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Nanophotonics:	
 classical electromagnetic effects can be	

greatly altered by λ-scale structures	


especially with many interacting scatterers 	


[ D. Norris, UMN (2001) ]	


optical “insulators”	


trapping/guiding	

light in vacuum	


[ R. F. Cregan	

 (1999) ]	


[ Luo (2003) ]	


flat “superlenses”	


easy to study numerically (methods are “practically exact”),	

well-developed scalable 3d methods for arbitrary materials	




Just solve this: ���
macroscopic Maxwell’s equations	


∇ × E = −
∂B
∂t

Faraday:	
 Ampere:	
 ∇ ×H =
∂D
∂t

+ J

∇ ⋅D = ρ
∇ ⋅B = 0

Gauss:	

constitutive equations (here, linear media):	


D = ε ∗E B = µ ∗H

magnetic permeability	

…usually ≈ µ0 at infrared/visible (λ ~ µm)	


electric permittivity	

εr = ε / ε0 = relative permittivity or dielectric constant	

                = n2 (square of refractive index if µ = µ0)	


c2 = 1 / ε0 µ0	


ε, µ depend on frequency (dispersion), i.e. * = convolution	

…negligible for transparent media in narrow bandwidth	


theorists: 	

   often ε0 = µ0 = 1	

       and/or εr = ε 	


(nonzero	

frequency)	




Limits of validity at the 
nanoscale?	


• Continuum material models (ε etc.) have generally proved	

   very successful down to ~ few nm feature sizes	

       [ For metal features at < 20nm scale, some predictions of	

         small nonlocal effects (ballistic transport), but this is mostly neglected ]	

	

• Phenomena from resonant ~ nm features << λ (e.g. spontaneous emission)	

   usually can be incorporated perturbatively / semiclassically	

 	
 (e.g. spontaneous emission ~ stochastic dipole source,	

        	
         spontaneous emission rate ~ local density of states	


	
 	
 	
 	
         ~ power radiated by dipole)	




first, some perspective…	




Development of Classical EM Computations	


1	
 Analytical solutions	


Lord Rayleigh	


vacuum, single/double interfaces	

various electrostatic problems, …	


scattering from small particles,	

periodic multilayers (Bragg mirrors), …	


… & other problems with	

	
very high symmetry	

	
and/or separability	

	
and/or small parameters	




Development of Classical EM Computations	

1	
 Analytical solutions	

2	
 Semi-analytical solutions: series expansions	


Gustav Mie	

(1908)	


e.g. Mie scattering of light by a sphere	

Also called spectral methods:	

Expand solution in rapidly converging Fourier-like basis	

• spectral integral-equation methods:	

      exactly solve homogeneous regions (Green’s func.),	

      & match boundary conditions via spectral basis	

      (e.g. Fourier series, spherical harmonics)	

• spectral PDE methods:	

      spectral basis for unknowns in inhomogeous space	

      (e.g. Fourier series, Chebyshev polynomials, …)	

      & plug into PDE and solve for coefficients	




Development of Classical EM Computations	

1	
 Analytical solutions	

2	
 Semi-analytical solutions & spectral methods	


Gustav Mie	

(1908)	


Expand solution in rapidly converging Fourier-like basis	

	

Strength: can converge exponentially fast	


	
— fast enough for hand calculation	

	
— analytical insights, asymptotics, ���…	


	

Limitation: fast (“spectral”) convergence requires	


	
basis to be redesigned for each geometry	

	
(to account for any discontinuities/singularities	

	
  … complicated for complex geometries!)	


	

(Or: brute-force Fourier series, polynomial convergence)	


e.g. Mie scattering of light by a sphere	




Development of Classical EM Computations	

1	
 Analytical solutions	

2	
 Semi-analytical solutions & spectral methods	

3	
 Brute force: generic grid/mesh (or generic spectral)	


←finite differences	

  (or Fourier series)	

	

     & finite elements→	


PDEs: discretize space into grid/mesh	

— simple (low-degree polynomial)	

     approximations in each pixel/element	


lose orders of magnitude in performance … but re-usable code	

€ computer time  << €€€€ programmer time	


integral equations:	

— boundary elements mesh	

     surface unknowns coupled	

     by Green’s functions	




Computational EM: ���
Three Axes of Comparison	


• What problem is solved?	

— eigenproblems: harmonic modes ~ e–iωt    (J = 0)	

— frequency-domain response: E, H from J(x)e–iωt	

— time-domain response: E, H from J(x, t)	

— PDE or integral equation?	


• What discretization?	

— finite differences (FD)	

— finite elements (FEM) / boundary elements (BEM)	

— spectral / Fourier	

— …	


• What solution method?	

— dense linear solvers (LAPACK)	

— sparse-direct methods	

— iterative methods	


infinitely many unknowns	

⇒ finitely many unknowns	




A few lessons of history	

•  All approaches still in widespread use	


–  brute force methods in 90%+ of papers, typically the first resort to 
see what happens in a new geometry	


–  geometry-specific spectral methods still popular, especially when 
particular geometry of special interest	


–  analytical techniques used less to solve new geometries than to prove 
theorems, treat small perturbations, etc.	


•  No single numerical method has “won” in general	

–  each has strengths and weaknesses, e.g. tradeoff between simplicity/

generalizability and performance/scalability	

–  very mature/standardized problems (e.g. capacitance extraction) use 

increasingly sophisticated methods (e.g. BEM), research fields (e.g. 
nanophotonics) tend to use simpler methods that are easier to modify 
(e.g. FDTD) 	




Understanding Photonic Devices	


420 nm	


[ Notomi et al. (2005). ]	

[ Xu & Lipson, 2005 ]	


10µm	


[Mangan, et al., 	

OFC 2004 PDP24 ]	


Model the whole thing at once?  Too hard to understand & design.	

	

Break it up into pieces first: periodic regions, waveguides, cavities	


20 µm	




Building Blocks: “Eigenfunctions”	

• Want to know what solutions exist in different regions	

   and how they can interact: look for time-harmonic modes ~ e–iωt	


 


∇ ×

E = −µ ∂

∂t

H → iω


H


∇ ×

H = ε ∂

∂t

E +

J → −iωε


E

0	


First task:	

get rid of this mess	


 
∇ ×

1
ε
∇ ×

H =ω 2 H

eigen-operator	

(Hermitian for lossless/real e!)	


eigen-value	
 “eigen-field”	


∇⋅

H = 0

+ constraint	


1	




Electronic & Photonic Eigenproblems	


∇× 1
ε
∇×

H = ω

c
⎛
⎝⎜

⎞
⎠⎟
2 
H

Electronic	
 Photonic	


  

� 

− 
2

2m
∇2 +V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ = Eψ

simple linear eigenproblem	

(for linear materials	


with negligible dispersion)	


nonlinear eigenproblem	

(V depends on e density |ψ|2)	


	

(+ nasty quantum entanglement)	


—many well-known	

       computational techniques	


Hermitian ... real E & ω, … Periodicity = Bloch’s theorem…	




Building Blocks: Periodic Media	


homogeneous	

media	


2-D

periodic in
two directions

3-D

periodic in
three directions

1-D

periodic in
one direction

discrete periodicity: photonic crystals	


waveguides	


common thread:	

	


translational	

symmetry	




Periodic Hermitian Eigenproblems	

[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]	


[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]	


if eigen-operator is periodic, then Bloch-Floquet solutions:	


 

