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What is a laser?

• a laser is a resonant cavity…
• with a gain medium…
• pumped by external power source     

population inversion à stimulated emission

1d laser:
light bouncing

between 2 mirrors



420 nm

[ Notomi et al. (2005). ]

Resonance
an oscillating mode trapped for a long time in some volume

(of light, sound, …)
frequency ω0

lifetime τ >> 2π/ω0
quality factor Q = ω0τ/2

energy ~ e–ω0t/Q

modal
volume V

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]

[ C.-W. Wong,
APL 84, 1242 (2004). ]



Resonance, Really: Lossless

∇2 − ε ∗ ∂2

∂t2
⎡

⎣
⎢

⎤

⎦
⎥u = sources

scalar wave equation

time-harmonic
u ~ e–iωt

∇2 + ε x,ω( )ω 2⎡⎣ ⎤⎦u = s x,ω( )Fourier

scalar Helmholtz equation

∇2 + ε x,ω( )ω 2⎡⎣ ⎤⎦Gω (x, ′x ) = δ (x − ′x )u = 0

box domain
ε = 1

separable
sine eigenfunctions

Re ω

Im ω

eigenvalues of  –∇2 = poles
in Green’s function

Maxwell “permittivity” ε



Resonance, Really: Lossy

u = 0

open box

Re ω

Im ω

resonances = poles
in Green’s function

below (close to) real axis

outgoing radiation boundary condition
[ = limiting-absorption principle: ε + i0+ ]

(G analytic for Im ω > 0)



Resonance, Really: “Leaky Modes”

u = 0

open box

Re ω

Im ω

resonance
at ω0 – iγ0
γ0 << ω0

∇2 + ε x,ω( )ω 2⎡⎣ ⎤⎦u = s x,ω( )
source s(x,ω) inside box strongly

peaked around ω0

local saddle-point approx.
(G ~ single pole)

Fourier

u(x,t) ~ e–iω t – γ t0 0

exponentially decaying “leaky mode”
Q = 2γ0 / ω0



Linear Gain
stimulated emission [wikipedia]

gain created by
pumping electrons

to population inversion:
= more electrons
in excited state

∇2 + εω 2⎡⎣ ⎤⎦u = s x,ω( )
gain (exponential growth in time):

Im ε < 0   (for ω > 0)

u ~ e–iωt

N1 = ground state pop.
N2 = excited state pop.

inversion: D = N2 – N1 > 0

Im ε ~ –D



Nonlinear Gain: Cannot grow forever!

gain created by
pumping electrons

to population inversion:
= many electrons
in excited state

∇2 + εω 2⎡⎣ ⎤⎦u = s x,ω( )
gain (exponential growth in time):

Im ε < 0   (for ω > 0)

u ~ e–iωt

N1 = ground state pop.
N2 = excited state pop.
D = N2 – N1 > 0

Im ε ~ –D

u (electric field) grows exponentially in time… but eventually,
the stimulated emission depletes the excited states

⇒ D decreases with u (~ 1/|u|2) … “hole burning”



Passive cavity (linear loss)

Gain
pump = 0

Loss

Mode
intensity

linear loss of passive cavity

Re ω

Im ω

resonance
at ω0 – iγ0

poles in linear
Green’s function



Loss

Mode
intensity

Gain
pump = 0.2

Pump ⇒ Gain: nonlinear in field strength

Re ω

Im ω

resonance

poles in linear
Green’s function
at intensity=0



Loss

Mode
intensity

Gain
pump
= threshold Re ω

Im ω

lasing mode
lasing threshold

gain = loss
at amplitude=0

poles in linear
Green’s function
at intensity=0



The steady state

Loss

Mode
intensity

Gain
pump
> threshold Re ω

Im ω

lasing mode

stable
steady-state

amplitude > 0

poles in linearized
Green’s function

around intensity = •



some goals of laser theory: 
for a given laser, determine:

• thresholds
• field emission patterns 
• output intensity 
• frequencies 

of steady-state operation

[ if there is a steady state
… not true if other resonances too close ]



What’s new in laser theory

Lamb Scully Haken
Basic semiclassical theory from early 60’s and much of quantum theory

No effective method for accurate solution of the equations for 
arbitrary resonator including non-linearity, openness, multi-mode

Direct numerical solutions in space and time impractical in 3d, hard in 2d 

SALT [ Tureci, Stone (2006) ]: steady-state ab-initio lasing theory

direct solution for the multimode steady-state including 
openness, gain saturation and spatial hole-burning, arbitrary geometry

Only inputs are the gain medium … quantitative agreement with brute-force

slide:
D. Stone



Complex microcavities: micro-disks,micro-toroids, 
deformed disks (ARCs), PC defect mode, random…

Motivation: Modern micro/nano lasers

No boundary 
reflection at all!

