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Abstract

This note is intended as a brief introduction to the theony piractice of per-
fectly matched layer (PML) absorbing boundaries for waveatigns, intended
for future use in the courses 18.369 and 18.336 at MIT. It$eswon the complex
stretched-coordinate viewpoint, and also discussesrititations of PML.
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1 Introduction

Whenever one solves a PDE numerically by a volume disctaizhone must truncate
the computational grid in some way, and the key questionvsthqerform this trun-
cation without introducing significant artifacts into thensputation. Some problems
are naturally truncated, e.g. for periodic structures wipariodic boundary conditions
can be applied. Some problems involve solutions that anélyagecaying in space,
so that the truncation is irrelevant as long as the compmurtatigrid is large enough.
Other problems, such as Poisson’s equation, involve swisithat vary more and more
slowly at greater distances—in this case, one can simplyl@mgcoordinate trans-
formation, such ag = tanhz, to remap frome € (—o0,0) toz € (—1,1), and
solve the new finite system. However, some of the most diffigrdblems to truncate
involve wave equationswhere the solutions amescillating and typically decay with
distancer only as1/r(@=1/2 in d dimensiong. The slow decay means that simply
truncating the grid with hard-wall (Dirichlet or Neumanmn)meriodic boundary con-
ditions will lead to unacceptable artifacts from boundaftections. The oscillation
means that any real coordinate remapping from an infinitdituta domain will result
in solutions that oscillate infinitely fast as the boundargpproached—such fast oscil-
lations cannot be represented by any finite-resolution grid will instead effectively
form a reflecting hard wall. Therefore, wave equations negsomething different: an
absorbing boundarghat will somehow absorb waves that strike it, without refteg
them, and without requiring infeasible resolution.

The first attempts at such absorbing boundaries for wavetiegsanvolvedab-
sorbing boundary condition@BCs) [1]. Given a solution on a discrete gridhbaund-
ary conditionis a rule to set the value at the edge of the grid. For exampdenple
Dirichlet boundary condition sets the solution to zero at ¢ulge of the grid (which
will reflect waves that hit the edge). An ABC tries to somehextrapolatefrom the
interior grid points to the edge grid point(s), to fool théwimn into “thinking” that it
extends forever with no boundary. It turns out that this isgilde to do perfectly in
one dimension, where waves can only propagate in two dinesit-2). However, the
main interest for numerical simulation lies in two and thddmensions, and in these
cases the infinite number of possible propagation direstinakes the ABC problem
much harder. It seems unlikely that there exists any efficigathod to exactly absorb
radiating waves that strike a boundary at any possible arigkésting ABCs restrict
themselves to absorbing waves exactly only at a few angépgcally at normal inci-
dence: as the size of the computational grid grows, evdgtoafmal-incident waves
must become the dominant portion of the radiation strikimg boundaries. Another
difficulty is that, in many practical circumstances, the wawedium is not homoge-
neous at the grid boundaries. For example, to calculateréimsrmission around a

1As opposed to a boundary discretization, e.g. in boundi@ment methods, where the unknowns are
on the interfaces between homogeneous regions, and thegleoaus regions are handled analtyically. In
this case, no artificial truncation is required...excepthie case of interfaces that extend to infinity, which
lead to some interesting unsolved problems in boundarmpeté methods.

2The square of the solutions are typically related to a ratenefgy transport, e.g. the Poynting vector
in electromagnetism, and energy conservation requirdsttifadecay be proportional to the surface area
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Figure 1: (a) Schematic of a typical wave-equation problemyhich there is some
finite region of interest where sources, inhomogeneousanednlinearities, etcetera
are being investigated, from which some radiative waveapesto infinity. (b) The
same problem, where space has been truncated to some ctiomalteegion. An
absorbing layer is placed adjacent to the edges of the catipoal region—aerfect
absorbing layer would absorb outgoing waves without réfiestfrom the edge of the
absorber.

dielectric waveguide bend, the waveguide (an inhomogeniesgion with a higher in-
dex of refraction) should in principle extend to infinity be¢ and after the bend. Many
standard ABCs are formulated only for homogeneous maseaitahe boundaries, and
may even become numerically unstable if the grid boundaresnhomogeneous.

