0,1\}^{n}$), the resulting integer programming or combinatorial optimization problem becomes much harder in general (often NP-complete).

However, useful results can often be obtained by a continuous relaxation of the problem - e.g., going from $x \in\{0,1\}^{n}$ to $x \in[0,1]^{n}$
\ldots at the very least, this gives an lower bound on the optimum f_{0}
\ldots and penalty methods (e.g. SIMP) can be used to gradually eliminate intermediate x values.

Early Topology Optimization

design a structure to do something, made of material A or B... let every pixel of discretized structure vary continuously from A to B

[Buhl et al, Struct.Multidisc. Optim. 19, 93-104 (2000)]

Some Sources of Software

- Decision tree for optimization software:
http://plato.asu.edu/guide.html
- lists many packages for many problems
- CVX: general convex-optimization package http://www.stanford.edu/~boyd/cvx
- NLopt: implements many nonlinear optimization algorithms (global/local, constrained/unconstrained, derivative/no-derivative) http://ab-initio.mit.edu/nlopt

Outline

- Brief overview/examples of large-scale optimization work in photonics
- Overview of optimization terminology, problem types, and techniques.
- Some more detailed photonics examples.

Key questions occur before choosing optimization algorithm:

- How to parameterize the degrees of freedom
- how much knowledge of solution to build in?
- Which objective function \& constraints?
- many choices for a given design goal,
... can make an enormous difference in the computational feasibility \& the robustness of the result.

Today: Three Examples

- Optimizing photonics without solving Maxwell's equations - transformational inverse design
- Ensuring manufacturability of narrow-band devices
- robust optimization in photonics design
- Optimizing eigenvalues without eigensolvers
- microcavity design and the
frequency-averaged local density of states

Today: Three Examples

- Optimizing photonics without solving Maxwell's equations - transformational inverse design
- Ensuring manufacturability of narrow-band devices
- robust optimization in photonics design
- Optimizing eigenvalues without eigensolvers
- microcavity design and the
frequency-averaged local density of states
[X. Liang et al., manuscript in preparation]

3d Microcavity Design Problem

Want some 2d pattern that will confine light in 3d with maximal lifetime (" $\mathrm{Q}_{\mathrm{rad}}$ ") and minimal modal volume ("V")

[Akahane, 2003]

Topology optimization? Mostly 2d...

[Kao and Santosa, 2008]

Can we formulate a practical approach to solve the full problem, computing the true 3 d radiation loss?

Goals: understand ultimate limits on cavity performance, \& eventually push cavity design into new regimes

Not just maximizing Q or Q / V !

Typical figure of merit is "Purcell factor" Q / V
(\sim enhancement of light-matter coupling)
$V=\frac{\int \varepsilon|\mathbf{E}|^{2}}{\max \varepsilon|\mathbf{E}|^{2}}$
Naively, should we maximize Q / V ?
Trivial design problem: maximum $Q / V=\infty$ [e.g. perfect ring resonator of ∞ radius]

$$
\begin{gathered}
V \sim R \\
Q_{\mathrm{rad}} \sim \exp (\# R)
\end{gathered}
$$

Real design problem:

maximize Q such that $V \leq V_{0}$
or

minimize V

set by bandwidth, loss tolerance, \& fabrication capabilities

Transforming the problem...

a series of nonobvious transformations makes the problem much easier
minimize modal volume V
subject to $Q \geq Q_{0}$

Maximize mean LDOS (local density of states)
(= power of dipole)
over bandwidth ω_{0} / Q_{0}
turn difficult eigenproblem into easier scattering problem: Q / V is really just LDOS
complex analysis: contour integration + causality
Maximize LDOS at complex $\omega=\omega_{0}\left(1+i / 2 Q_{0}\right)$
technical issue:
avoid optimizing along "narrow ridge"
Minimize $1 /$ LDOS at $\omega_{0}\left(1+i / 2 Q_{0}\right)$

LDOS: Local Density of States

 [review: arXiv:1301.5366]Maxwell eigenproblem:

$$
\begin{gathered}
\frac{1}{\varepsilon} \nabla \times \frac{1}{\mu} \nabla \times \boldsymbol{E} \triangleq \boldsymbol{E} \boldsymbol{E}=\omega^{2} \boldsymbol{E} \\
\left\langle\boldsymbol{E}, \boldsymbol{E}^{\prime}\right\rangle=\int \boldsymbol{E}^{*} \cdot \varepsilon \boldsymbol{E}^{\prime}
\end{gathered}
$$

Power radiated by a current \mathbf{J} (Poynting' s theorem)

$$
P=-\frac{1}{2} \operatorname{Re} \int \boldsymbol{E}^{*} \cdot \boldsymbol{J} d^{3} \boldsymbol{x}=-\frac{1}{2} \operatorname{Re}\left\langle\boldsymbol{E}, \boldsymbol{\varepsilon}^{-1} \boldsymbol{J}\right\rangle
$$

special case of a dipole source: LDOS

$$
J(x)=e_{\ell} \delta\left(x-x_{0}\right) \quad \operatorname{LDOS}_{\ell}\left(x_{0}, \omega\right)=\frac{4}{\pi} \varepsilon\left(x_{0}\right) P_{\ell}\left(x_{0}, \omega\right)
$$

