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What 1s a laser?

e alaser 1s a resonant cavity...
e with a gain medium...

 pumped by external power source
population inversion = stimulated emission

“pump” energy

A \ ld laser:
light bouncing

/} between 2 mirrors
[ image: wikipedia ]\

mirrors/confinement



Resonance

an oscillating mode trapped for a long time in some volume
(of light, sound, ...)  lifetime T >> 2w,

: modal
frequency w, quality tfactor Q = w,t/2 1 v
" ontl0 volume
energy ~ e~
| [ Notom et al. (2005). ]
[ C.-W. Wong,

(Qo, wo) APL 84, 1242 (2004). |

............ embedded microcavity —mm Si
gi Si0:
Si d side view

[ Schliesser et al., s ,—| i
PRL 97,243905 (2006) ] ok
L] Lol

[ Eichenfield et al. Nature Photonics 1,416 (2007) ]



scalar wave equation

VZ

Resonance, Really: Lossless

scalar Helmholtz equation

0’ Fouri
— g% |u=sources —— | V' +&(x,0) 0" |u=s(x,0)
at time-harmonic \
1 ~ e—ia)t

box domain

separable
sine eigenfunctions

Maxwell “permittivity” €

Im w

Re w

KKK KK

eigenvalues of —V?= poles
in Green’s function

[V +e(x,0)0 :IG(XX) o(x—x’)



Resonance, Really: Lossy
open box >> outgoing radiation boundary condition
| = limiting-absorption principle: € + i0* |

u=>0
Im w

(G analytic for Im w > 0)
Re w

X X X XXXXX
resonances = poles

in Green’s function
below (close to) real axis




Resonance, Really: “Leaky Modes”™

Im w
open box >>>
Re w

X XX XX XXX
resonance

at wy, — 1y,
Vo << W

u=>0

local saddle-point approx.

2 2. e
[V +8(x,a))a) ]u—s(x,a)) mG single pole)

source s(X,w) inside box strongly S
peaked around w, u(X,t) ~ e "% =%

exponentially decaying “leaky mode”
Q =2y, w,



Linear Gain

stimulated emission [wikipedia]

Before During After gain Created by
. emission emission emission .
Excited level —F, — — pumping electrons
hy hy A to population inversion:
\N\N\N\> \N\NN> —_
Incident photon AFE ,vf%» B more. electrons
In excited state
Ground level B, —O— —o—
Atom in Atom in N, = ground state pop.
excited state ground state 1 .
Ey — By = AE = hy N, = excited state pop.

inversion: 1) = N2 — Nl > ()

u~ei |V +ew’ |u=s(x,0)
Ime~-D

gain (exponential growth in time):
Ime<0 (for w>0)



Nonlinear Gain: Cannot grow forever!

gain created by

i 2 2 .
u~ e’ [V + ED ]u =S (X,a)) pumping electrons
. . o to population inversion:
gain (exponential growth in time): = many electrons
Ime <0 (forw>0) in excited state

N, = ground state pop.
Ime~-D N, = excited state pop.
D=N,-N,;>0

u (electric field) grows exponentially in time... but eventually,
the stimulated emission depletes the excited states

= D decreases with u (~ 1/lul?) ... “hole burning”



Passive cavity (linear loss)

Gain Im w poles in linear
Green’s function
pump =0

Re w

X

X X XX XXX

resonance
at w, — 17,

Mode
intensity

linear loss of passive cavity

L.oss



Pump = Gain: nonlinear 1n field strength

Gain Im w poles in linear
Green’s function

pump = 0.2 at intensity=0
Re w

X X ¥ %%

resonance

Mode
intensity

-

L.oss



poles in linear

: I Green’s function
Gain m e at intensity=0
pump lasing mode Re w
lasing threshold = threshold X
gain = loss % X 5 BEB
at amplitude=0

\ Mode

intensity

L.oss



The steady state

poles in linearized

: Im Green’s function
Gain around intensity = ®
um :
pump lasing mode Re w
> threshold <5
X 0 7 XX X
X X XX XXX

‘< Mode

steady-state
amplitude > 0

L.oss



some goals of laser theory:
for a given laser, determine:

e thresholds

* field emission patterns
e output intensity

* frequencies

of steady-state operation

[ if there is a steady state
... not true if other resonances too close |



. slide:
What’s new 1n laser theory D. Stone

AP . ¥
Lamb Scully Haken %K

Basic semiclassical theory from early 60°s and much of quantum theory

No effective method for accurate solution of the equations for
arbitrary resonator including non-linearity, openness, multi-mode

Direct numerical solutions in space and time impractical in 3d, hard in 2d
SALT [ Tureci, Stone (2006) |: steady-state ab-initio lasing theory

direct solution for the multimode steady-state including
openness, gain saturation and spatial hole-burning, arbitrary geometry

Only inputs are the gain medium ... quantitative agreement with brute-force



slide:
Motivation: Modern micro/nano lasers D. Stone

Complex microcavities: micro-disks,micro-toroids,
deformed disks (ARCs), PC defect mode, random...