H (x,t) = ei


k ⋅ x−ω t( ) H k (

x)can choose:	


periodic “envelope”	

planewave	


Corollary 1: k is conserved, i.e. no scattering of Bloch wave	


Corollary 2:        given by finite unit cell,	

	
 	
so w are discrete ωn(k)	


 

H k



Electronic and Photonic Crystals	

atoms in diamond structure	
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strongly interacting fermions	

weakly-interacting bosons	

… many design degrees of freedom	




A 2d Model System	


square lattice,	

period a	


dielectric “atom”	

ε=12 (e.g. Si)	


a	


a	


E	


H	

TM	




Solving the Maxwell Eigenproblem	


Hn(x) ei(k∙x – ωt)	
� 

∇ + ik( ) × 1
ε
∇ + ik( ) ×Hn = ωn

2

c 2
Hn

∇ + ik( ) ⋅Hn = 0

where field =	


constraint:	


1	


Want to solve for ωn(k),	

& plot vs. “all” k for “all” n, 	


Finite cell è discrete eigenvalues ωn	


Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	
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Solving the Maxwell Eigenproblem: 1	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


—Bloch’s theorem: solutions are periodic in k	


kx	


ky	

first Brillouin zone	


= minimum |k| “primitive cell”	


� 

2π
aΓ	


M	


X	


irreducible Brillouin zone: reduced by symmetry	




Solving the Maxwell Eigenproblem: 2a	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis (N)	


3	
 Efficiently solve eigenproblem: iterative methods	


H =H(xt ) = hmbm (x t )
m=1

N

∑ solve:	
 ˆ A H =ω 2 H

Ah =ω 2Bh

  Aml = bm
ˆ A bl   Bml = bm bl

f g = f * ⋅g∫

finite matrix problem:	


Galerkin method:	
inner product:	




Solving the Maxwell Eigenproblem: 2b	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


� 

(∇ + ik) ⋅H = 0— must satisfy constraint:	


Planewave (FFT) basis	


H(x t ) = HGe
iG⋅xt

G
∑

� 

HG ⋅ G + k( ) = 0constraint:	


uniform “grid,” periodic boundaries,	

simple code, O(N log N)	


Finite-element basis	

constraint, boundary conditions:	


Nédélec elements	

[ Nédélec, Numerische Math.	


35, 315 (1980) ]	


nonuniform mesh,	

more arbitrary boundaries,	


complex code & mesh, O(N)	

[ figure: Peyrilloux et al.,	


J. Lightwave Tech.	

21, 536 (2003) ]	




Solving the Maxwell Eigenproblem: 3a	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


Ah =ω 2Bh

Faster way:	

	
— start with initial guess eigenvector h0	

	
— iteratively improve	

	
— O(Np) storage, ~ O(Np2) time for p eigenvectors	


Slow way: compute A & B, ask LAPACK for eigenvalues	

	
— requires O(N2) storage, O(N3) time	


(p smallest eigenvalues)	




Solving the Maxwell Eigenproblem: 3b	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


Ah =ω 2Bh
Many iterative methods:	


	
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	

	
     Rayleigh-quotient minimization	




Solving the Maxwell Eigenproblem: 3c	

1	
 Limit range of k: irreducible Brillouin zone	


2	
 Limit degrees of freedom: expand H in finite basis	


3	
 Efficiently solve eigenproblem: iterative methods	


Ah =ω 2Bh
Many iterative methods:	


	
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	

	
     Rayleigh-quotient minimization	


for Hermitian matrices, smallest eigenvalue ω0 minimizes:	


ω0
2 = min

h

h*Ah
h*Bh

minimize by preconditioned	

 conjugate-gradient  (or…)	


variational	

/ min–max	

theorem	




Band Diagram of 2d Model System���
(radius 0.2a rods, ε=12)	


E	


H	

TM	


a	


fre
qu

en
cy

 ω
  (

2π
c/

a)
  =

 a
 / 
λ	


Γ	
 X	


M	

Γ	
 X	
 M	
 Γ	
irreducible Brillouin zone	



k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photonic Band Gap

TM bands

gap for	

n > ~1.75:1	




The Iteration Scheme is Important	

(minimizing function of 104–108+ variables!)	


Steepest-descent:  minimize (h + α ∇f) over α … repeat 	


ω0
2 = min

h

h*Ah
h*Bh

= f (h)

Conjugate-gradient:  minimize (h + α d)	

	
— d is ∇f + (stuff): conjugate to previous search dirs	


Preconditioned steepest descent:  minimize (h + α d) 	

	
— d = (approximate A-1) ∇f   ~  Newton’s method	


Preconditioned conjugate-gradient:  minimize (h + α d)	

	
— d is (approximate A-1) [∇f + (stuff)]	




The Iteration Scheme is Important	

(minimizing function of ~40,000 variables)	
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preconditioned	

conjugate-gradient	
 no conjugate-gradient	


no preconditioning	




Much more on iterative solvers:���
18.335 at MIT	


See also Numerical Linear Algebra (Trefethen & Bau),	

Templates for the Solution of Linear Systems,	


Templates for the Solution of Algebraic Eigenproblems,	

PETSc and SLEPc libraries, etc.	




The Interfaces are Tricky	


ε?	


E|| is continuous	


E⊥ is discontinuous	

(D⊥ = εE⊥ is continuous)	


Use a tensor ε: 	


� 

ε
ε

ε−1
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

E||	


E⊥	
[ Meade et al. (1993) ]	




The ε-averaging is Important	
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backwards averaging	


tensor averaging	


no averaging	


correct averaging	

changes order 	

of convergence	

from ∆x to ∆x2	


reason in a nutshell:	

averaging 	


= smoothing ε	

= changing structure	


… must pick smoothing	

with zero 1st-order	


perturbation	

	


[ Farjadpour et al. (2006) ]	




Closely related to anisotropic 
metamaterial, e.g. multilayer film in 

large-λ limit	


λ >> a	


a	


key to anisotropy is differing	

continuity conditions on E:	


E|| continuous ⇒  ε|| = <ε> 	


D⊥=εE⊥ continuous ⇒  ε⊥ = <ε–1>–1 	


ε effij =
Di

Ej

=
εEi

Ej

=
Di

ε −1Dj



Intentional “defects” are good	


3D Photonic C rysta l with Defects

microcavities	
 waveguides (“wires”)	




Intentional “defects” in 2d	


a

(Same computation, with supercell = many primitive cells)	


(boundary conditions ~ irrelevant	

  for exponentially localized modes)	




Computational Nanophotonics: ���
Cavities and Resonant Devices	


Steven G. Johnson	

MIT Applied Mathematics	




Finite-difference-time-domain (FDTD) is a method to model Maxwell’s 
equations on a discrete time & space grid using finite centered differences	


H	
y	

E	
y	
 E	
x	


H	
x	

E	
z	


H	
z	


K.S. Yee 1966	


A. Taflove & S.C. Hagness 2005	


∇ × E = −
∂B
∂t

∇ ×H =
∂D
∂t

+ J

D = εE B = µH

FDTD: finite difference time domain	




1)   at time t: Update D fields everywhere	

      using spatial derivatives of H, then find E=ε-1D	


Ex +=	
 ∆t 	

ε ∆y 	
( Hz

j+0.5	
 –  Hz
j-0.5

 )	

Ey -=	
 ∆t 	


ε ∆x	
( Hz
i+0.5	
 –  Hz

i-0.5
 )	


2) at time t+0.5: Update H fields everywhere using 
spatial derivatives of E	


Hz +=  	
∆t 	

µ	
 ( Ex

j+1	
– Ex
j	
+ Ey

i	

– Ey

i+1)	