In 1994, however, the problem of absorbing boundaries forewequations was
transformed in a seminal paper by Berenger [2]. Berengemgddithe question: in-
stead of finding an absorbing boundamyndition he found an absorbing boundary
layer, as depicted in Fig. 1. An absorbing boundiyer is a layer of artificial absorb-
ing material that is placed adjacent to the edges of the goichpletelyindependent of
the boundary conditioWhen a wave enters the absorbing layer, it is attenuatelaieby t
absorption and decays exponentially; even if it reflectgredfboundary, the returning
wave after one round trip through the absorbing layer is agptally tiny. The prob-
lem with this approach is that, whenever you have a tramsitiom one material to
another waves generally reflect, and the transition from non-abiegrtn absorbing
material is no exception—so, instead of having reflectioosfthe grid boundary, you
now have reflections from the absorber boundary. Howeveermger showed that a
special absorbing medium could be constructed so that wawvest reflect at the in-
terface: gperfectly matched layeor PML. Although PML was originally derived for
electromagnetism (Maxwell's equations), the same ideag@anediately applicable to
other wave equations.

There are several equivalent formulations of PML. Beresgeiginal formulation

3Technically, reflections occur when translational symsnitrbroken. In a periodic structure (discrete
translational symmetry), there are waves that propagdteowi scattering, and a uniform medium is just a
special case with perioé> 0.



is called thesplit-field PML, because he artificially split the wave solutions inte th
sum of two new artificial field components. Nowadays, a momaron formulation

is theuniaxial PML or UPML, which expresses the PML region as the ordinary wave
equation with a combination of artifici@nisotropicabsorbing materials [3]. Both
of these formulations were originally derived by laborilyusomputing the solution
for a wave incident on the absorber interface at an arbittage (and polarization, for
vector waves), and then solving for the conditions in whighreflection is always zero.
This technique, however, is labor-intensive to extend be@ptvave equations and other
coordinate systems (e.g. cylindrical or spherical rathantCartesian). It also misses
an important fact: PML still works (can still be made thearally reflectionless) for
inhomogeneoumedia, such as waveguides, as long as the medium is homageneo
in the direction perpendicular to the boundary, even thotighwave solutions for
such media cannot generally be found analytically. It twag however, thaboth

the split-field and UPML formulations can be derived in a muebre elegant and
general way, by viewing them as the result af@nplex coordinate stretchirg, 5,

6].* It is this complex-coordinate approach, which is essdptizsed onanalytic
continuationof Maxwell’s equations into complex spatial coordinatesvehthe fields
are exponentially decaying, that we review in this note.

In the following, we first briefly remind the reader what a waggiation is, focusing
on the simple case of the scalar wave equation but also gavgeneral definition. We
then derive PML as a combination of two steps: analytic cwaiion into complex
coordinates, then a coordinate transformation back toaeatdinates. Finally, we
discuss some limitations of PML, most notably the fact thistmo longer reflectionless
once the wave equation is discretized, and common workaofam these limitations.

2 Wave equations

There are many formulations of waves and wave equationseirpliysical sciences.
The prototypical example is the (source-freeqlar wave equation:

10%u i
whereu(x, t) is the scalar wave amplitude and= v/ab is the phase velocity of the
wave for some parameteng$x) andb(x) of the (possibly inhomogeneous) medium.
For lossless, propagating wavesandb should be real and positive.

Both for computational convenience (in order to use a staghygrid leap-frog dis-
cretization) and for analytical purposes, it is more cometio split this second-order
equation into two coupled first-order equation, by intradg@n auxiliary fieldv(x, ¢):

Ou
ot
2—: = aVu, 3)

41t is sometimes implied that only the split-field PML can beided via the stretched-coordinate ap-
proach [1], but the UPML media can be derived in this way a$ [8¢l

= bV.v, (2




which are easily seen to be equivalent to eq. (1).
Equations (2—3) can be written more abstractly as:

2 (0)-(w ()

for a4 x 4 linear operatorD and a 4-component vecter = (u;v) (in three di-
mensions). The key property that makes this a “wave equations out to be that

D is ananti-Hermitian operator in a proper choice of inner product, which leads to
oscillating solutions, conservation of energy, and othveave-like” phenomena. Ev-
ery common wave equation, from scalar waves to Maxwell'saiqas (electromag-
netism) to Schrédinger’s equation (quantum mechanic$)dd.amé-Navier equations
for elastic waves in solids, can be written in the abstraehfow /9t = Dw for some
wave functionw(x, t) and some anti-Hermitian operatér> The same PML ideas
apply equally well in all of these cases, although PML is namshmonly applied to
Maxwell’s equations for computational electromagnetism.

