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Abstract

This note is intended as a brief introduction to the theory and practice of per-
fectly matched layer (PML) absorbing boundaries for wave equations, intended
for future use in the courses 18.369 and 18.336 at MIT. It focuses on the complex
stretched-coordinate viewpoint, and also discusses the limitations of PML.
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1 Introduction

Whenever one solves a PDE numerically by a volume discretization,1 one must truncate
the computational grid in some way, and the key question is how to perform this trun-
cation without introducing significant artifacts into the computation. Some problems
are naturally truncated, e.g. for periodic structures where periodic boundary conditions
can be applied. Some problems involve solutions that are rapidly decaying in space,
so that the truncation is irrelevant as long as the computational grid is large enough.
Other problems, such as Poisson’s equation, involve solutions that vary more and more
slowly at greater distances—in this case, one can simply employ a coordinate trans-
formation, such as̃x = tanhx, to remap fromx ∈ (−∞,∞) to x̃ ∈ (−1, 1), and
solve the new finite system. However, some of the most difficult problems to truncate
involve wave equations, where the solutions areoscillating and typically decay with
distancer only as1/r(d−1)/2 in d dimensions.2 The slow decay means that simply
truncating the grid with hard-wall (Dirichlet or Neumann) or periodic boundary con-
ditions will lead to unacceptable artifacts from boundary reflections. The oscillation
means that any real coordinate remapping from an infinite to afinite domain will result
in solutions that oscillate infinitely fast as the boundary is approached—such fast oscil-
lations cannot be represented by any finite-resolution grid, and will instead effectively
form a reflecting hard wall. Therefore, wave equations require something different: an
absorbing boundarythat will somehow absorb waves that strike it, without reflecting
them, and without requiring infeasible resolution.

The first attempts at such absorbing boundaries for wave equations involvedab-
sorbing boundary conditions(ABCs) [1]. Given a solution on a discrete grid, abound-
ary conditionis a rule to set the value at the edge of the grid. For example, asimple
Dirichlet boundary condition sets the solution to zero at the edge of the grid (which
will reflect waves that hit the edge). An ABC tries to somehowextrapolatefrom the
interior grid points to the edge grid point(s), to fool the solution into “thinking” that it
extends forever with no boundary. It turns out that this is possible to do perfectly in
one dimension, where waves can only propagate in two directions (±x). However, the
main interest for numerical simulation lies in two and threedimensions, and in these
cases the infinite number of possible propagation directions makes the ABC problem
much harder. It seems unlikely that there exists any efficient method to exactly absorb
radiating waves that strike a boundary at any possible angle. Existing ABCs restrict
themselves to absorbing waves exactly only at a few angles, especially at normal inci-
dence: as the size of the computational grid grows, eventually normal-incident waves
must become the dominant portion of the radiation striking the boundaries. Another
difficulty is that, in many practical circumstances, the wave medium is not homoge-
neous at the grid boundaries. For example, to calculate the transmission around a

1As opposed to a boundary discretization, e.g. in boundary-element methods, where the unknowns are
on the interfaces between homogeneous regions, and the homogeneous regions are handled analtyically. In
this case, no artificial truncation is required...except inthe case of interfaces that extend to infinity, which
lead to some interesting unsolved problems in boundary-element methods.

2The square of the solutions are typically related to a rate ofenergy transport, e.g. the Poynting vector
in electromagnetism, and energy conservation requires that this decay be proportional to the surface area
∼ rd−1.
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Figure 1: (a) Schematic of a typical wave-equation problem,in which there is some
finite region of interest where sources, inhomogeneous media, nonlinearities, etcetera
are being investigated, from which some radiative waves escape to infinity. (b) The
same problem, where space has been truncated to some computational region. An
absorbing layer is placed adjacent to the edges of the computational region—aperfect
absorbing layer would absorb outgoing waves without reflections from the edge of the
absorber.

dielectric waveguide bend, the waveguide (an inhomogeneous region with a higher in-
dex of refraction) should in principle extend to infinity before and after the bend. Many
standard ABCs are formulated only for homogeneous materials at the boundaries, and
may even become numerically unstable if the grid boundariesare inhomogeneous.