∆x	
∆y	


Hz	


Ex	


Ey	


Ex	


Ey	

Hz	


FDTD: Yee leapfrog algorithm	

2d example:	


CFL/Von Neumann stability: cΔt < 1 / √Δx–2+Δy–2	




Free software: MEEP	


• FDTD Maxwell solver: 1d/2d/3d/cylindrical	

• Parallel, scriptable, integrated optimization, signal processing	

• Arbitrary geometries, anisotropy, dispersion, nonlinearity	

• Bloch-periodic boundaries, symmetry boundary conditions,	


	
+ PML absorbing boundary layers…	


http://ab-initio.mit.edu/meep	




Microcavity Blues	

For cavities (point defects)	

frequency-domain has its drawbacks:	


• Best methods compute lowest-ω eigenvals,	

   but Nd supercells have Nd modes	

   below the cavity mode — expensive	


• Best methods are for Hermitian operators,	

   but losses requires non-Hermitian	




Time-Domain Eigensolvers ���
(finite-difference time-domain = FDTD)	


Simulate Maxwell’s equations on a discrete grid,	

	
+ absorbing boundaries (leakage loss)	


• Excite with broad-spectrum dipole (  ) source	


Δω	


Response is many	

sharp peaks,	


one peak per mode	

complex ωn	
 [ Mandelshtam,	


J. Chem. Phys. 107, 6756 (1997) ]	


tricky	

signal processing	


decay rate in time gives loss	




Absorbing boundaries?	

Finite-difference/finite-element volume discretizations	

need to artificially truncate space for a computer simulation.	


In a wave equation,	

a hard-wall truncation	

gives reflection artifacts.	

	

An old goal: “absorbing 
boundary condition” (ABC) 
that absorbs outgoing 
waves.	

	

Problem: good ABCs are 
hard to find in > 1d.	




Perfectly Matched Layers (PMLs)	

Bérenger, 1994: design an artificial absorbing layer	


	
 	
   that is analytically reflectionless	


Works remarkably well.	

	

Now ubiquitous in FD/FEM	

wave-equation solvers.	

	

Several derivations, cleanest	

& most general via “complex	

coordinate stretching”	

        [ Chew & Weedon (1994) ]	




Perfectly Matched Layers (PMLs)	

Bérenger, 1994: design an artificial absorbing layer	


	
 	
   that is analytically reflectionless	


Even works in inhomogeneous	

media (e.g. waveguides).	




PML Starting point: propagating wave	

• Say we want to absorb wave traveling in +x direction	

   in an x-invariant medium at a frequency ω > 0.	


 fields  f (y, z)e
i kx−ω t( )

(only x in wave	

 equation is via	

	

 terms.)	


∂ / ∂x

(usually, k > 0)	

[ rare “backward-wave”	

  cases defeat PML	

      (Loh, 2009) ] 	




PML step 1: Analytically continue	

Electromagnetic fields & equations are analytic in x,	

so we can evaluate at complex x & still solve same equations	


 
x = x +

iσ
ω
x

 fields  f (y, z)e
i kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω
σ x

unchanged"
(no reflection)"

unchanged"
(no reflection)"



PML step 2: Coordinate transformation	

Weird to solve equations for complex coordinates x,	

so do coordinate transformation back to real x.	


~	


 
x(x) = x + iσ ( ′x )

ω
d ′x

x

∫

 

∂
∂x

→
∂
∂x

→
1

1+ iσ (x)
ω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∂
∂x

 fields  f (y, z)e
i kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω

σ ( ′x )d ′x
x

∫

(allow x-dependent	

PML strength s)	


nondispersive materials: k/ω ~ constant	

so decay rate independent of ω	


(at a given incidence angle)	


1	
 2	




PML Step 3: Effective materials	

In Maxwell’s equations,	

coordinate transformations are equivalent to transformed materials	


	
(Ward & Pendry, 1996: “transformational optics”)	


∇ × E = iωµH, ∇ ×H = −iωεE + J,

x PML Jacobian	


J =
1+ iσ /ω( )−1

1
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

{ε,µ}→ J{ε,µ}JT

det J

{ε,µ}→ {ε,µ}
(1+ iσ /ω )−1

1+ iσ /ω
1+ iσ /ω

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

for isotropic starting materials:	


PML = effective anisotropic “absorbing” ε, µ	


effective	

conductivity	


 

∂x
∂x

⎛
⎝⎜

⎞
⎠⎟



Photonic-crystal PML?	


x	


ε not even continuous	

in x direction,	


much less analytic!	


Analytic continuation of Maxwell’s equations is hopeless	

	
— no reason to think that PML technique should work	


FDTD (Meep) simulation:	


?	

?	

?	

?	

?	




Photonic-crystal PMLs: Magic?	

[ Koshiba, Tsuji, & Sasaki (2001) ]	


[ Kosmidou et al (2003) ]	


… & several other authors …	

Low reflections claimed 	
	


	
— is PML working?	

Something suspicious: 	


	
very thick absorbers.	


PM
L	




Failure of Photonic-crystal “pseudo-PML”	


1d test case:	

	


(pseudo-)	

PML in	


periodic ε	

reflection	


doesn’t → 0	

as ∆x → 0	


	

… similar	


to non-PML	

scalar σ	


in uniform ε=1 medium,	

PML reflection → 0	


for exact wave equation	


[ Oskooi et al, Optics Express 16, 11376 (2008) ]	




Redemption of the pseudo-PML:���
slow (“adiabatic”) absorption turn-on	


Any absorber,	

turned on gradually	

enough, will have	

reflections → 0!	


	

PML (when it works)	

just helps coefficient.	


[ Oskooi et al, Optics Express 16, 11376 (2008) ]	




Back to absorption tapers	

• Suppose absorption is: σ(x) = σ0 s(x/L), say s(u) = ud	


• Fix the round-trip reflection:	

 
Rround-trip = e

− # Lσ0 s(u )du
0

1

∫
⇒σ 0 

1
L

⇒ … ⇒ transition reflections ~ O(L–2d–2)	


[ Oskooi et al, Optics Express 16, 11376 (2008) ]	




Reflection vs. Absorber Thickness	


s = u1	


s = u2	


s = u3	


s = u4	


s = u5	


[ Oskooi et al, Optics Express 16, 11376 (2008) ]	




What about DtN / RCWA / Bloch-
mode-expansion / SIE methods?	


— useful, nice methods that can impose outgoing boundary conditions	

     exactly, once the Green’s function / Bloch modes computed	


challenge problem for any method:	

periodic 3d dielectric waveguide bend in air	

  (note: both guided and radiating modes!)	


… DtN / Green’s function / Bloch modes (incl. radiation!) expensive	




Computational Nanophotonics: ���
Sources & Integral Equations	


Steven G. Johnson	

MIT Applied Mathematics	




How can we excite a desired 
incident wave?	


?	
?	