3 Complex coordinate stretching

Let us start with the solutionv(x,t) of some wave equation in infinite space, in a
situation similar to that in Fig. 1(a): we have some regionntérest near the origin
x = 0, and we want to truncate space outside the region of interesich a way as
to absorb radiating waves. In particular, we will focus amtrating the problem in the
+z direction (the other directions will follow by the same teajue). This truncation
occurs in three conceptual steps, summarized as follows:

1. Ininfinite spaceanalytically continughe solutions and equations tcamplex
2 contour, whichchangesoscillating waves int@xponentially decaying waves
outside the region of interestithoutreflections.

2. Still in infinite space, perform eoordinate transformatioto express the com-
plex 2 as a function of a real coordinate. In the new coordinateshavereal
coordinatesandcomplex materials

3. Truncate the domain of this new real coordinate insidecttraplex-material
region: since the solution is decaying there, as long asuwneate it after a long
enough distance (where the exponential tails are smahlypit't matter what
boundary condition we use (hard-wall truncations are fine).

For now, we will make two simplifications:

e We will assume that the space far from the region of interehbimogeneous
(deferring the inhomogeneous case until later).

e We will assume that the space far from the region of intesebhear and time-
invariant.

5See e.g. Ref. [7]



Under these assumptions, the radiating solutions in iefspaice must take the form of
a superposition gblanewaves

wix, 1) = 37 Wy peltloxen), (5)
k,w

for some constant amplitudd¥y ,,, wherew is the (angular) frequency ardis the
wavevector. (In an isotropic medium,andk are related by = c|k| wherec(w) is
some phase velocity, but we don't need to assume that herparticular, the key fact
is that the radiating solutions may be decomposed into fomsf the form

Wy, z)e!Fr=en., (6)

The ratiow/k is the phase velocity, which can be different from the groefoeity
dw/dk (the velocity of energy transport, in lossless media). Faves propagating
in the +x direction, the group velocity is positive. Except in veryusoal cases, the
phase velocity has the same sign as the group velocity in @peneous mediuhso
we will assumethatk is positive.

3.1 Analytic continuation

The key fact about eq. (6) is that it is amalytic functionof . That means that we
can freelyanalytically continuet, evaluating the solution atomplex valuesf 2. The
original wave problem corresponds#along the real axis, as shown in the top panels
of Fig. 2, which gives an oscillating?** solution. However, if instead of evaluating
x along real axis, consider what happens if we evaluate itgalba contour shown in
the bottom-left panel of Fig. 2, where f&e x > 5 we have added a linearly growing
imaginary part. In this case, the solutionagponentiallydecaying forRex > 5,
because*(Rez+ilmz) — pikRez—kImz j5 exponentially decaying (fok > 0) as
Im z increases. Thatis, the solution in this region acts likestiiation in arabsorbing
material

However, there is one crucial difference here from an orgiahsorbing material:
the solution isnot changedor Rez < 5, wherez is no different from before. So, it
not only acts like an absorbing material, it acts likefiectionless absorbing materjal
a PML.

The thing to remember about this is that the analyticallytiomred solution satisfies
the samedifferential equation. We assumed the differential equativasz-invariant
in this region, sar only appeared in derivatives Iik§5, and the derivative of an an-
alytic function is the same along ady direction in the complex plane. So, we have
succeeded in transforming our original wave equation toionghich the radiating
solutions (largézx|) are exponentially decaying, while the part we care atsmg(l )
is unchanged. The only problem is that solving differerg@liations along contours in
the complex plane is rather unfamiliar and inconvenients Tifficulty is easily fixed.

6The formulation of PML absorbers when the phase velocitysigs opposite to the group velocity, for
example in the“left-handed media” of electromagnetisnsoimewhat more tricky [8, 9].
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Figure 2: Top real part of original oscillating solutioa™? (right) corresponds ta
along the real axis in the complexplane (left). Bottom We can instead evaluate
this analytic function along deformedcontour in the complex plane: here (left) we
deform it to increase along the imaginary axis for- 5. Thee™*® solution (right) is
unchanged for: < 5, but is exponentially decaying far > 5 where the contour is
deformed, corresponding to an “absorbing” region.