In 1994, however, the problem of absorbing boundaries for wave equations was
transformed in a seminal paper by Berenger [2]. Berenger changed the question: in-
stead of finding an absorbing boundarycondition, he found an absorbing boundary
layer, as depicted in Fig. 1. An absorbing boundarylayer is a layer of artificial absorb-
ing material that is placed adjacent to the edges of the grid,completelyindependent of
the boundary condition. When a wave enters the absorbing layer, it is attenuated by the
absorption and decays exponentially; even if it reflects offthe boundary, the returning
wave after one round trip through the absorbing layer is exponentially tiny. The prob-
lem with this approach is that, whenever you have a transition from one material to
another,3 waves generally reflect, and the transition from non-absorbing to absorbing
material is no exception—so, instead of having reflections from the grid boundary, you
now have reflections from the absorber boundary. However, Berenger showed that a
special absorbing medium could be constructed so that wavesdo not reflect at the in-
terface: aperfectly matched layer, or PML. Although PML was originally derived for
electromagnetism (Maxwell’s equations), the same ideas are immediately applicable to
other wave equations.

There are several equivalent formulations of PML. Berenger’s original formulation

3Technically, reflections occur when translational symmetry is broken. In a periodic structure (discrete
translational symmetry), there are waves that propagate without scattering, and a uniform medium is just a
special case with period→ 0.
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is called thesplit-field PML, because he artificially split the wave solutions into the
sum of two new artificial field components. Nowadays, a more common formulation
is theuniaxialPML or UPML, which expresses the PML region as the ordinary wave
equation with a combination of artificialanisotropicabsorbing materials [3]. Both
of these formulations were originally derived by laboriously computing the solution
for a wave incident on the absorber interface at an arbitraryangle (and polarization, for
vector waves), and then solving for the conditions in which the reflection is always zero.
This technique, however, is labor-intensive to extend to other wave equations and other
coordinate systems (e.g. cylindrical or spherical rather than Cartesian). It also misses
an important fact: PML still works (can still be made theoretically reflectionless) for
inhomogeneousmedia, such as waveguides, as long as the medium is homogeneous
in the direction perpendicular to the boundary, even thoughthe wave solutions for
such media cannot generally be found analytically. It turnsout, however, thatboth
the split-field and UPML formulations can be derived in a muchmore elegant and
general way, by viewing them as the result of acomplex coordinate stretching[4, 5,
6].4 It is this complex-coordinate approach, which is essentially based onanalytic
continuationof Maxwell’s equations into complex spatial coordinates where the fields
are exponentially decaying, that we review in this note.

In the following, we first briefly remind the reader what a waveequation is, focusing
on the simple case of the scalar wave equation but also givinga general definition. We
then derive PML as a combination of two steps: analytic continuation into complex
coordinates, then a coordinate transformation back to realcoordinates. Finally, we
discuss some limitations of PML, most notably the fact that it is no longer reflectionless
once the wave equation is discretized, and common workarounds for these limitations.

2 Wave equations

There are many formulations of waves and wave equations in the physical sciences.
The prototypical example is the (source-free)scalar wave equation:

∇ · (a∇u) =
1

b

∂2u

∂t2
=
ü

b
(1)

whereu(x, t) is the scalar wave amplitude andc =
√
ab is the phase velocity of the

wave for some parametersa(x) andb(x) of the (possibly inhomogeneous) medium.
For lossless, propagating waves,a andb should be real and positive.