Want some current source	

to excite incident waveguide	

mode, planewave, etc…	

	

— also called transparent	

     source since waves	

     do not scatter from it	

        (thanks to linearity)	

	

— vs. hard source =	

        Dirichlet field condition	




Equivalent currents ���
(“total-field/scattered-field” approach)	


known incident fields	

	

	

in ambient medium	

(possibly inhomogeneous,	

  e.g. waveguide or photonic crystal)	


f + = E
H

⎛
⎝⎜

⎞
⎠⎟

c	


f+	


f+	

f=0	


equivalent	

currents	


want to construct	

surface currents	


c = J
K

⎛

⎝⎜
⎞

⎠⎟

giving same f+ in Ω	


f++f–	
 f–	


[ review article: arXiv:1301.5366 ]	


do simulations	

in finite domain	

+ inhomogeneities	

    / interactions	

 = scattered field f–	




The Principle of Equivalence ���
in classical EM ���

���
(or Stratton–Chu equivalence principle)���

(formalizes Huygens’ Principle)���
(or total-field/scattered-field, TFSF)���

���
(close connection to Schur complement [Kuchment])	


[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]	


[ review article: arXiv:1301.5366 ]	




starting point: solution in all space	


medium χ	

Ω	


incident	

fields f+	


f + = E
H

⎛
⎝⎜

⎞
⎠⎟

6-component	

fields:	


∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f + = −iω ε

µ
⎛

⎝
⎜

⎞

⎠
⎟ f

+ = −iωχf +

solve (source-free) Maxwell PDE (in frequency domain):	




constructing solution in Ω	


Ω	


construct c so that f is a new solution:	


f = 0	


f = f+	


∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f = −iωχf +δ (∂Ω) n ×H

−n ×E
⎛
⎝⎜

⎞
⎠⎟

= −iωχf + c

equivalent	

“6”-component	

surface currents	

      c	

	


n	


 c	




Exciting a waveguide mode in FDTD	


[ review article: arXiv:1301.5366 ]	


(constant J)	


— compute mode in MPB, then use as source in MEEP	




Problems with equivalent sources	


• Discretization mismatch: at finite resolution, solutions from	

  one technique (MPB) don’t exactly match discrete modes 	

  in another technique (Meep) — leads to small imperfections	


	
— solvable by using the same discretization to find modes	

	

• Dispersion: mode profile varies with ω, so injecting a pulse p(t)	

                      requires a convolution with c(x,ω) ↔ c(x,t)	


Fourier	


currents(x,t) = p(t) * c(x,t) ≈ p(t) c(x,ω)	


ˆ	


(if not solved, undesired excitation of other waves)	


– convolutions expensive, can be approximated by	

   finite-time (FIR/IIR) calculations using DSP techniques	

– specialized methods are known for planewave sources	


[ review article: arXiv:1301.5366 ]	


ˆ	

narrow-bandwidth	


(have numerical dispersion!)	


tim
e 

do
m

ai
n 

on
ly
	




Shortcut: Subtract two simulations	

example: 90° bend of single-mode dielectric waveguide	


simple	

constant-amplitude	


line-current J	
 same J	


1	


2	


1	


want incident, transmitted,	

and reflected energy-flux spectra:	

	

  incident: Poynting flux of fstraight	

	

  transmitted: flux of fbend	

	

  reflected: flux of fbend–fstraight	


f̂1,2bend,straight (x,ω ) = f(x,nΔt)eiωnΔt
n
∑

accumulate (discrete-time)	

Fourier transforms of fields:	


at desired frequencies ω	


2	
ˆ	


2	
ˆ	


1	
ˆ	
 1	
ˆ	


2	




Shortcut: Subtract two simulations	

example: 90° bend of single-mode dielectric waveguide	


(waveguide width) / λ	




Shortcut: Planewave sources ���
for periodic media	


trick #1: incident & scattered fields	

are Bloch-periodic/quasiperiodic	


[ review article:	

   arXiv:1301.5366 ]	


Bloch-periodic eikxa	


trick #2: eikxx current source	

	
  produces planewave	




Reflection spectra example���
for periodic media	


(Fano resonance lineshapes)	


note: ω all above	

          light line	

(req. for incident planewave)	
 entire spectrum at fixed kx	


from single FDTD simulation	

(Fourier transform of pulse)	


⟺ curved line	

         θ = asec(ckx/ω)	

      in (ω,θ) plot	




Fun possibilities in FDTD:���
moving sources [= just some currents J(x,t) ]	


Cerenkov radiation from moving	

point charge in dielectric medium	


Doppler shift from	

moving oscillating dipole	




Cerenkov radiation	

charge density	
 ρ = qδ (x − vt)

⇒  current density	

Jx = qvδ (x − vt)

= qv
2π

eik (x−vt ) dk
−∞

+∞

∫

= ei(kx–ωt)	


if ω(k)=kv	


excites radiating mode ω(kx,ky)	

if  v = ω(kx,ky)/kx	

       = phase velocity in x direction	

       ≥ c/n in index-n medium	


x	
q	




Cerenkov radiation in photonic crystal	

excites radiating mode ω(kx,ky)	

if  v = ω(kx,ky)/(kx + 2πm/a)	

                       for any integer m	

	

⇒ no minimum v	

      [ Smith–Purcell effect ]	


q	
 v	


very different radiation	

patterns & directions	

depending on v,	

due to interactions with	

2d PhC dispersion curves	


[ Luo, Ibanescu, Johnson,	

   & Joannopoulos (Science, 2002) ]	




Surface-integral equations (SIEs)���
and���

boundary-element methods (BEMs)	


[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]	

	

   Harrington, “Boundary integral formulations for homogeneous	

    material bodies,” J. Electromagnetic Waves Appl. 3, 1–15 (1989)	

	

  Chew et al., Fast and Efficient Algorithms	

                       in Computational Electromagnetics (2001) ]. 	

	




Exploiting partial knowledge���
of Green’s functions	


medium 0	


medium 1	


incident	

fields	


scattered	

fields	


interior	

fields	


suppose that we know Green’s functions	

in infinite medium 0 or medium 1	


	
— known analytically for homogeneous media	

	
— computable by much smaller calculation in periodic medium	


a typical scattering problem:	


Can exploit this to derive integral equation for surface unknowns only.	




The Principle of Equivalence ���
in classical EM	


[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]	


medium 0	


medium 1	


incident	

fields f0+	


f 0 = E
H

⎛
⎝⎜

⎞
⎠⎟
= f 0+ + f 0−6-component	


fields:	


scattered	

fields f0–	


interior	

fields f1	


… we want to partition	

into separate medium 0/1	

problems & enforce continuity…	


∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f = −iωχ (0,1)f

Maxwell PDE:	




Constructing a medium-0 solution	


medium 0	


medium 0	


same 
incident	

fields f0+	


same	

fields f0– 	
 f=0  (!!)	


“equivalent”	

6-component	

surface currents	

      c	

	


∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f = −iωχ 0f +δ (surface) −n ×H

n ×E
⎛
⎝⎜

⎞
⎠⎟

= −iωχ 0f + c

modified Maxwell PDE:	


 c	


n	




The Principle of Equivalence I	


[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	


medium 0	


medium 0	


incident	

fields f0+	


f 0 = E
H

⎛
⎝⎜

⎞
⎠⎟
= f 0+ + f 0− = f 0+ + Γ0 ∗c

same	

scattered	

fields f0– of c	


f=0  (!!)	