3.2 Coordinate transformation back to real

For convenience, let's denote the comptegontour byz, and reserve the letterfor
the real part. Thus, we havéz) = = +if(z), wheref(z) is some function indicating
how we've deformed our contour along the imaginary axisc&itme complex coordi-
natez is inconvenient, we will justhange variableso write the equations in terms of
x, the real part!

Changing variablesis easy. Whereever our original equatsdz (the differential
along the deformed contod), we now haved)z = (1 + i%)ax. That's it! Since our
original wave equation was assumedhvariant (at least in the large+egions where
f # 0), we have no other substitutions to make. As we shall sooniseséll be
convenient to denotgg = "’”T(”) for some functiory,.(x). [For example, in the
bottom panel of Fig. 2, we chosge,(z) to be a step function: zero far < 5 and a
positive constant for: > 5, which gave us exponential decay.] In termsogf the
entire process of PML can be conceptually summed up by aesingihsformation of
our original differential equation:

0 1 0

5 TEE 7)

In the PML regions whereo,, > 0, our oscillating solutions turn into exponentially
decaying ones. In the regions wherg = 0, our wave equation is unchanged and
the solution is unchangedthere are no reflections because this is only an analytic
continuation of the original solution fromto z, and wherer = x the solution cannot
change.

Why did we choose . /w, as opposed to just,? The answer comes if we look at
what happens to our wav&**. In the new coordinates, we get:

eikwe—f e a,(m/)dm/. (8)
Notice the facto/w, which is equal tal /c,, the inverse of the phase velocity in
the z direction. In a dispersionless material (e.g. vacuum fgmt), ¢, is a constant
independent of velocity for a fixed angle, in which casedtienuation ratén the PML
is independenbf frequencyw: all wavelengths decay at the same rate! In contrast,
if we had left out thel /w then shorter wavelengths would decay faster than longer
wavelengths. On the other hand, the attenuation ratetimdependent of thangleof
the light, a difficulty discussed in Sec. 7.2.

3.3 Truncating the computational region

Once we have performed the PML transformation (7) of our weaygations, the solu-
tions are unchanged in our region of interest (smakknd exponentially decaying in
the outer regions (large). That means that we cdruncatethe computational region
at some sufficiently large, perhaps by putting a hard wall (Dirichlet boundary con-
dition). Because only the tiny exponential tails “see” thaad wall and reflect off it,
and evertheyattenuaten the way backowards the region of interest, the effect on the
solutions in our region of interest will be exponentiallyan



In fact, in principle we can make the PML region as thin as wetywjast by making
o, very large (which makes the exponential decay rate ragid)Ks to the fact that
the decay rate is independentw{although the angle dependence can be a problem,
as discussed in Sec. 7.2). However, in practice, we wills&et. 7.1 that using a very
largeo,, can cause “numerical reflections” once we discretize thblpro onto a grid.
Instead, we turn on,(z) quadratically or cubically from zero, over a region of lemgt
a half-wavelength or so, and in practice the reflectionslvéltiny.

3.4 PML boundaries in other directions

So far, we've seen how to truncate our computational regiim &vPML layer in the
+x direction. What about other directions? The most importase to consider is
the —z direction. The key is, in the-z direction we dcexactly the same thingpply
the PML transformation (7) witly,, > 0 at a sufficiently large negative, and then
truncate the computational cell. This works becausegfer 0, the radiating waves
are propagating in the-x direction withk < 0 (negative phase velocity), and this
makes our PML solutions (8) decay in the opposite directexponentially decaying
asxr — —oo) for thesamepositiveo,.

Now that we have dealt with-z, the +y and+z directions are easy: just do the
same transformation, exceptdgdy andd/dz, respectively, using functions, (y) and
o.(z) thatare non-zeroin thegandz PML regions. At the corners of the computational
cell, we will have regions that are PML along two or three dii@ns simultaneously
(i.e. two or threesr’s are nonzero), but that doesn’t change anything.