(b) Gain and scattering
- medium

-

No boundary
reflection at all! 0

" Lo s P adeaaa ol oo ol PR |
376 380 384 388 392 396 400
Wavelength (nm)



Semiclassical theory

. . electric field
1. Maxwell equations (classical) E+ ~ oot

—V><V><(EJF)—ECEJ’:%I"’Jr E = Re E-

cavity dielectric polarization of gain atoms



Semiclassical theory

1. Maxwell equations (classical)
~VxVx(E")—eEt = _-PF

polarization of two-

cavity dielectric .
level gain atoms

2. Damped oscillations of electrons in atoms (quantum)

. : 1
polarization: P+ = (—jw, — v, )P" + %E“FD
atomic frequency population inversion
(drives oscillation)



Semiclassical theory

1. Maxwell equations
~VxVx(E")—eEt = _-PF

polarization of two-

cavity dielectric )
level gain atoms

2. Damped oscillations of electrons in atoms

: 1
P" = (—iw, —71)PT+ —E™D
ih
atomic frequency population inversion
(drives oscillation)

3. Rate equation for population inversion D
rate of work done on

D = o (DO _ D) + hi ,RC [(E‘f‘)* : P"‘] “polarization current”

pump

v and 7 phenomenological relaxation rates (from collisions, etc)



Maxwell-Bloch equations

e fully time-dependent, multiple unknown fields, nonlinear
(Haken, Lamb, 1963)

I
~VxVx(E")—eE"=_P"  poarization

. . 1 induces 1inversion
Inversion drives

polarization P+ = (—iwa — ’)’L)P-{_ -+ EE+D

D =(Do — D) — Z[E* - (PT)* —P* - (E¥)"]



brute-force Maxwell-Bloch
FDTD (finite-difference time-domain)
simulations very expensive, but doable

Bermel et. al. (PRB 2006)



Problem: timescales!

V| K VL K Wq

FDTD takes very long time
to converge to steady state

Solving Maxwell-Bloch for just one set of
lasing parameters 1s expensive and slow
... supercomputer-scale in 3d ...
and systematic design 1s impractical



Advantage: timescales!

i <1, YL
Y Wa

<1

- hard for numerics
- good for analysis



Ansatz of M steady-state modes

M .
E'=)E, (x)e "
P+ _ EPm (X)e—lwmt

m=I

...validity checked a posteriori



Stationary-inversion approximation

¢

* “rotating-wave approximation”
fast oscillations average out to zero
... all oscillations are fast compared to v,

key assumption:
Vi, A >>,

valid for < 100 m microlasers

D = (Do — D) — Z[E* - (P*)* —P* - (E¥)*]

... leads to:

D~ 0

stationary-inversion approximation SIE

[ neglecting terms ~ fast rates / vy, |



before after:

~ VXV x (BY) - Bt = o P Steady-State Ab-Initio
Pt = (—iw, — v )Pt + ?’—;Ew Lasing Theory,
“SALT”

D = (Do — D) — Z2[Et.(Pt)* —Pt.(Et)*
(Do = D) = HE* - (P) (E7)] [Tureci, Stone, 2006]

VXVXE —a)memEm

Dy(x
Em(X) = £0(X) + ———=— 0()
Wm — Wq + ZfYJ_ 1 + Z E
"y —wu-i-z'y

2

—

Still nontrivial to solve:
equation 1s nonlinear in both

eigenvalue w;, < easier

eigenvector [ < harder
m



first way to solve SALT:
Constant-flux “CF” basis method

Tureci, Stone, PRA 2006
(same paper that introduced SALT)

N

En(x) = )  cmnFn(x)

n=1

solutions to linear problem at threshold

T(wm, Cmn)Cmn = 0

problem still nonlinear, but
very small dimensionality
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slide:
D. Stone

Total output

| Ge,Tandy,ADS,
Tureci, Optics
Express, 2008

| No SIA
| approx!