“equivalent”	

6-component	

surface currents	

      c	

	


convolution with	

6x6 Green’s function Γ0	


of homogenous medium 0	




The Principle of Equivalence II	


[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	


medium 1	


medium 1	


f1 = −Γ1 ∗c

opposite-sign	

6-component	

surface currents	

      – c	

	


convolution with	

6x6 Green’s function Γ1	


of homogenous medium 1	


f=0	




Surface-Integral Equations (SIE)	


[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	


medium 0	


medium 1	


f1 = −Γ1 ∗c

f 0 = f 0+ + Γ0 ∗c

c determined by	

continuity of tangential fields	


at 0/1 interface:	


unknown	

c	


Γ0 + Γ1( )∗c
tangential

= −f 0+
tangential



Discretizing the Maxwell SIE	


[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	


unknown	

c	
Γ0 + Γ1( )∗c

tangential
= −f 0+

tangential

pick some basis bn (n=1,…,N→∞)	

for surface-tangential vector fields	


c = xnbn
n
∑ N discrete	


unknowns xn	

⇒ N equations	




Discretizing the Maxwell SIE	


[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]	


unknown	

c	
bm Γ0 + Γ1( )∗ xnbn

n
∑⎛⎝⎜

⎞
⎠⎟

= bm −f 0+

pick some basis bn (n=1,…,N→∞)	

for surface-tangential vector fields	


c = xnbn
n
∑ N discrete	


unknowns xn	

⇒ N equations Mx = s	


Galerkin method — require error ⊥ basis:	


Mmn = bm Γ0 + Γ1( )∗bn =Gmn
0 +Gmn

1

sm = bm −f 0+



Discretized SIE: Two Objects	


c1 = xn
1bn
1

n
∑

medium 1	


medium 2	


medium 0	


c2 = xn
2bn

2

n
∑

⇒ linear equations Mx = s	


M =G0 + G1

0
⎛

⎝⎜
⎞

⎠⎟
+ 0

G2

⎛

⎝⎜
⎞

⎠⎟

… + straightforward generalizations to more objects,	

        	
 	
nested objects, etcetera	




SIE basis choices	

• Can use any basis for c = any basis of surface functions	


	
… basis is not incoming/outgoing waves	

	
 	
& need not satisfy any wave equation	


	

• Spectral bases: spherical harmonics, Fourier series, …	


	
 	
 	
 	
… nice for high symmetry	

	
 	
 	
 	
 	
~ uniform spatial resolution	


• Boundary Element Methods (BEM):	

	
localized basis functions defined on irregular mesh	


“RWG” basis (1982):	

	

vector-valued bn defined	

on pairs of adjacent triangles	

via degree-1 polynomials	




BEM strengths	

especially small surface areas in a large (many-λ) volume, e.g.:	


[ Johannes Feist, Harvard ]	


silver	

nanotip	


surface plasmons (metals):	

extremely sub-λ fields	


complex impedance	

of passive structures	


[ Llatser et al. (2012) ]	


Graphene	

~ delta-function	

   surface conductivity	

= jump discontinuity	

     (~ E) in H field	




The bad news of BEM	


Mmn = bm Γ0 + Γ1( )∗bn =Gmn
0 +Gmn

1

• Not well-suited for nonlinear, time-varying, or	

	
non-piecewise-constant media	


	

• BEM system matrix	

	


	
— singular integrals for overlapping bm, bn	

	
 	
…special numerical integration techniques	

	
— M is not sparse, but:	

	
 	
often small enough for dense solvers (≲ 104×104) 	

	
 	
+ “fast solvers:” approximate sparse factorizations	

	
 	
 	
 	
 	
(fast multipole method, etc.)	

	
— lots of work every time you change Γ 	

	
 	
(e.g. 3d vs. 2d, periodic boundaries, anisotropic, …)	

	
 	
… but independent of geometry	




The good news of BEM:���
You don’t have to write it yourself	


Free software developed by Dr. Homer Reid	

	
(collaboration with Prof. Jacob White @ MIT)	


	


 	
 	
 	
 	
 	
   SCUFF-EM	


[ http://homerreid.ath.cx/scuff-EM ]	




http://homerreid.com/scuff-EM	

* to be released by end of October-ish	




SCUFF usage outline	




Geometries in SCUFF	




Geometries in SCUFF	


(discretization of SIE at junctions of 3+ materials is a bit tricky)	




Periodic geometries in SCUFF	


(implementing periodicity is nontrivial: changes Green’s function!	

    SCUFF: periodic Γ = Σ(nearest neighbors) + Ewald summation)	




Using SIE/BEM solutions	

Solving the SIE gives the surface currents c, and	

from these (via Γ*c) one can obtain any desired fields, but…	

	

It is much more efficient to compute as much as possible	

directly from c (~ n × surface fields).  Examples:	

	

• Scattering matrices (e.g. spherical-harmonic waves in → out):	

       obtain directly from multipole moments of “currents”	

• Any bilinear function of the surface fields can be computed	

   directly from bilinear functions of c:  	


	
— scattered/absorbed power, force, torque, …	

• Net effects of quantum/thermal fluctuations in matter can	

   be computed from norm/det/trace of M or M–1:	


	
— thermal radiation, Casimir (van der Waals) forces, …	




Resonant modes ���
(and eigenvalues)	


• BEM scattering problems are of the form M(ω)x = s.	

   Resonances (and eigenvalues) are ω where this system	

   is singular, i.e. the nonlinear eigenproblem	

	

                      det M(ω) = 0	

	

  For passive (⇒causal) systems, solutions can only occur	

  for Im ω ≤ 0.  	

	

• Various algorithms exist, including an intriguing algorithm	

  using contour integrals of M(ω) [ Beyn (2012) ].	




Computational Nanophotonics: ���
Optimization and “Inverse Design”	


Steven G. Johnson	

MIT Applied Mathematics	




Many, many papers that parameterize���
by a few degrees of freedom and optimize…���

���
���

Today, focus is on large-scale optimization,���
also called inverse design:���

so many degrees of freedom (102–106)���
that computer is “discovering” new designs.	




Outline	


• Brief overview/examples of	

   large-scale optimization work in photonics	

	

• Overview of optimization terminology,	

   problem types, and techniques.	

	

• Some more detailed photonics examples.	




Outline	


• Brief overview/examples of	

   large-scale optimization work in photonics	

	

• Overview of optimization terminology,	

   problem types, and techniques.	

	

• Some more detailed photonics examples.	




Topology optimization	


Given two (or more) materials	

A and B, determine what arrangement	


— including what topology —	

optimizes some objective/constraints.	


A	

B	


B	


Continuous relaxation:	

   allow material to vary in [A,B]	

   continously at every point	

	

• Not uncommon for optimum to	

   yield A or B almost everywhere	

• Possible to add “penalty” to	

   objective for intermediate values	




Discretizing Topology Optimization	


some computational grid	


for computer, need finite-dimensional parameter space	


Level-set method: value of	

   “level-set” function φ(x) varies	

   continuously at each pixel	

    ⇒ material A or B if φ > 0 or < 0	


Continuous relaxation: material	

   varies in [A,B] at each pixel	

	

e.g. in electromagnetism, let ε at each	

       pixel vary in [A,B].	


…or…	




Dobson et al. (Texas A&M)	


TM gap, bands 3 & 4	
 TM bands 6 & 7	

SIAM J. Appl. Math. 59, 2108 (1999)	


(maximizes ~∆ω,	

not fractional gap!)	


(square lattices only)	


optimize TM localization in supercell	

SIAM J. Appl. Math 64, 762 (2004)	


optimized TE gaps	

square lattice	


thousands of iterations	

& still not optimal!	


J. Comput. Phys 158,	

214 (2000)	




2d (TE or TM) transmission optimization���
Sigmund, Jensen, Pederson et al. [ www.topopt.dtu.dk ]	


bend optimization	


Opt. Express 12, 1996 (2004)	
 OE 12, 5916 (2004)	


crossings (2d TE) Elec. Lett. 42, 1031 (2006)	


T-junctions	

JOSA B 22, 1191 (2005)	


low-index	

(scalar approx.)	


dispersion-	

compensating fibers	


JOSA B 25, 88 (2008)	




Dispersion optimization���
Sigmund, Jensen, Pederson et al. [ www.topopt.dtu.dk ]	


… also band gaps for 2d (scalar) phononic crystals…	


low-index	

(scalar approx.)	


dispersion-	

compensating fibers	


JOSA B 25, 88 (2008)	


constant group-velocity	

band in 2d TE line-defect	


optimized	

phononic gap ∆ω	


bands 1 & 2	


optimized 2d scalar	

phononic crystals	

[ Phil. Trans. Roy. Soc.	