Both for computational convenience (in order to use a staggered-grid leap-frog dis-
cretization) and for analytical purposes, it is more convenient to split this second-order
equation into two coupled first-order equation, by introducing an auxiliary fieldv(x, t):

∂u

∂t
= b∇ · v, (2)

∂v

∂t
= a∇u, (3)

4It is sometimes implied that only the split-field PML can be derived via the stretched-coordinate ap-
proach [1], but the UPML media can be derived in this way as well [6].
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which are easily seen to be equivalent to eq. (1).
Equations (2–3) can be written more abstractly as:

∂w

∂t
=

∂

∂t

(

u
v

)

=

(

b∇·
a∇

) (

u
v

)

= D̂w (4)

for a 4 × 4 linear operatorD̂ and a 4-component vectorw = (u;v) (in three di-
mensions). The key property that makes this a “wave equation” turns out to be that
D̂ is ananti-Hermitianoperator in a proper choice of inner product, which leads to
oscillating solutions, conservation of energy, and other “wave-like” phenomena. Ev-
ery common wave equation, from scalar waves to Maxwell’s equations (electromag-
netism) to Schrödinger’s equation (quantum mechanics) to the Lamé-Navier equations
for elastic waves in solids, can be written in the abstract form ∂w/∂t = D̂w for some
wave functionw(x, t) and some anti-Hermitian operator̂D.5 The same PML ideas
apply equally well in all of these cases, although PML is mostcommonly applied to
Maxwell’s equations for computational electromagnetism.

3 Complex coordinate stretching

Let us start with the solutionw(x, t) of some wave equation in infinite space, in a
situation similar to that in Fig. 1(a): we have some region ofinterest near the origin
x = 0, and we want to truncate space outside the region of interestin such a way as
to absorb radiating waves. In particular, we will focus on truncating the problem in the
+x direction (the other directions will follow by the same technique). This truncation
occurs in three conceptual steps, summarized as follows:

1. In infinite space,analytically continuethe solutions and equations to acomplex
x contour, whichchangesoscillating waves intoexponentially decaying waves
outside the region of interestwithoutreflections.

2. Still in infinite space, perform acoordinate transformationto express the com-
plex x as a function of a real coordinate. In the new coordinates, wehavereal
coordinatesandcomplex materials.

3. Truncate the domain of this new real coordinate inside thecomplex-material
region: since the solution is decaying there, as long as we truncate it after a long
enough distance (where the exponential tails are small), itwon’t matter what
boundary condition we use (hard-wall truncations are fine).

For now, we will make two simplifications:

• We will assume that the space far from the region of interest is homogeneous
(deferring the inhomogeneous case until later).

• We will assume that the space far from the region of interest is linear and time-
invariant.

5See e.g. Ref. [7]
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Under these assumptions, the radiating solutions in infinite space must take the form of
a superposition ofplanewaves:

w(x, t) =
∑

k,ω

Wk,ωe
i(k·x−ωt), (5)

for some constant amplitudesWk,ω, whereω is the (angular) frequency andk is the
wavevector. (In an isotropic medium,ω andk are related byω = c|k| wherec(ω) is
some phase velocity, but we don’t need to assume that here.) In particular, the key fact
is that the radiating solutions may be decomposed into functions of the form

W(y, z)ei(kx−ωt). (6)

The ratioω/k is the phase velocity, which can be different from the group velocity
dω/dk (the velocity of energy transport, in lossless media). For waves propagating
in the+x direction, the group velocity is positive. Except in very unusual cases, the
phase velocity has the same sign as the group velocity in a homogeneous medium,6 so
we will assumethatk is positive.

3.1 Analytic continuation

The key fact about eq. (6) is that it is ananalytic functionof x. That means that we
can freelyanalytically continueit, evaluating the solution atcomplex valuesof x. The
original wave problem corresponds tox along the real axis, as shown in the top panels
of Fig. 2, which gives an oscillatingeikx solution. However, if instead of evaluating
x along real axis, consider what happens if we evaluate it along the contour shown in
the bottom-left panel of Fig. 2, where forRex > 5 we have added a linearly growing
imaginary part. In this case, the solution isexponentiallydecaying forRex > 5,
becauseeik(Re x+i Im x) = eik Re xe−k Im x is exponentially decaying (fork > 0) as
Imx increases. That is, the solution in this region acts like thesolution in anabsorbing
material.

