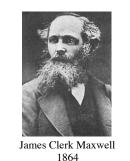
18.369: Mathematical Methods in Nanophotonics

overview lecture slides (don't get used to it: most lectures are blackboard)

> Prof. Steven G. Johnson **MIT** Applied Mathematics



Maxwell's Equations

Gauss:

Ampere:

Faraday:

 $\nabla \cdot \mathbf{B} = 0$ constitutive $\nabla \cdot \mathbf{D} = \boldsymbol{\rho}$

relations:

 $\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

 $\epsilon_0 \mathbf{E} = \mathbf{D} - \mathbf{P}$ $\mathbf{H} = \mathbf{B}/\mu_0 - \mathbf{M}$

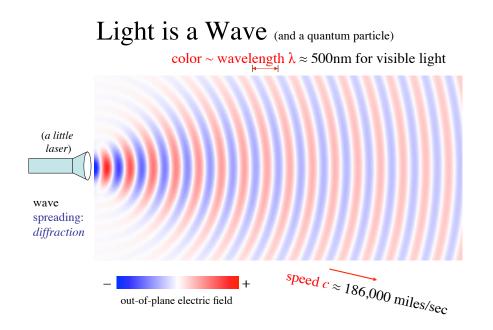
electromagnetic fields:

 $\mathbf{E} = \text{electric field}$ $\mathbf{D} = \text{displacement field}$ $\mathbf{H} = \text{magnetic field} / \text{induction}$ \mathbf{B} = magnetic field / flux density

constants: ε_0 , μ_0 = vacuum permittivity/permeability c = vacuum speed of light = ($\varepsilon_0 \mu_0$)^{-1/2}

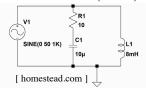
sources: \mathbf{J} = current density ρ = charge density

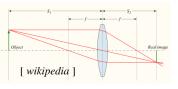
material response to fields: \mathbf{P} = polarization density \mathbf{M} = magnetization density



When can we solve this mess?

- Very small wavelengths: ray optics
- Very large wavelengths: quasistatics (8.02) & lumped circuit models (6.002)





- Wavelengths comparable to geometry?
 - handful of cases can be ~solved analytically:
 - planes, spheres, cylinders, empty space (8.07, 8.311)
 - everything else just a mess for computer...?

small particles: Lord Rayleigh (1871) why the sky is blue

here: a little circular speck of silicon

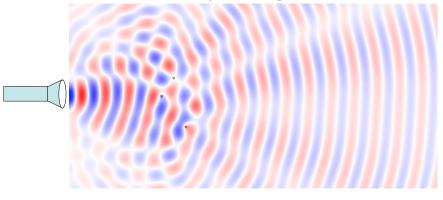


checkerboard pattern: interference of waves traveling in different directions

scattering by spheres: solved by Gustave Mie (1908)

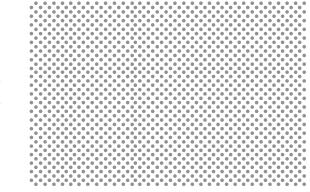
Multiple Scattering is Just Messier?

here: scattering off three specks of silicon



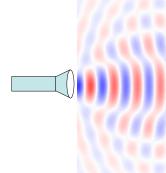
can be solved on a computer, but not terribly interesting...

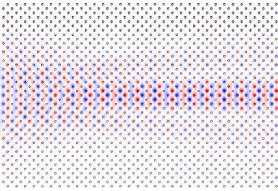
An even bigger mess? zillons of scatterers



Blech, light will just scatter like crazy and go all over the place ... how boring!

Not so messy, not so boring...





the light seems to form several *coherent beams* that propagate *without scattering* ... and almost *without diffraction* (*supercollimation*)

... the magic of symmetry...

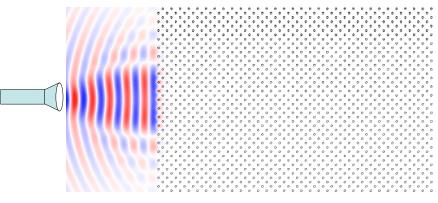
[Emmy Noether, 1915]

Noether's theorem: symmetry = conservation laws

In this case, periodicity = conserved "momentum" = wave solutions without scattering [Bloch waves]

Mathematically, use *structure* of the equations, not explicit solution: linear algebra, group theory, functional analysis, ...