   London A 361, 1001 (2003) ]	




Kao, Osher, and Yablonovitch���
2d TM and TE square-lattice gaps via level sets	


Appl. Phys. B 81, 235 (2005)	


TM gap,	

bands 6 & 7	


(maximizes ∆ω,	

not fractional gap!)	


TE gap,	

bands 5 & 6	




Frei et al. (UIUC)	


2d TM “directional” emission	

via level-set method	


Frei, Opt. Lett. 32, 77 (2007)	


via topology optimization	

APL 86, 111114 (2005)	


optimizing 3d Q	

J. Appl. Phys 103, 033102 (2008)	


(level-set + MMA)	




Other Topology Optimizers	


2d TM bend	

[ Tsuji, Phot. Tech. Lett. 20, 982 (2008) ]	


“2d” (really 1d) TE filter	

Byun, IEEE Trans. Magnetics 43, 1573 (2007)	


2d TM gap (∆w)	

bands 3 & 4	


He et al.,	

 J. Comput. Phys. 225, 891 (2007)	




Optimization with many discrete degrees of freedom	


2d TM “lens” design	

genetic algorithms: moving cylinders around	


[ Håkansson, IEEE J. Sel. Ar. Commun. 23, 1365 (2005)	


2d TM “bender”	

moving cylinders around���

(steepest-descent)	

[ Seliger, J. Appl. Phys. 100, 034310 (2006) ]	




Outline	


• Brief overview/examples of	

   large-scale optimization work in photonics	

	

• Overview of optimization terminology,	

   problem types, and techniques.	

	

• Some more detailed photonics examples.	




A general optimization problem	


 
min
x∈n

f0 (x) minimize an objective function f0	

with respect to n design parameters x	


(also called decision parameters, optimization variables, etc.)	


— note that maximizing g(x)	

     corresponds to f0 (x) = –g(x)	
subject to m constraints	


fi (x) ≤ 0
i = 1,2,…,m

note that an equality constraint	

h(x) = 0	


yields two inequality constraints	

fi(x) = h(x) and fi+1(x) = –h(x)	


(although, in practical algorithms, equality constraints 
	
typically require special handling)	
x is a feasible point if it	


satisfies all the constraints	

feasible region = set of all feasible x	




Important considerations	

•  Global versus local optimization	

•  Convex vs. non-convex optimization	

•  Unconstrained or box-constrained optimization, and 

other special-case constraints	

•  Special classes of functions (linear, etc.)	

•  Differentiable vs. non-differentiable functions	

•  Gradient-based vs. derivative-free algorithms	

•  …	

•  Zillions of different algorithms, usually restricted to 

various special cases, each with strengths/weaknesses	




Global vs. Local Optimization	

•  For general nonlinear functions, most algorithms only 

guarantee a local optimum	

–  that is, a feasible xo such that f0(xo) ≤ f0(x) for all feasible x 

within some neighborhood ||x–xo|| < R (for some small R)	

•  A much harder problem is to find a global optimum: the 

minimum of f0 for all feasible x	

–  exponentially increasing difficulty with increasing n, practically 

impossible to guarantee that you have found global minimum 
without knowing some special property of f0	


–  many available algorithms, problem-dependent efficiencies	

•  not just genetic algorithms or simulated annealing (which are popular, 

easy to implement, and thought-provoking, but usually very slow!)	

•  for example, non-random systematic search algorithms (e.g. DIRECT), 

partially randomized searches (e.g. CRS2), repeated local searches from 
different starting points (“multistart” algorithms, e.g. MLSL), …	




Convex Optimization	


All the functions fi (i=0…m) are convex:	

fi (αx + βy) ≤ α fi (x) + β fi (y) where	


α + β = 1
α,β ∈[0,1]

f(x)	


x	
 y	


αf(x) + βf(y)	


f(αx+βy)	


convex:	
 f(x)	


x	
 y	


not convex:	


For a convex problem (convex objective & constraints)	

any local optimum must be a global optimum	


	
⇒ efficient, robust solution methods available	


[ good reference: Convex Optimization by Boyd and Vandenberghe,	

free online at www.stanford.edu/~boyd/cvxbook ]	




Important Convex Problems	


•  LP (linear programming): the objective and 
constraints are affine: fi(x) = ai

Tx + αi	


•  QP (quadratic programming): affine constraints + 
convexquadratic objective xTAx+bTx	


•  SOCP (second-order cone program): LP + cone 
constraints ||Ax+b||2 ≤ aTx + α	


•  SDP (semidefinite programming): constraints are that 
ΣAkxk is positive-semidefinite	


all of these have very efficient, specialized solution methods	




Non-convex local optimization:���
a typical generic outline	


1	
 At current x, construct approximate model of fi	

—e.g. affine, quadratic, … often convex	


2	
 Optimize the model problem ⇒ new x	

	
— use a trust region to prevent large steps	


3	
 Evaluate new x:	

	
— if “acceptable,” go to 1	

	
— if bad step (or bad model), update	

	
 	
trust region / model and go to 2	


[ many, many variations in details !!! ]	




Important special constraints	

•  Simplest case is the unconstrained optimization 

problem: m=0	

–  e.g., line-search methods like steepest-descent, 

nonlinear conjugate gradients, Newton methods …	

•  Next-simplest are box constraints (also called 

bound constraints): xk
min ≤ xk ≤ xk

max	

–  easily incorporated into line-search methods and many 

other algorithms	

–  many algorithms/software only handle box constraints	


•  …	

•  Linear equality constraints Ax=b	


–  for example, can be explicitly eliminated from the 
problem by writing x=Ny+x, where x is a solution to 
Ax=b and N is a basis for the nullspace of A	




Derivatives of fi	

•  Most-efficient algorithms typically require user to 

supply the gradients ∇xfi  of objective/constraints 	

–  you should always compute these analytically	


•  rather than use finite-difference approximations, better to just 
use a derivative-free optimization algorithm	


•  in principle, one can always compute ∇xfi with about the same 
cost as fi, using adjoint methods	


–  gradient-based methods can find (local) optima of 
problems with millions of design parameters	


•  Derivative-free methods: only require fi values	

–  easier to use, can work with complicated “black-box” 

functions where computing gradients is inconvenient	

–  may be only possibility for nondifferentiable problems	

–  need > n function evaluations, bad for large n	




Removable non-differentiability	

consider the non-differentiable unconstrained problem:	


 
min
x∈n

f0 (x) f0(x)	

–f0(x)	


x	


 
min
x∈n

max f0 (x),− f0 (x){ }( )
equivalent to minimax problem:	


…still nondifferentiable…	


…equivalent to constrained problem with a “temporary” variable t:	


 
min

x∈n , t∈
t t ≥ f0 (x)

t ≥ − f0 (x)
f1(x) = f0 (x) − t( )
f2 (x) = − f0 (x) − t( )

subject to:	


optimum	




Example: Chebyshev linear fitting	


a	


b	


N points	

(ai,bi)	


fit line	

ax1+x2	
find the fit that minimizes	


the maximum error:	


min
x1 ,x2

max
i

x1ai + x2 − bi( )
… nondifferentiable minimax problem	


equivalent to a linear programming problem (LP):	


min
x1 ,x2 , t

t subject to 2N constraints:	


x1ai + x2 − bi − t ≤ 0
bi − x1ai − x2 − t ≤ 0



Gap Optimization���
via nonlinear constraints	


we want:	
 max
ε

2
min
k
ωn+1(k)⎡

⎣
⎤
⎦ − max

k
ωn (k)⎡

⎣
⎤
⎦

min
k
ωn+1(k)⎡

⎣
⎤
⎦ + max

k
ωn (k)⎡

⎣
⎤
⎦

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

not differentiable at accidental degeneracies	


an equivalent problem:	