However, there is one crucial difference here from an ordinary absorbing material:
the solution isnot changedfor Rex < 5, wherex is no different from before. So, it
not only acts like an absorbing material, it acts like areflectionless absorbing material,
a PML.

The thing to remember about this is that the analytically continued solution satisfies
thesamedifferential equation. We assumed the differential equation wasx-invariant
in this region, sox only appeared in derivatives like∂∂x , and the derivative of an an-
alytic function is the same along anydx direction in the complex plane. So, we have
succeeded in transforming our original wave equation to onein which the radiating
solutions (large|x|) are exponentially decaying, while the part we care about (smallx)
is unchanged. The only problem is that solving differentialequations along contours in
the complex plane is rather unfamiliar and inconvenient. This difficulty is easily fixed.

6The formulation of PML absorbers when the phase velocity hassign opposite to the group velocity, for
example in the“left-handed media” of electromagnetism, issomewhat more tricky [8, 9].
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Figure 2: Top: real part of original oscillating solutioneikx (right) corresponds tox
along the real axis in the complex-x plane (left). Bottom: We can instead evaluate
this analytic function along adeformedcontour in the complex plane: here (left) we
deform it to increase along the imaginary axis forx > 5. Theeikx solution (right) is
unchanged forx < 5, but is exponentially decaying forx > 5 where the contour is
deformed, corresponding to an “absorbing” region.
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3.2 Coordinate transformation back to realx

For convenience, let’s denote the complexx contour byx̃, and reserve the letterx for
the real part. Thus, we havẽx(x) = x+ if(x), wheref(x) is some function indicating
how we’ve deformed our contour along the imaginary axis. Since the complex coordi-
natex̃ is inconvenient, we will justchange variablesto write the equations in terms of
x, the real part!

Changing variables is easy. Whereever our original equation has∂x̃ (the differential
along the deformed contour̃x), we now have∂x̃ = (1 + i df

dx )∂x. That’s it! Since our
original wave equation was assumedx-invariant (at least in the large-x regions where
f 6= 0), we have no other substitutions to make. As we shall soon see, it will be
convenient to denotedfdx = σx(x)

ω , for some functionσx(x). [For example, in the
bottom panel of Fig. 2, we choseσx(x) to be a step function: zero forx ≤ 5 and a
positive constant forx > 5, which gave us exponential decay.] In terms ofσx, the
entire process of PML can be conceptually summed up by a single transformation of
our original differential equation:

∂

∂x
→ 1

1 + iσx(x)
ω

∂

∂x
. (7)

In the PML regions whereσx > 0, our oscillating solutions turn into exponentially
decaying ones. In the regions whereσx = 0, our wave equation is unchanged and
the solution is unchanged: there are no reflections because this is only an analytic
continuation of the original solution fromx to x̃, and wherẽx = x the solution cannot
change.

Why did we chooseσx/ω, as opposed to justσx? The answer comes if we look at
what happens to our waveeikx. In the new coordinates, we get:

eikxe−
k
ω

R

x σx(x′)dx′

. (8)

Notice the factork/ω, which is equal to1/cx, the inverse of the phase velocitycx in
thex direction. In a dispersionless material (e.g. vacuum for light), cx is a constant
independent of velocity for a fixed angle, in which case theattenuation ratein the PML
is independentof frequencyω: all wavelengths decay at the same rate! In contrast,
if we had left out the1/ω then shorter wavelengths would decay faster than longer
wavelengths. On the other hand, the attenuation rate isnot independent of theangleof
the light, a difficulty discussed in Sec. 7.2.