3.5 Coordinate transformations and materials

We will see below that, in the context of the scalar wave eqnatthe1 + io/w
term from the PML coordinate transformation appears agcttfely, anartificial
anisotropic absorbing materiah the wave equation (effectively changingandb to
complex numbers, and a tensor in the case)ofAt least in the case of Maxwell’s
equations (electromagnetism), this is an instance of a gwmeral theorem: Maxwell’s
equations undeainy coordinate transformatiocan be expressed as Maxwell's equa-
tions in Cartesian coordinates witransformed materialé That is, the coordinate
transform is “absorbed” into a change of the permittivitand the permeability:
(generally into anisotropic tensors). This is the reasog WRML, which constructs
reflectionless anisotropic absorbers, is equivalent tonapbdex coordinate stretching:
it is just absorbing the coordinate stretching into the maltéensors.

4 PML examples in frequency and time domain

As we have seen, ifrequency domainvhen we are solving for solutions with time-
dependence—**, PML is almost trivial: we just apply the PML transformati¢r)

"This theorem appears to have been first clearly stated amgeddsy Ward and Pendry [10], and is
summarized in a compact general form by my course notes [11].



to everya% derivative in our wave equation. (And similarly for derivais in other
directions, to obtain PML boundaries in different direaso)

In the time domain, however, things are a bit more complitgtecause we chose
our transformation to be of the foria-io /w: our complex “stretch” factor is frequency-
dependenin order that the attenuation rate be frequemgjependentBut how do we
express d /w dependence in the time domain, where we don't hayee. the time-
domain wave function may superimpose multiple frequeratience)? One solution is
to punt, of course, and just use a stretch fatteric/wy for some constant frequency
wg that is typical of our problem; as long as our bandwidth ism&renough, our atten-
uation rate (and thus the truncation error) will be fairlymstant. However, it turns out
that there is a way to implement the idédlo dependence directly in the time domain,
via theauxiliary differential equation (ADE) approach.

This approach is best illustrated by example, so we will @ersPML boundaries
in thex direction for the scalar wave equation in one and two dimarssi(It turns out
that an ADE is not required in 1d, however.)

4.1 Anexample: PML for 1d scalar waves

Let's consider the 1d version of the scalar wave equatioB)2—

Ou _,0v_ .
o or
v _ Ou_ .
ot~ “or = Y

where we have substituted ani“? time-dependence. Now, if we perform the PML
transformation (7), and multiply both sides by io,, /w, we obtain:

b@v o+

— = —Wu + oz u

ox ”
ou .

a4— = —IWV + 0,0.
ox

Thel/w terms have cancelled, and so in this 1d case we can trivialiiythe equations
back into their time-domain forms:

u _ v _
ot oz o
v _ du
3t_a8:17 Tl

Notice that, foro,, > 0, the decay terms have exactly the right sign to make the solu-
tions decay irtimeif « andv were constants in space. Similarly, they have the right
sign to make it decay in space whereewgr> 0. But this is a true PML: there azero
reflections from any boundary where we chaageeven if we change,, discontinu-
ously (not including the discretization problems mentiaéove).

By the way, the above equations reveal why we use the lefi@rthe PML absorp-
tion coefficient. If the above equations are interpretechastjuations for electria:j

10



and magneticy) fields in 1d electromagnetism, therplays the role of @onductivity
and conductivity is traditionally denoted lay Unlike the usual electrical conductiv-
ity, however, in PML we have both an electric anthagneticconductivity, since we
have terms corresponding to currents of electric and mapeierges. There is no rea-
son we need to be limited fohysicalmaterials to construct our PML for a computer
simulation

4.2 An example: PML for 2d scalar waves

Unfortunately, the 1d case above is a little too trivial teegiyou the full flavor of
how PML works. So, let's go to a 2d scalar wave equation (af@ire—** time-
dependence):

%:bv-v:b%—i- %—vyy:—iwu
vy ou .
T aﬁ_x = —iwu,
% = a@ = —iwv
ot Oy v

Again performing the PML transformation (7) %% in the first two equations, and
multiplying both sides byt + ic, /w, we obtain:

0 0
b (;Z —|—baiyy (1 —|—i%) = —jwu + oz
ou .
a% = —1WVg + Oz V.