	

	


…with	

(mostly) differentiable	

nonlinear constraints:	


max
ε

2 f2 − f1
f2 + f1

⎛
⎝⎜

⎞
⎠⎟

subject to:
f1 ≥ωn (k)
f2 ≤ωn+1(k)



Optimizing 1st TM and TE gaps ���
for a triangular lattice with 6-fold symmetry���

(between bands 1 & 2)	


48.3% TM gap (e = 12:1)	


30 iterations of optimizer	


51.4% TE gap (e = 12:1)	




Optimizing 1st complete (TE
+TM) 2d gap	


21.1% gap (e = 12:1)	


20.7% gap (e = 12:1)	




+ some local minima	


–0.5% gap	


–10% gap	


–2% gap	


good news: only a handful of minima (in 103-dimensional space!)	




Relaxations of Integer Programming	

If x is integer-valued rather than real-valued (e.g. x ∈ {0,1}n),	

the resulting integer programming or combinatorial optimization	

problem becomes much harder in general (often NP-complete).	

	

However, useful results can often be obtained by a continuous	

relaxation of the problem — e.g., going from x ∈ {0,1}n to x ∈ [0,1]n	

… at the very least, this gives an lower bound on the optimum f0	

… and penalty methods (e.g. SIMP) can be used to gradually	

     eliminate intermediate x values.	




Early Topology Optimization	

design a structure to do something, made of material A or B…	


let every pixel of discretized structure vary continuously from A to B	


ex: design a cantilever	

to support maximum weight	

with a fixed amount of material	


density of each pixel	

varies continuously from 0 (air) to max	
 force	


optimized structure,	

deformed under load	

	

[ Buhl et al, Struct. Multidisc. Optim. 19, 93–104 (2000) ]	




Some Sources of Software	


• Decision tree for optimization software:	

	
http://plato.asu.edu/guide.html	


   — lists many packages for many problems	

	

• CVX: general convex-optimization package	


	
http://www.stanford.edu/~boyd/cvx	

	

• NLopt: implements many nonlinear optimization algorithms 	

  (global/local, constrained/unconstrained, derivative/no-derivative)	


	
http://ab-initio.mit.edu/nlopt	

	




Outline	


• Brief overview/examples of	

   large-scale optimization work in photonics	

	

• Overview of optimization terminology,	

   problem types, and techniques.	

	

• Some more detailed photonics examples.	




Key questions occur before���
choosing optimization algorithm:	


• How to parameterize the degrees of freedom	

	
— how much knowledge of solution to build in?	


	

• Which objective function & constraints?	


	
— many choices for a given design goal,	

	


	
… can make an enormous difference in the	

	
 	
computational feasibility	

	
 	
 	
& the robustness of the result.	




Today: Three Examples	


• Optimizing photonics without solving Maxwell’s equations	

	
— transformational inverse design	


	

• Ensuring manufacturability of narrow-band devices	


	
— robust optimization in photonics design	

	

• Optimizing eigenvalues without eigensolvers	


	
— microcavity design and the 	

	
 	
frequency-averaged local density of states	




Today: Three Examples	


• Optimizing photonics without solving Maxwell’s equations	

	
— transformational inverse design	


	

• Ensuring manufacturability of narrow-band devices	


	
— robust optimization in photonics design	

	

• Optimizing eigenvalues without eigensolvers	


	
— microcavity design and the 	

	
 	
frequency-averaged local density of states	


[ X. Liang et al., manuscript in preparation ]	




3d Microcavity Design Problem	


???	
planar (2d) pattern	
etched in 3d slab	
???	


Want some 2d pattern	

that will confine light in 3d	

with maximal lifetime (“Qrad”)	

and minimal modal volume (“V”) 	


radiation loss	

   (finite Qrad)	


V	


Many ad hoc designs,	

   trading off Qrad and V…	


ring resonators	


 [ Song, (2005) ]	


 [ Loncar, 2002 ]	


 [ Akahane, 2003 ]	


(“defects”	

in periodic	

structures)	




Topology optimization?  Mostly 2d…	


Vuckovic (2011): ~ min V	

2d heuristic for the radiation loss	


Can we formulate a practical approach to solve the full problem,	

computing the true 3d radiation loss?	

	

Goals: understand ultimate limits on cavity performance,	

            & eventually push cavity design into new regimes	


 [ Kao and Santosa, 2008 ]	

in-plane Q, no V	




Not just maximizing Q or Q/V!	

Typical figure of merit is “Purcell factor” Q/V	


	
(~ enhancement of light-matter coupling) 	

	

Naively, should we maximize Q/V?	


R	


V ~ R	

Qrad ~ exp(# R)	


 Trivial design problem: maximum Q/V = ∞	

     [ e.g. perfect ring resonator of ∞ radius ] 	




V =
ε E 2∫

maxε E 2

set by bandwidth, loss tolerance,	

& fabrication capabilities	


Real design problem:	

     minimize V	

   such that Q ≥ Q0	


     maximize Q	

   such that V ≤ V0	


or	




Transforming the problem…	


minimize modal volume V	

subject to Q ≥ Q0	


Maximize mean LDOS (local density of states)	

            (= power of dipole)	

         over bandwidth ω0/Q0	


Maximize LDOS at complex ω=ω0(1+i/2Q0) 	


Minimize 1/LDOS at ω0(1+i/2Q0) 	


turn difficult eigenproblem	

into easier scattering problem:	


  Q/V is really just LDOS	


complex analysis:	

   contour integration	

      + causality	


technical issue:	

    avoid optimizing along	

       “narrow ridge”	

(avoid ill-conditioned Hessian)	


a series of nonobvious transformations makes the problem much easier	




LDOS: Local Density of States	

[ review: arXiv:1301.5366 ]	


Maxwell eigenproblem:	
 Maxwell vector-Helmholtz:	


Power radiated by a current J (Poynting’s theorem)	


special case of a dipole source: LDOS	




Why a “density of states”	

[ review: arXiv:1301.5366 ]	


consider a	

finite domain	


(periodic/Dirichlet)	


countable eigenfunctions	

E(n) and frequencies ω(n)	


+ small absorption	


+ iγ(n)	


P =	


loss → 0: a localized measure of spectral density	




Now, a few results…	


Minimize 1/LDOS at ω0(1+i/2Q0) 	


…Let every pixel be a degree of freedom (ε in [1,12])	

	
~ 105 degrees of freedom	


…Solve with (mostly) standard methods:	

	
FDFD solver (sparse-direct + GMRES)	

	
adjoint sensitivity analysis	

	
quasi-Newton optimization (L-BFGS)	




PML absorbing boundaries	


degrees	

of freedom	


2d test case: Out-of-plane J,���
starting from vacuum initial guess	


finds	

“Bragg onion”	

structure	

	

(No Q vs. V	

  tradeoff)	


~105 pixels	

can vary	

ε in [1,12]	