3.3 Truncating the computational region

Once we have performed the PML transformation (7) of our waveequations, the solu-
tions are unchanged in our region of interest (smallx) and exponentially decaying in
the outer regions (largex). That means that we cantruncatethe computational region
at some sufficiently largex, perhaps by putting a hard wall (Dirichlet boundary con-
dition). Because only the tiny exponential tails “see” thishard wall and reflect off it,
and eventheyattenuateon the way backtowards the region of interest, the effect on the
solutions in our region of interest will be exponentially small.
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In fact, in principle we can make the PML region as thin as we want, just by making
σx very large (which makes the exponential decay rate rapid), thanks to the fact that
the decay rate is independent ofω (although the angle dependence can be a problem,
as discussed in Sec. 7.2). However, in practice, we will see in Sec. 7.1 that using a very
largeσx can cause “numerical reflections” once we discretize the problem onto a grid.
Instead, we turn onσx(x) quadratically or cubically from zero, over a region of length
a half-wavelength or so, and in practice the reflections willbe tiny.

3.4 PML boundaries in other directions

So far, we’ve seen how to truncate our computational region with a PML layer in the
+x direction. What about other directions? The most importantcase to consider is
the−x direction. The key is, in the−x direction we doexactly the same thing: apply
the PML transformation (7) withσx > 0 at a sufficiently large negativex, and then
truncate the computational cell. This works because, forx < 0, the radiating waves
are propagating in the−x direction withk < 0 (negative phase velocity), and this
makes our PML solutions (8) decay in the opposite direction (exponentially decaying
asx→ −∞) for thesamepositiveσx.

Now that we have dealt with±x, the±y and±z directions are easy: just do the
same transformation, except to∂/∂y and∂/∂z, respectively, using functionsσy(y) and
σz(z) that are non-zero in they andz PML regions. At the corners of the computational
cell, we will have regions that are PML along two or three directions simultaneously
(i.e. two or threeσ’s are nonzero), but that doesn’t change anything.

3.5 Coordinate transformations and materials

We will see below that, in the context of the scalar wave equation, the1 + iσ/ω
term from the PML coordinate transformation appears as, effectively, anartificial
anisotropic absorbing materialin the wave equation (effectively changinga andb to
complex numbers, and a tensor in the case ofa). At least in the case of Maxwell’s
equations (electromagnetism), this is an instance of a moregeneral theorem: Maxwell’s
equations underany coordinate transformationcan be expressed as Maxwell’s equa-
tions in Cartesian coordinates withtransformed materials.7 That is, the coordinate
transform is “absorbed” into a change of the permittivityε and the permeabilityµ
(generally into anisotropic tensors). This is the reason why UPML, which constructs
reflectionless anisotropic absorbers, is equivalent to a complex coordinate stretching:
it is just absorbing the coordinate stretching into the material tensors.

4 PML examples in frequency and time domain

As we have seen, infrequency domain, when we are solving for solutions with time-
dependencee−iωt, PML is almost trivial: we just apply the PML transformation(7)

7This theorem appears to have been first clearly stated and derived by Ward and Pendry [10], and is
summarized in a compact general form by my course notes [11].
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to every ∂
∂x derivative in our wave equation. (And similarly for derivatives in other

directions, to obtain PML boundaries in different directions.)
In the time domain, however, things are a bit more complicated, because we chose

our transformation to be of the form1+iσ/ω: our complex “stretch” factor is frequency-
dependentin order that the attenuation rate be frequency-independent. But how do we
express a1/ω dependence in the time domain, where we don’t haveω (i.e. the time-
domain wave function may superimpose multiple frequenciesat once)? One solution is
to punt, of course, and just use a stretch factor1 + iσ/ω0 for some constant frequency
ω0 that is typical of our problem; as long as our bandwidth is narrow enough, our atten-
uation rate (and thus the truncation error) will be fairly constant. However, it turns out
that there is a way to implement the ideal1/ω dependence directly in the time domain,
via theauxiliary differential equation (ADE) approach.