Why a "density of states" [review: arXiv:1301.5366]

$$
\begin{array}{r}
\frac{1}{\varepsilon} \nabla \times \frac{1}{\mu} \nabla \times \boldsymbol{E} \triangleq \boldsymbol{\Theta} \boldsymbol{E}=\omega^{2} \boldsymbol{E} \\
\left\langle\boldsymbol{E}, \boldsymbol{E}^{\prime}\right\rangle=\int \boldsymbol{E} \cdot \boldsymbol{\varepsilon} \boldsymbol{E}^{\prime}
\end{array}
$$

$$
\begin{gathered}
\boldsymbol{E}=i \omega\left(\Theta-\omega^{2}\right)^{-1} \varepsilon^{-1} \boldsymbol{J} \\
P=-\frac{1}{2} \operatorname{Re}\left\langle\boldsymbol{E}, \varepsilon^{-1} \boldsymbol{J}\right\rangle
\end{gathered}
$$

countable eigenfunctions
$\mathbf{E}^{(n)}$ and frequencies $\omega^{(n)}+i \gamma^{(n)}$

$$
\boldsymbol{\varepsilon}^{-1} \boldsymbol{J}=\sum_{n} \boldsymbol{E}^{(n)}\left\langle\boldsymbol{E}^{(n)}, \boldsymbol{\varepsilon}^{-1} \boldsymbol{J}\right\rangle
$$

loss $\rightarrow 0$: a localized measure of spectral density

$$
\begin{aligned}
& \operatorname{LDOS}_{\ell}(x, \omega)=\sum \delta\left(\omega-\omega^{(n)}\right) \varepsilon(x)\left|E_{\ell}^{(n)}(x)\right|^{2} \\
& \operatorname{DOS}(\omega)=\sum_{n} \delta\left(\omega-\omega^{(n)}\right)
\end{aligned}
$$

Minimize $1 /$ LDOS at $\omega_{0}\left(1+i / 2 Q_{0}\right)$

...Let every pixel be a degree of freedom (ε in $[1,12]$)
$\sim 10^{5}$ degrees of freedom
...Solve with (mostly) standard methods:
FDFD solver (sparse-direct + GMRES) adjoint sensitivity analysis quasi-Newton optimization (L-BFGS)

Now, a few results...

2d test case: Out-of-plane J, starting from vacuum initial guess

2d test case: Out-of-plane J, starting from PhC initial guess

starting guess has PhC resone mode already, but optimizatic converts back to Bragg onion

The current Idos is 16.625309 at optimization step 1

2d test case: In-plane J (breaks symmetry), starting from vacuum initial guess

The current Idos is 7.908917 at optimization step 1

Maximizing LDOS for random in-plane \mathbf{J} $=\max \left[\operatorname{LDOS}\left(\omega, \mathbf{J}_{x}\right)+\operatorname{LDOS}\left(\omega, \mathbf{J}_{x}\right)\right] / 2$

4 out of 10

6 out of 10

Spontaneous symmetry breaking! "Picks" one polarization randomly

3d results: Photonic-crystal slab

Optimize with $Q_{0}=10^{4}$
i.e. prefer $Q \geq 10^{4}$ but after that mainly minimize V

Next: 2d pattern in 3d slab
(including radiation loss via
PML absorbing boundaries)

3d Slab Results

after deleting "hairs":

$$
Q \sim 10,000
$$

(without re-optimizing)

$Q \sim 30,000, V \sim 0.06(\lambda / \mathrm{n})^{3}$
vs. hand-optimized:

$$
Q \sim 100,000, V \sim 0.7(\lambda / n)^{3}
$$

$$
Q \sim 300,000, V \sim 0.2(\lambda / \mathrm{n})^{3}
$$

and others...

Today: Three Examples

- Optimizing photonics without solving Maxwell' s equations - transformational inverse design
- Ensuring manufacturability of narrow-band devices
- robust optimization in photonics design
[Oskooi et al., Optics Express 20, 21558 (2012).]
[Mutapcic et al., Engineering Optim. (2009)]
- Optimizing eigenvalues without eigensolvers
- microcavity design and the frequency-averaged local density of states

Robustness of optimized designs

a "nominal" optimization problem: $\underset{\text { design parameters } \mathbf{p}}{\text { minimize }}$ objective(\mathbf{p})

Robustness of optimized designs

a "nominal" optimization problem: $\underset{\text { design parameters } \mathbf{p}}{\operatorname{minimize}}$ objective $(\mathbf{p}, \mathbf{0})$

Problem: real objective is inexact, due to uncertainties in modeling, fabrication, materials, etcetera
\ldots is a function objective (\mathbf{p}, \mathbf{u}) of \mathbf{p} and unknown/uncertain parameters $\mathbf{u} \in U$

Problem: optimization sometimes finds solutions
that are "delicate" and destroyed by uncertainty
... i.e. objective $(\mathbf{p}$, actual $\mathbf{u}) \gg$ objective $(\mathbf{p}, \mathbf{0})$
... can easily happen in single-frequency wave-optics designs where optimization finds a delicate interference effect...