2d test case: Out-of-plane J,���
starting from PhC initial guess	


starting guess	

has PhC resonant	

mode already,	

but optimization	

converts back	

to Bragg onion	




in-plane J	


2d test case: In-plane J (breaks symmetry),���
starting from vacuum initial guess	




4 out of 10	
 6 out of 10	


in-plane J	


Jx	


Jy	
Maximizing LDOS for random in-plane J���
= max[LDOS(ω,Jx)+LDOS(ω,Jx)]/2	


Spontaneous symmetry breaking!  “Picks” one polarization randomly	




3d results: Photonic-crystal slab	


Next: 2d pattern in 3d slab	

	

(including radiation loss via	

     PML absorbing boundaries)	


Optimize with Q0=104	

	

i.e. prefer Q ≥ 104 but	

      after that mainly	

      minimize V	




2d pattern in 3d slab	


3d Slab Results	


Q ~ 30,000, V ~ 0.06(λ/n)3	


vs. hand-optimized:	

	
Q ~ 100,000, V ~ 0.7(λ/n)3	

	
Q ~ 300,000, V ~ 0.2(λ/n)3	


	
and others…	

	


after deleting “hairs”:	

        Q ~ 10,000	

(without re-optimizing)	




Today: Three Examples	


• Optimizing photonics without solving Maxwell’s equations	

	
— transformational inverse design	


	

• Ensuring manufacturability of narrow-band devices	


	
— robust optimization in photonics design	

	

	

	

• Optimizing eigenvalues without eigensolvers	


	
— microcavity design and the 	

	
 	
frequency-averaged local density of states	


[ Oskooi et al., Optics Express 20, 21558 (2012). ]	

[ Mutapcic et al., Engineering Optim. (2009) ]	


	




Robustness of optimized designs	

a “nominal” optimization problem:	
 minimize	


design parameters p	

objective(p)	




Robustness of optimized designs	

a “nominal” optimization problem:	
 minimize	


design parameters p	

objective(p,0)	


Problem: real objective is inexact, due to uncertainties	

	
 	
in modeling, fabrication, materials, etcetera	

	
 	
… is a function objective(p,u) of p 	

	
 	
     and unknown/uncertain parameters u ∊ U	


	

Problem: optimization sometimes finds solutions	


	
 	
that are “delicate” and destroyed by uncertainty	

	
 	
… i.e. objective(p, actual u) >> objective(p,0)	


… can easily happen in single-frequency wave-optics designs	

	
where optimization finds a delicate interference effect…	




slow	

light	


Slow light	

Any periodic waveguide has a band edge where group velocity → 0	


Enhances light-matter interactions, dispersion phenomena, tunable time delays	

… but hard to couple to ordinary waveguide: large “impedance mismatch”	




A slow-light optimization problem	


going from uniform waveguide      …    to periodic waveguide	


or	

or	


parameter s = 0	


parameter s = 1	

(e.g. s ~ flange width,	


	
  hole radius,	

              block width, …)	


	
   	


or…	


z	


s=1	


s=0	


z=0	
 z=L	


design	

s(z)	

	
…100s of parameters…	


[ Mutapcic, Boyd, Farjadpour, Johnson, Avniel (2009) ]	

[ Oskooi et al., Optics Express 20, 21558 (2012). ]	

	


[ Povinelli, Johnson, Joannopoulos (2005) ]	


nominal problem:	

Find s(z) minimizing loss...	




A nominal optimum	


finds a	

delicate interference	

cancellation giving	

reflection < 10–6	


any tiny	

manufacturing defect	

will kill this cancellation	


(stretching design taper — a simple perturbation)	




The solution: Robust optimization	

[ Mutapcic, Boyd, 
Farjadpour, Johnson, 
Avniel (2009) ]	


	

• Minimize worst-case	

   reflection:	

	

    min   max   R(s, u)	

	

	

	

• Robust design still	

   works when random	

   disorder introduced:	

	

   brute-force results =	

       40× better than	

    nominal optimum	

 with surface roughness	

	


s	
 u	

(manufacturing	


variation)	


(worst-case minimax)	




A more realistic, slow-light structure	


In the presence of disorder, 
robust is orders of magnitude 
better than nominal optimum. 
 
Nominal optimum is worthless: 
reflections > 10%. 
 
Making taper too long makes 
things worse: disorder kills you. 

Slow-light waveguide for TE (in-plane polarization), tapers contain no narrow gaps, 
corresponds to contiguous, low-aspect ratio structure in 3d. 
… Operate close to band edge, group velocity c/34. 

[ Oskooi et al., Optics Express 20, 21558 (2012). ]	


(different design for each length)	


robust design, to scale 



Today: Three Examples	


• Optimizing photonics without solving Maxwell’s equations	

	
— transformational inverse design	


	

	

	

• Ensuring manufacturability of narrow-band devices	


	
— robust optimization in photonics design	

	

• Optimizing eigenvalues without eigensolvers	


	
— microcavity design and the 	

	
 	
frequency-averaged local density of states	


[ Gabrielli, Liu, Johnson & Lipson, Nature Commun. (2012) ]	

[ Liu et al., manuscript in preparation. ]	




Gradient-index Multimode Optics	

Lipson group @ Cornell	

	
can make smoothly varying 
“gradient-index” structures 
by grayscale lithography	


(variable-thickness waveguide 
= gradient effective index)	


Transformation optics:	

design materials that mathematically	


mimic coordinate transformations 	




Transformational Optics	


Idea: warping light with x'(x) 
 

 
= material transformations 
 
 
    (J = Jacobian matrix) 

Pro: exact transformation of 
Maxwell solutions, so no 
reflections or scattering 

 • transforms all modes same 
way, preserving relative 
phase → multimode optics 

Cons: most transformations 
give difficult-to-achieve ε, µ:  

 • anisotropy; µ ≠ µ0,  
 … “round” to isotropic index 

 
 • n may be too big / small  

 

'	


n ≈ εµ / ε0µ0

[ Ward & Pendry (1996) ]	




Transformational Inverse Design	

Given a transformation x'(x), we can evaluate its manufacturability	

                (need minimal anisotropy, attainable indices)	


	
  quickly, without solving Maxwell’s equations 	

	

 … so optimization can rapidly search many transformations	


	
 	
to find the “best” manufacturable design	


effective index 

“mode squeezer”	
 multimode bend	


want small	

radius R	




Technical���
outline	


For a given radius R, minimize the maximum anisotropy,	

subject to index constraints, over “all” transformations x'(x):	


min
′x (x)

max
x
anisotropy(x)⎡

⎣
⎤
⎦ = min

′x (x),t
t

subject to: 1.6 ≤  n(x) ≤ 3.2              t ≥ anisotropy(x) (= “Distortion”–1) 
                                             at all x 

~ 30,000	

constraints	

(100×100 x grid)	


where smooth transformations x'(x) are parameterized by	

exponentially convergent Chebyshev/sine series	


… so cheap that almost any (local) optimization algorithm is okay …	

[ use COBYLA derivative-free sequential LP algorithm of Powell (1994) ]	


~ 100	

parameters	


–1 + tr JTJ / 2 det J ≥ 0	

(J = Jacobian)	




An optimized multimode bend	


effective index	


input	


optimized index profile	
 FEM simulation	


[ arXiv:1304.1553 ]	




Experimental (Si/SiO2) Realization	

[ Gabrielli, Liu, Johnson & Lipson, Nature Commun. (2012) ]	


10μm	
 measured	

14dB	


reduction	

in loss	


(conversion)	

of the	


fundamental	

mode	


(λ=1.55μm)	

vs.	


circular bend	


(80μm bend radius)	