Mode 2

Mode 3



Chua, Chong, ADS, Soljacic, Bravo-Abad, Opt. Express 2010

Power (W)

“Strong interactions in multimode random lasers”,
H. Tureci, L. Ge, S. Rotter, ADS; Science, 320,643 (2008)

“Realistic” application to novel lasers

10 |

L,=a=675nm

107}
10 |

.7-
10}

10

10° L

Pump (s™)

— random lasing is ‘“‘conventional”

(o) vertical
o q emission
o -
10° 10’ 10° 10"

2D Random Lasers

slide:
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CF basis method not scalable

. far above threshold, expansion efficiency
decreases, need more basis functions

. 1n most cases basis functions need to be obtained
numerically

. huge basis = huge storage, time in 2d and 3d



SALT was here

Common pattern for
theoretical models

. purely analytical solutions (handful of cases)

specialized basis (problem-dependent and hard to
scale to arbitrary systems)

. generic grid/mesh, discretize

Can we solve the equations of SALT (which are

nonlinear) on a grid without an intermediate
basis?




Finite-difference discretization
(FDFD)

V XV X E = W Em(wma {EV})

degrees of freedom:

E atevery point on (Yee) grid

m

m=12,...# modes

V XV X > finite differences

—>“just” solve

.. but is it reasonable to solve 10107
coupled nonlinear equations?



Yes!

of \ ™
Newton: f(v) = ( Vguess — Vguess ~ | 3 f
E,, -V X V X 4w2 em| En,
V = y f —
Wm Em (Xo)
key fact #1:

Newton’s method converges very quickly when we
have a good 1nitial guess (near the actual answer)

key fact #2:

we have a good 1nitial guess: at threshold, the problem
1s linear in E_, easy to solve)



(omitted details)

.. sparse solvers for Newton steps
... eliminating spurious E =0 solutions

.. linear solvers for passive modes (Im w < 0 poles)
... watch for thresholds of additional modes
... a posteriori stability check



Benchmark comparison with previous 1d results

1d laser cavity

» | —-
- J

Benchmarks for ~1000 pixels
Maxwell —Bloch (FDTD)
~60 CPU hours
SALT, Direct Newton
20 CPU seconds!!!

0.9 —— SALT (Newton)
---=FDTD
A
gS
Z 06
w
=
<]
k=
=
&
=
3 0.3
0.0

0.08 0.10 0.12

Pump parameter d

c.f. SALT CF Basis
~5 CPU minutes

... much easier to optimize simple FDFD code!



Internal intensity of ¥

Mode-switching lasers in 2d

mode-switching
behavior 1n microdisk
laser (solid = Newton,

dotted = Bessel basis) field profile of mode 1

0.10 0.15 0.20 0.25

Pump parameter d



From Newton to Anderson

[ Wonseok Shin et al, manuscript in preparation (2018) ]

optimized Maxwell solver to shreds and re-assemble it 1nto
the SALT Jacobian matrix
... |[EI” terms mean you need to write in terms
of real matrices of real/imaginary parts

Solution: combine an existing w-domain linear Ax=b
(Maxwell/Helmholtz) solver with Anderson acceleration

(1965) of a carefully chosen fixed-point equation f(x) = x
[Walker & Ni (2011): essentially ~ GMRES Newton]

= black-box linear solver + derivative-free
updates for the nonlinearity
~ 2-3x more iterations than Newton (10-30 vs. 5-10).



Full 3d calculation

full-vector simulation of eccccccccs
lasing defect mode in 15
photonic crystal slab
S
Qa
2 1.0
. ;
~ 350 x 50 x 30 pixel =
computational cell: E
10 CPU minutes on a laptop & 05
with SALT + Newton’ s method =
0.0

0.05 0.10 0.15

Pump parameter d



Today’s menu

e Laser basics
 The SALT nonlinear eigenproblem

* Noise, linear-response theory, & linewidths



Lasers: Quick Review

laser = lossy optical resonance + nonlinear gain

“pump” energy

: . above threshold:
' A\ gain | |

| nonlinear gain/loss
111 g4l medivm .'| = stable amplitude
/ [ image: wikipedia ]\ '

, , mode
mirrors/confinement | litudel?
amplitude
threshold: increase pump until |
0SS

gain = loss at amplitude=0



Lasers: Quick Review

laser = lossy optical resonance + nonlinear gain

toy “van der Pol” oscillator model of single-mode laser [e.g. Lax (1967)]:

a,(H)E, (x)e™™"

above threshold:
(toy instantaneous gain
nonlinearity) nonlinear gain/loss
% =C,, (‘af " ‘al‘z)al = a, > alo = stable amplitude
t 2
/ o

= zero linewidth!

loss

(0-function spectrum)



[.aser noise:

VDRSO

\

random (quantum/thermal) currents
“kick” the laser mode
= Brownian phase drift = finite linewidth




Microscopic current fluctuations

Fluctuating currents J produce
fluctuating electromagnetic fields.