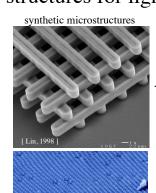
A slight change? Shrink λ by 20% an "optical insulator" (photonic bandgap)



light cannot penetrate the structure at this wavelength! all of the scattering destructively interferes

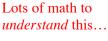
Photonic Crystals: periodic structures for light

bandgaps = insulators & semiconductors



[Vlasov, 2001]

2 µm



...linear algebra: $1 \qquad (\alpha)^2$

...symmetry \Rightarrow group representation theory

...computational methods...

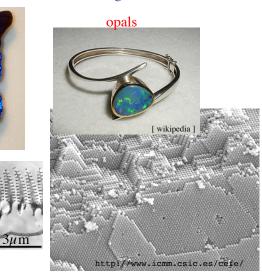
...many open questions...

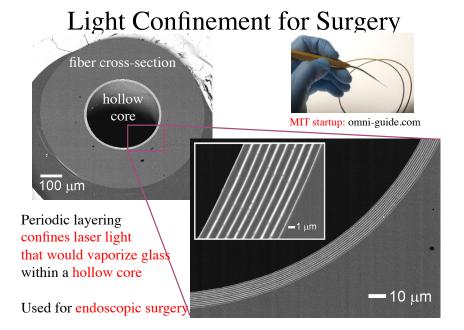
Structural Color in Nature

bandgap = wavelength-selective mirror = bright iridescent colors

wing scale: [P. Vukosic (1999)]

also peacocks, beetles, ...





Molding Diffraction for Lighting

[another MIT startup (by a colleague): Luminus.com]

new projection TVs, pocket projectors, lighting applications,

. . .

ultra-bright/efficient LEDs

periodic pattern gathers & redirects it in one direction

Back to Maxwell, with some simplifications

- *source-free* equations (propagation of light, not creation): $\mathbf{J} = 0$, $\rho = 0$
- Linear, dispersionless (instantaneous response) materials:

$$\mathbf{P} = \varepsilon_0 \ \chi_e \ \mathbf{E} \qquad \implies \qquad \mathbf{D} = \varepsilon_0 \ (1 + \chi_e) \ \mathbf{E} = \varepsilon_0 \ \varepsilon_r \ \mathbf{E}$$
$$\mathbf{M} = \chi_m \ \mathbf{H} \qquad \qquad \qquad \mathbf{B} = \mu_0 \ (1 + \chi_m) \ \mathbf{H} = \mu_0 \ \mu_r \ \mathbf{I}$$

(nonlinearities very weak in EM ... we' ll treat later) (dispersion can be negligible in narrow enough bandwidth) $\mathbf{B} = \mu_0 (1 + \chi_m) \mathbf{H} = \mu_0 \mu_r \mathbf{H}$ where $s_1 = 1 + \chi_1 = \text{relative per$

where $\varepsilon_{y} = 1 + \chi_e$ = relative permittivity (drop r subscript) or dielectric constant $\mu_{y} = 1 + \chi_m$ = relative permeability

 $\epsilon \mu = (refractive index)^2$

- *Isotropic* materials: ε , μ = scalars (not matrices)
- *Non-magnetic* materials: $\mu = 1$ (true at optical/infrared)
- Lossless, transparent materials: ε real, > 0 (< 0 for metals...bad at infrared)

Simplified Maxwell

$$\nabla \cdot \mathbf{H} = 0 \qquad \nabla \cdot \boldsymbol{\varepsilon} \mathbf{E} = 0$$

$$\nabla \times \mathbf{H} = \varepsilon_0 \varepsilon(\mathbf{x}) \frac{\partial \mathbf{E}}{\partial t} \qquad \nabla \times \mathbf{E} = -\mu_0 \mu \frac{\partial \mathbf{H}}{\partial t} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$

• Linear, time-invariant system: \Rightarrow look for sinusoidal solutions $\mathbf{E}(\mathbf{x},t) = \mathbf{E}(\mathbf{x})e^{-i\omega t}$, $\mathbf{H}(\mathbf{x},t) = \mathbf{H}(\mathbf{x})e^{-i\omega t}$ (*i.e. Fourier transform*)

$$\nabla \times \mathbf{H} = -i\omega\varepsilon_0 \varepsilon(\mathbf{x})\mathbf{E} \qquad \nabla \times \mathbf{E} = i\omega\mu_0 \mathbf{H}$$

[note: real materials have

... these, we can work with

dispersion: ε depends on ω = non-instantaneous response]