Slow light

Any periodic waveguide has a band edge where group velocity $\rightarrow 0$

Enhances light-matter interactions, dispersion phenomena, tunable time delays
... but hard to couple to ordinary waveguide: large "impedance mismatch"

A slow-light optimization problem

[Povinelli, Johnson, Joannopoulos (2005)]
[Mutapcic, Boyd, Farjadpour, Johnson, Avniel (2009)]
[Oskooi et al., Optics Express 20, 21558 (2012).]
going from uniform waveguide

parameter $s=0$

$z=0$
... to periodic waveguide
$z=L \quad$ nominal problem:
Find $s(z)$ minimizing loss...

A nominal optimum

The solution: Robust optimization (worst-case minimax)

[Mutapcic, Boyd, Farjadpour, Johnson, Avniel (2009)]

- Minimize worst-case reflection:
$\min _{s} \max _{\substack{u \\ \text { (manufacturing } \\ \text { variation) }}} R(s, u)$
- Robust design still works when random disorder introduced:
brute-force results $=$ $40 \times$ better than nominal optimum with surface roughness

A more realistic, slow-light structure

[Oskooi et al., Optics Express 20, 21558 (2012).]
robust design, to scale

Slow-light waveguide for TE (in-plane polarization), tapers contain no narrow gaps, corresponds to contiguous, low-aspect ratio structure in 3d.
... Operate close to band edge, group velocity c/34.

In the presence of disorder, robust is orders of magnitude better than nominal optimum.

Nominal optimum is worthless: reflections > 10\%.

Making taper too long makes things worse: disorder kills you.

Today: Three Examples

- Optimizing photonics without solving Maxwell's equations
- transformational inverse design
[Gabrielli, Liu, Johnson \& Lipson, Nature Commun. (2012)]
[Liu et al., manuscript in preparation.]
- Ensuring manufacturability of narrow-band devices
- robust optimization in photonics design
- Optimizing eigenvalues without eigensolvers
- microcavity design and the frequency-averaged local density of states

Gradient-index Multimode Optics

Lipson group @ Cornell
can make smoothly varying "gradient-index" structures by grayscale lithography
(variable-thickness waveguide
$=$ gradient effective index)

Transformational Optics

[Ward \& Pendry (1996)]
Idea: warping light with $\mathbf{x}^{\prime}(\mathbf{x})$

= material transformations

$$
\varepsilon^{\prime}=\varepsilon \frac{J J^{T}}{\operatorname{det} J} \quad \mu^{\prime}=\mu \frac{J J^{T}}{\operatorname{det} J}
$$

($J=$ Jacobian matrix)

Pro: exact transformation of Maxwell solutions, so no reflections or scattering

- transforms all modes same way, preserving relative phase \rightarrow multimode optics
Cons: most transformations give difficult-to-achieve ε, μ :
- anisotropy; $\mu \neq \mu_{0}$,
... "round" to isotropic index

$$
n \approx \sqrt{\varepsilon \mu / \varepsilon_{0} \mu_{0}}
$$

- n may be too big / small

Transformational Inverse Design

Given a transformation $\mathbf{x}^{\prime}(\mathbf{x})$, we can evaluate its manufacturability (need minimal anisotropy, attainable indices) quickly, without solving Maxwell's equations
... so optimization can rapidly search many transformations to find the "best" manufacturable design

Technical outline

For a given radius R, minimize the maximum anisotropy, subject to index constraints, over "all" transformations $\mathbf{x}^{\prime}(\mathbf{x})$:
$\min _{\mathbf{x}^{\prime}(\mathbf{x})}\left[\max _{\mathbf{x}} \operatorname{anisotropy}(\mathbf{x})\right] \quad=\min _{\mathbf{x}^{\prime} \mathbf{(x)}, t} t$
subject to: $1.6 \leq n(\mathbf{x}) \leq 3.2 \quad \mathrm{t} \geq$ anisotropy $(\mathbf{x})(=$ "Distortion"-1) $\sim 30,000$ at all $\mathbf{x} \quad-1+\operatorname{tr} J^{T} J / 2 \operatorname{det} J \geq 0 \quad$ constraints ($J=$ Jacobian) ($100 \times 100 \times$ grid)
where smooth transformations $\mathbf{x}^{\prime}(\mathbf{x})$ are parameterized by exponentially convergent Chebyshev/sine series
~ 100
parameters
... so cheap that almost any (local) optimization algorithm is okay ... [use COBYLA derivative-free sequential LP algorithm of Powell (1994)]

An optimized multimode bend

optimized index profile

[arXiv:1304.1553]

FEM simulation

Experimental ($\mathrm{Si} / \mathrm{SiO}_{2}$) Realization

[Gabrielli, Liu, Johnson \& Lipson, Nature Commun. (2012)]

> measured
> 14 dB reduction in loss (conversion) of the fundamental mode
> $(\lambda=1.55 \mu \mathrm{~m})$
> vs.
> circular bend