The the second equation is easy to transform back to time idoat like for the 1d
scalar-wave equation=-iw becomes a time derivative. The first equation, however,

poses a problem: we have an exi%% ‘98”; term with an explicitl /w factor. What do
we do with this?

In a Fourier transformyiw corresponds to differentiation, $8w corresponds to
integration our problematid /w term is theintegral of another quantity. In particular,
let’s introduce a nevauxiliary field variabley, satisfying

15}
i = bawai;,
in which case 5 5
b% + baiyy + 1 = —iwu + oz u.

Now, we can Fourier transform everything back to the timezdim, to get a set dbur
time-domain equations with PML absorbing boundaries imtladérection that we can
solve by our favorite discretization scheme:

ou

E:bv-v—amu—i—w

11



Ov,  Ou
ot "oz ™"
Ovy ou
it TRt
ot Jy
Wy
ot oy
where the last equation far is ourauxiliary differential equatior{with initial condi-
tiony = 0). Notice that we have, absorption terms in the andv, equation, but not
for v,: the PML corresponds to amnisotropic absorberas if « were replaced by the

2 x 2 complex tensor
1 c Oy -1
a

This is an example of the general theorem alluded to in SBalBve.

5 PML in inhomogeneous media

The derivation above didn’t really depend at all on the aggtion that the medium
was homogenous ify, z) for the z PML layer. We only assumed that the medium
(and hence the wave equation) was invariant in:thdirection for sufficiently large
x. For example, instead of empty space we could have a waveguiehted in the:
direction (i.e. some-invariantyz cross-section). Regardless of the dependence,
translational invariance implies that radiating solut@an be decomposed into a sum
of functions of the form of eq. (W (y, z)e!(**~«!), These solution$V are no longer
plane waves. Instead, they are timmal mode®f the z-invariant structure, and is
the propagation constanfThese normal modes are the subject of waveguide theory in
electromagnetism, a subject extensively treated elseh&r 13]. The bottom line is:
since the solution/equation is still analyticinthe PML is still reflectionles8.

6 PML for evanescent waves

In the discussion above, we considered waves of the féffand showed that they
became exponentially decaying if we replacky z(1 + io, /w) for o > 0. However,
this discussion assumed thiatvasreal (and positive). This is not necessarily the case!
In two or more dimensions, the wave equation can rexanescensolutions where

k is complex, most commonly wheveis purely imaginary. For example consider a
planewave:(* *~«*) in a homogeneous two-dimensional medium with phase vglocit

8There is a subtlety here because, in unusual cases, unifaseguides can support “backward-wave”
modes where the phase and group velocities are opposité, «e0 for a right-traveling wave [14, 15, 16,
17]. It has problems even worse than those reported fohteftded media [8, 9], because the same frequency
has both “right-handed” and “left-handed” modes; a deepalyais of this interesting case is the subject of
an upcoming paper (P.-R. Lo and S. G. Johnson, 2008).
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¢ i.e.w = clk| = c,/kZ + k2. In this case,
w2
k:kw:\/g—kg.

For sufficiently largek, (i.e. high-frequency Fourier components in theirection),k
is purely imaginary. As we go to large the boundary condition at — oo implies
that we must havem k > 0 so thate’** is exponentially decaying.
What happens to such a decaying, imaginagganescent wave in the PML medium?
Letk = ik. Then, in the PML:

e hT _, e—ﬁm—i%ﬂw. (9)

That is, the PML added an oscillation to the evanescent wawelid not increase its
decay rate The PML is still reflectionless, but it didnftelp.

Of course, you might object that an evanescent wave is degayiyway so we
hardly need a PML—we just need to make the computationabndgrge enough and
it will go away on its own. This is true, but it would be nice tocalerate the process:
in some cases = Im k may be relatively small and we would need a large grid for
it to decay sufficiently. This is no problem, however, beeausthingin our analysis
requireds, to bereal. We can just as easily make complexwherelm o, < 0 corre-
sponds to aeal coordinate stretching. That is, the imaginary par ofwill accelerate
the decay of evanescent waves in eq. (9) above, withouticgeany reflections.

Adding an imaginary part te,, does come at a price, however. What it does to
the propagating(real k) waves is to make them oscillaf@ster, which exacerbates the
numerical reflections described in Sec. 7.1. In short, élkarg in moderation.