This approach is best illustrated by example, so we will consider PML boundaries
in thex direction for the scalar wave equation in one and two dimensions. (It turns out
that an ADE is not required in 1d, however.)

4.1 An example: PML for 1d scalar waves

Let’s consider the 1d version of the scalar wave equation (2–3):

∂u

∂t
= b

∂v

∂x
= −iωu

∂v

∂t
= a

∂u

∂x
= −iωv,

where we have substituted ane−iωt time-dependence. Now, if we perform the PML
transformation (7), and multiply both sides by1 + iσx/ω, we obtain:

b
∂v

∂x
= −iωu+ σxu

a
∂u

∂x
= −iωv + σxv.

The1/ω terms have cancelled, and so in this 1d case we can trivially turn the equations
back into their time-domain forms:

∂u

∂t
= b

∂v

∂x
− σxu

∂v

∂t
= a

∂u

∂x
− σxv.

Notice that, forσx > 0, the decay terms have exactly the right sign to make the solu-
tions decay intime if u andv were constants in space. Similarly, they have the right
sign to make it decay in space whereeverσx > 0. But this is a true PML: there arezero
reflections from any boundary where we changeσx, even if we changeσx discontinu-
ously (not including the discretization problems mentioned above).

By the way, the above equations reveal why we use the letterσ for the PML absorp-
tion coefficient. If the above equations are interpreted as the equations for electric (u)
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and magnetic (v) fields in 1d electromagnetism, thenσ plays the role of aconductivity,
and conductivity is traditionally denoted byσ. Unlike the usual electrical conductiv-
ity, however, in PML we have both an electric and amagneticconductivity, since we
have terms corresponding to currents of electric and magnetic charges. There is no rea-
son we need to be limited tophysicalmaterials to construct our PML for a computer
simulation!

4.2 An example: PML for 2d scalar waves

Unfortunately, the 1d case above is a little too trivial to give you the full flavor of
how PML works. So, let’s go to a 2d scalar wave equation (againfor e−iωt time-
dependence):

∂u

∂t
= b∇ · v = b

∂vx

∂x
+ b

∂vy

∂y
= −iωu

∂vx

∂t
= a

∂u

∂x
= −iωvx

∂vy

∂t
= a

∂u

∂y
= −iωvy.

Again performing the PML transformation (7) of∂∂x in the first two equations, and
multiplying both sides by1 + iσx/ω, we obtain:

b
∂vx

∂x
+ b

∂vy

∂y

(

1 + i
σx

ω

)

= −iωu+ σxu

a
∂u

∂x
= −iωvx + σxvx.

The the second equation is easy to transform back to time domain, just like for the 1d
scalar-wave equation:−iω becomes a time derivative. The first equation, however,
poses a problem: we have an extraibσx

ω
∂vy

∂y term with an explicit1/ω factor. What do
we do with this?

In a Fourier transform,−iω corresponds to differentiation, soi/ω corresponds to
integration: our problematic1/ω term is theintegralof another quantity. In particular,
let’s introduce a newauxiliary field variableψ, satisfying

−iωψ = bσx
∂vy

∂y
,

in which case

b
∂vx

∂x
+ b

∂vy

∂y
+ ψ = −iωu+ σxu.

Now, we can Fourier transform everything back to the time-domain, to get a set offour
time-domain equations with PML absorbing boundaries in thex direction that we can
solve by our favorite discretization scheme:

∂u

∂t
= b∇ · v − σxu+ ψ
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∂vx

∂t
= a

∂u

∂x
− σxvx

∂vy

∂t
= a

∂u

∂y

∂ψ

∂t
= bσx

∂vy

∂y
,

where the last equation forψ is ourauxiliary differential equation(with initial condi-
tionψ = 0). Notice that we haveσx absorption terms in theu andvx equation, but not
for vy: the PML corresponds to ananisotropic absorber, as ifa were replaced by the
2 × 2 complex tensor

(

1
a + i σx

ωa
1
a

)

−1

.