Fields carry:
e Momentum = Casimir forces
e Energy = thermal radiation

In a laser: J = random forcing
= phase drift
= nonzero laser linewidth



Toy Laser + Noise

| = nonlinear ‘“van der Pol” oscillator,
similar to e.g. Lax (1967) ]

lowest-order stochastic ODE:

da 2 . . .
7; ~C, (‘af‘ —‘01‘2)01 rf() tricky part: getting f & C
random/
forcing e
_________ ~la,
linearize: Lorentzian lineshape,

a, = [af 4+ 51(t):|ei¢1(f) width Aw = R/2n

= ... 2 <P?’> =Rt

O fluctuations =
“thermal” background

Brownian (Wiener) phase



Linewidth formulas: a long history

2

[ = hwove N | JodelE T ( L )2 (1+ ?)
2P Ny —N; | [odzE2 YL+ F
ST I P a

o Schawlow-Townes (°58) - inverse power 1/P scaling
o Incomplete inversion ("67) - due to partial inversion
o Petermann (*79) - enhancement for lossy cavities
(’67) - reduction due to dispersion
o a-factor (‘82) - coupling of intensity/phase fluctuations
... all make approximations invalid for u-scale lasers...

{ I
chaotic cavity photonic crystal random laser



Starting point:
Maxwell-Bloch

£, o Adm 1. .. .
electricfield V XV X E — (—;E =z [P+ + (P™) ]
gain P+ _ _(2', Vo~ )P-i- 4 £ED
polarization - T \We L iR

. : )
population 1) — ",v'||(D0 —~D)—- —E- [(P*)+ _ P+]
inversion | 1h |

[Arecchi & Bonifacio, 1965]



Starting point:
Langevin Maxwell-Bloch

P A7 1. .. AT .
electric field V XV X E — —;E = — [P+ 4 (P+)*] AT j

C C C
gCIiﬂ S+ . n 92 /
polarization P" = —(iwa +71)P" + EED Nose

. . )
population ) — A,_.”(DO —~D)—- —E- [(P*)+ _ P+]
inversion 1h

[Arecchi & Bonifacio, 1965]

Noise correlations: fluctuation—dissipation theorem at 7'< 0

X w. hw hw »
(Ji(w, z)J7 (w, z')) = ;()ij(’)(.zf — ') [7 coth (2/~'T>} Im e ()

[Callen & Welton, 1957]




The Noisy-SALT linewidth

[ Pick et al., PRA 91, 063806 (2015) ]

. . )
Starting point:

Langevin MB.

(with SALT + FDT)
N\ Y,

4 N

Dynamical egs.
for lasing mode
amplitudes
(oscillator egs.)

~

formulas for
multimode
linewidths &

RO side peaks
N




Oscillator equations

Noise-free SALT: E(x.t) ZE# X)ae
\

— SALT modes
Noisy N-SALT: E(x,t) ZEM X)a, (t)e =t

Simple limit: Single-mode “class A” lasers .
daq often derived

— =01 ((110 a1 | ) a1+ f1 heuristically
dt “ y,

>
instantaneous restoring force [ Lax (1967) ]

Most general dynamical equations (class A+B lasers)

t

ay = Z [_/ dx ¢ (z) 'y(m)/ dt'e ) (a?/o - |a,,(t’)|2) ay + fu

U —00
(G /)
Y

time-delayed, spatially inhomogeneous restoring force




Solving the oscillator equations

t
b= [ [ dz (@)@ [ dre @0 (ol - |a,,<t/>|2)] 4+

v

Expand mode amplitudes around steady state:
a,=(a,+96,) exp(ip,) [small noise = linearize in 6 ]

oMiracle #1: can solve analytically for < @, ¢, >
correlation function, which gives linewidths.

oMiracle #2: y(x) exactly cancels and gives same answer
as instantaneous model! The simple “class A” model is

correct for “class B!”



Single-mode linewidth formula
[ Pick et al., PRA 91, 063806 (2015) ]

cavity bandwith | Petermann factor | Ead-cavity factor

2

/(11 (wolm £)Eq? / dzIm ¢ |Eg|?
JP

/ dr e EO /(]I Im = Eg?

FL(U()&/Q ~ ~ = ~
I = QPO-nSp-K-B-(l—I—OzZ)

ST | P @
/dr é [me|Eol” ‘ Z“*’0 fa|a|2E2 —iwg f0| |2E‘2
Im 5 /Re 5 E2
/d.rlms|EO| 9 (w?e) B [ 55 (w?e)
P

Incomplete inversion o factor




Brute-force validation

A.Cerjan et al., Opt. Exp. 23,28316 (2015)

Brute-force simulations of Langevin—-Maxwell-Bloch show
excellent agreement with N-SALT linewidth formula

0.0008

0.0006

0.0004

Linewidth, dw

0.0002

0.0000) 40" 15 20 25 30 35

Output Power, P

Only N-SALT captures all relevant physics in MB