7 Limitations of PML

PML, while it has revolutionized absorbing boundaries fawe equations, especially
(but not limited to) electromagnetism, is not a panacea. &ofrthe limitations and
failure cases of PML are discussed in this section, alonly witrkarounds.

7.1 Discretization and numerical reflections

First, and most famously, PML is only reflectionless if yoa aolving theexactwave
equations. As soon as you discretize the problem (whethefirfibe difference or
finite elements), you are only solving an approximate waweggn and the analytical
perfection of PML is no longer valid.

What is left, once you discretize? PML is still an absorbingtenial: waves that
propagate within it are still attenuated, even discreteagaihe boundary between the
PML and the regular medium is no longer reflectionless, batréflections are small
because the discretization is (presumably) a good appadidmfor the exact wave
equation. How can we make the reflections smaller, as smaléagant?
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The key fact is that, even without a PML, reflections can bearabitrarily small
as long as the medium gowly varying That is, in the limit as you “turn on” absorp-
tion more and more slowly, reflections go to zero due tadiabatic theorenj18].
With a non-PML absorber, you might need togry slowly (i.e. a very thick absorb-
ing layer) to get acceptable reflections [19]. With PML, hges the constant factor
is very good to start with, so experience shows that a simpélgatic or cubic turn-
on of the PML absorption usually produces negligible reitexs for a PML layer of
only half a wavelength or thinner [1, 19]. (Increasing thgolation also increases the
effectiveness of the PML, because it approaches the exaet @guation.)

7.2 Angle-dependent absorption

Another problem is that the PML absorption depends on arglparticular, consider
eqg. (8) for the exponential attenuation of waves in the PMid aotice that the attenu-
ation rate is proportional to the ratigw. Butk, here, is really just,,, thecomponent
of the wavevectok in the = direction (for a planewave in a homogeneous medium).
Thus, the attenuation rate is proportionalkdcos 6, whereé is the angle the radiat-
ing wave makes with the axis. As the radiation approaches glancing incidence, the
attenuation rate goes to zero! This means that, for any fiddd fickness, waves
sufficiently close to glancing incidence will have subsrtround-trip” reflections
through the PML.

In practice, this is not as much of a problem as it may soureddikfirst. In most
cases, all of the radiation originates in a localized regibimterest near the origin, as
in Fig. 1. In this situation, all of the radiation strikingglPML will be at an angle
6 < 55° ~ cos~'(1/+/3) in the limit as the boundaries move farther and farther away
(assuming a cubic computational region). So, if the bouedare far enough away, we
can guarantee a maximum angle and hence make the PML thicigkno sufficiently
absorb all waves within this cone of angles.

7.3 Inhomogeneous media where PML fails

Finally, PML fails completely in the case where the mediunmds x-invariant (for
an z boundary) [19]. You might ask: why should we care about sua$es, as if
the medium is varying in the direction then we will surely get reflections (from the
variation) anyway, PML or no PML? Not necessarily.

There are several important casesrefarying media that, in the infinite system,
have reflectionless propagating waves. Perhaps the singpéesaveguide that hits the
boundary of the computational cell at an angle (not norm#iédboundary)—one can
usuallyarrange for all waveguides to leave the computational regioright angles,
but notalways(e.g. what if you want the transmission througBod bend?). Another,
more complicated and perhaps more challenging case is treaphotonic crystal
for a periodicmedium, there are wave solutior@l¢ch waveypthat propagate without
scattering, and can have very interesting properties tieati@attainable in a physical
uniform medium [20].

For any such case, PML seems to be irrevocably spoiled. Tineatédea behind
PML was that the wave equations, and solutions, were andiytictions in the direc-
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tion perpendicular to the boundary, and so they could beyically continued into the
complex coordinate plane. If the medium is varying in thefirection, it is most likely
varying discontinously, and hence the whole idea of amabgdntinuation goes out the
window.

What can we do in such a case? Conventional ABCs don’t woheeithey are
typically designed for homogeneous media). The only fakbia the adiabatic theo-
rem alluded to above: even a non-PML absorber, if turned adwally enough and
smoothly enough, will approach a reflectionless limit. Tliallty becomes how
gradual is gradual enough, and in finding a way to make theRidh-absorber a
tractable thickness [19].
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