This is an example of the general theorem alluded to in Sec. 3.5 above.

5 PML in inhomogeneous media

The derivation above didn’t really depend at all on the assumption that the medium
was homogenous in(y, z) for thex PML layer. We only assumed that the medium
(and hence the wave equation) was invariant in thex direction for sufficiently large
x. For example, instead of empty space we could have a waveguide oriented in thex
direction (i.e. somex-invariantyz cross-section). Regardless of theyz dependence,
translational invariance implies that radiating solutions can be decomposed into a sum
of functions of the form of eq. (6),W(y, z)ei(kx−ωt). These solutionsW are no longer
plane waves. Instead, they are thenormal modesof thex-invariant structure, andk is
thepropagation constant. These normal modes are the subject of waveguide theory in
electromagnetism, a subject extensively treated elsewhere [12, 13]. The bottom line is:
since the solution/equation is still analytic inx, the PML is still reflectionless.8

6 PML for evanescent waves

In the discussion above, we considered waves of the formeikx and showed that they
became exponentially decaying if we replacex by x(1 + iσx/ω) for σ > 0. However,
this discussion assumed thatk wasreal (and positive). This is not necessarily the case!
In two or more dimensions, the wave equation can haveevanescentsolutions where
k is complex, most commonly wherek is purely imaginary. For example consider a
planewaveei(k·x−ωt) in a homogeneous two-dimensional medium with phase velocity

8There is a subtlety here because, in unusual cases, uniform waveguides can support “backward-wave”
modes where the phase and group velocities are opposite, i.e. k < 0 for a right-traveling wave [14, 15, 16,
17]. It has problems even worse than those reported for left-handed media [8, 9], because the same frequency
has both “right-handed” and “left-handed” modes; a deeper analysis of this interesting case is the subject of
an upcoming paper (P.-R. Lo and S. G. Johnson, 2008).
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c, i.e.ω = c|k| = c
√

k2
x + k2

y. In this case,

k = kx =

√

ω2

c2
− k2

y.

For sufficiently largeky (i.e. high-frequency Fourier components in they direction),k
is purely imaginary. As we go to largex, the boundary condition atx → ∞ implies
that we must haveIm k > 0 so thateikx is exponentially decaying.

What happens to such a decaying, imaginary-k evanescent wave in the PML medium?
Let k = iκ. Then, in the PML:

e−κx → e−κx−i σx
ω

x. (9)

That is, the PML added an oscillation to the evanescent wave,but did not increase its
decay rate. The PML is still reflectionless, but it didn’thelp.

Of course, you might object that an evanescent wave is decaying anyway, so we
hardly need a PML—we just need to make the computational region large enough and
it will go away on its own. This is true, but it would be nice to accelerate the process:
in some casesκ = Im k may be relatively small and we would need a large grid for
it to decay sufficiently. This is no problem, however, because nothingin our analysis
requiredσx to bereal. We can just as easily makeσx complex, whereImσx < 0 corre-
sponds to areal coordinate stretching. That is, the imaginary part ofσx will accelerate
the decay of evanescent waves in eq. (9) above, without creating any reflections.

Adding an imaginary part toσx does come at a price, however. What it does to
thepropagating(realk) waves is to make them oscillatefaster, which exacerbates the
numerical reflections described in Sec. 7.1. In short, everything in moderation.

7 Limitations of PML

PML, while it has revolutionized absorbing boundaries for wave equations, especially
(but not limited to) electromagnetism, is not a panacea. Some of the limitations and
failure cases of PML are discussed in this section, along with workarounds.

7.1 Discretization and numerical reflections

First, and most famously, PML is only reflectionless if you are solving theexactwave
equations. As soon as you discretize the problem (whether for finite difference or
finite elements), you are only solving an approximate wave equation and the analytical
perfection of PML is no longer valid.

What is left, once you discretize? PML is still an absorbing material: waves that
propagate within it are still attenuated, even discrete waves. The boundary between the
PML and the regular medium is no longer reflectionless, but the reflections are small
because the discretization is (presumably) a good approximation for the exact wave
equation. How can we make the reflections smaller, as small aswe want?
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The key fact is that, even without a PML, reflections can be made arbitrarily small
as long as the medium isslowly varying. That is, in the limit as you “turn on” absorp-
tion more and more slowly, reflections go to zero due to anadiabatic theorem[18].
With a non-PML absorber, you might need to goveryslowly (i.e. a very thick absorb-
ing layer) to get acceptable reflections [19]. With PML, however, the constant factor
is very good to start with, so experience shows that a simple quadratic or cubic turn-
on of the PML absorption usually produces negligible reflections for a PML layer of
only half a wavelength or thinner [1, 19]. (Increasing the resolution also increases the
effectiveness of the PML, because it approaches the exact wave equation.)

7.2 Angle-dependent absorption

Another problem is that the PML absorption depends on angle.In particular, consider
eq. (8) for the exponential attenuation of waves in the PML, and notice that the attenu-
ation rate is proportional to the ratiok/ω. But k, here, is really justkx, thecomponent
of the wavevectork in thex direction (for a planewave in a homogeneous medium).
Thus, the attenuation rate is proportional to|k| cos θ, whereθ is the angle the radiat-
ing wave makes with thex axis. As the radiation approaches glancing incidence, the
attenuation rate goes to zero! This means that, for any fixed PML thickness, waves
sufficiently close to glancing incidence will have substantial “round-trip” reflections
through the PML.

In practice, this is not as much of a problem as it may sound like at first. In most
cases, all of the radiation originates in a localized regionof interest near the origin, as
in Fig. 1. In this situation, all of the radiation striking the PML will be at an angle
θ < 55◦ ≈ cos−1(1/

√
3) in the limit as the boundaries move farther and farther away

(assuming a cubic computational region). So, if the boundaries are far enough away, we
can guarantee a maximum angle and hence make the PML thick enough to sufficiently
absorb all waves within this cone of angles.

7.3 Inhomogeneous media where PML fails

Finally, PML fails completely in the case where the medium isnot x-invariant (for
an x boundary) [19]. You might ask: why should we care about such cases, as if
the medium is varying in thex direction then we will surely get reflections (from the
variation) anyway, PML or no PML? Not necessarily.

There are several important cases ofx-varying media that, in the infinite system,
have reflectionless propagating waves. Perhaps the simplest is a waveguide that hits the
boundary of the computational cell at an angle (not normal tothe boundary)—one can
usuallyarrange for all waveguides to leave the computational region at right angles,
but notalways(e.g. what if you want the transmission through a30◦ bend?). Another,
more complicated and perhaps more challenging case is that of a photonic crystal:
for a periodicmedium, there are wave solutions (Bloch waves) that propagate without
scattering, and can have very interesting properties that are unattainable in a physical
uniform medium [20].

For any such case, PML seems to be irrevocably spoiled. The central idea behind
PML was that the wave equations, and solutions, were analytic functions in the direc-
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tion perpendicular to the boundary, and so they could be analytically continued into the
complex coordinate plane. If the medium is varying in thex direction, it is most likely
varying discontinously, and hence the whole idea of analytic continuation goes out the
window.

What can we do in such a case? Conventional ABCs don’t work either (they are
typically designed for homogeneous media). The only fallback is the adiabatic theo-
rem alluded to above: even a non-PML absorber, if turned on gradually enough and
smoothly enough, will approach a reflectionless limit. The difficulty becomes how
gradual is gradual enough, and in finding a way to make the non-PML absorber a
tractable thickness [19].
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