No high-Q passive resonances

slide:
D. Stone



Semiclassical theory
1. Maxwell equations (classical) 

cavity dielectric polarization of gain atoms

electric field
E+ ~ e–iωt

E = Re E+



Semiclassical theory
1. Maxwell equations (classical) 

cavity dielectric polarization of two-
level gain atoms

atomic frequency population inversion
(drives oscillation)

2. Damped oscillations of electrons in atoms (quantum) 
1

polarization:



Semiclassical theory
1. Maxwell equations

cavity dielectric polarization of two-
level gain atoms

2. Damped oscillations of electrons in atoms

atomic frequency population inversion
(drives oscillation)

3. Rate equation for population inversion D

phenomenological relaxation rates (from collisions, etc)

rate of work done on 
�polarization current�

1

pump



Maxwell–Bloch equations

• fully time-dependent, multiple unknown fields, nonlinear 
(Haken, Lamb, 1963)

Inversion drives 
polarization

Polarization 
induces inversion1



brute-force Maxwell–Bloch 
FDTD (finite-difference time-domain)
simulations very expensive, but doable

Bermel et. al. (PRB 2006)



Problem: timescales!

FDTD takes very long time
to converge to steady state

Solving Maxwell–Bloch for just one set of 
lasing parameters is expensive and slow 

… supercomputer-scale in 3d …
and systematic design is impractical



Advantage: timescales!

- hard for numerics
- good for analysis



Ansatz of M steady-state modes

E+ = Em (x)e
−iωmt

m=1

M

∑

P+ = Pm (x)e
−iωmt

m=1

M

∑

…validity checked a posteriori



Stationary-inversion approximation

stationary-inversion approximation SIE

[ neglecting terms ~ fast rates / γ|| ]

• “rotating-wave approximation”
fast oscillations average out to zero
… all oscillations are fast compared to γ||

… leads to:

key assumption:
γ⟂, Δω >> γ||

valid for < 100µm microlasers



after: 
Steady-State Ab-Initio 

Lasing Theory,
�SALT�

[Tureci, Stone, 2006]

before

∇×∇×Em =ωm
2εmEm

Still nontrivial to solve: 
equation is nonlinear in both

eigenvalue          ß easier

eigenvector         ß harder



first way to solve SALT:
Constant-flux “CF” basis method

Tureci, Stone, PRA 2006 
(same paper that introduced SALT)

solutions to linear problem at threshold

problem still nonlinear, but 
very small dimensionality



Total output

Mode 1

Mode 2

Mode 3

n=1.5
MaxBloch dataMaxBloch DataSALT

Comparison of SALT and Maxwell-Bloch: intensities

Ge,Tandy,ADS,
Tureci, Optics 
Express, 2008

No SIA 
approx!

slide:
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“Realistic” application to novel lasers
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Chua, Chong, ADS, Soljacic, Bravo-Abad, Opt. Express 2010

2D Random Lasers

“Strong interactions in multimode random lasers”, 
H. Tureci, L. Ge, S. Rotter, ADS; Science, 320,643 (2008) 
– random lasing is “conventional”

slide:
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CF basis method not scalable

1. far above threshold, expansion efficiency 
decreases, need more basis functions

2. in most cases basis functions need to be obtained 
numerically

3. huge basis = huge storage, time in 2d and 3d 



Common pattern for 
theoretical models

1. purely analytical solutions (handful of cases)
2. specialized basis (problem-dependent and hard to 

scale to arbitrary systems)
3. generic grid/mesh, discretize

SALT was here
Can we solve the equations of SALT (which are 
nonlinear) on a grid without an intermediate 
basis?



à“just” solve
… but is it reasonable to solve 104–107

coupled nonlinear equations?

degrees of freedom:
at every point on (Yee) grid

m = 1,2,…# modes

à finite differences 

Finite-difference discretization 
(FDFD)



Yes!

Newton: 

key fact #1:
Newton’s method converges very quickly when we 
have a good initial guess (near the actual answer)

key fact #2:
we have a good initial guess: at threshold, the problem 
is linear in Em, easy to solve)



(omitted details)

… sparse solvers for Newton steps
… eliminating spurious Em=0 solutions

… linear solvers for passive modes (Im ω < 0 poles)
… watch for thresholds of additional modes
… a posteriori stability check



Benchmark comparison with previous 1d results

1d laser cavity

Benchmarks for ~1000 pixels
Maxwell—Bloch (FDTD)

~60 CPU hours
SALT, Direct Newton

20 CPU seconds!!!

c.f. SALT CF Basis
~5 CPU minutes
… much easier to optimize simple FDFD code!



Mode-switching lasers in 2d

mode-switching 
behavior in microdisk 
laser (solid = Newton,   
dotted = Bessel basis) field profile of mode 1



From Newton to Anderson

Problem: Newton’s method requires you to rip your existing 
optimized Maxwell solver to shreds and re-assemble it into 
the SALT Jacobian matrix

… |E|2 terms mean you need to write in terms
of real matrices of real/imaginary parts

Solution: combine an existing ω-domain linearAx=b
(Maxwell/Helmholtz) solver with Anderson acceleration 
(1965) of a carefully chosen fixed-point equation f(x) = x

[Walker & Ni (2011): essentially ~ GMRES Newton]
= black-box linear solver + derivative-free

updates for the nonlinearity
~ 2–3x more iterations than Newton (10–30 vs. 5–10).

[ Wonseok Shin et al, manuscript in preparation (2018) ]



Full 3d calculation
full-vector simulation of 
lasing defect mode in 
photonic crystal slab

~ 50 x 50 x 30 pixel 
computational cell:
10 CPU minutes on a laptop 
with SALT + Newton�s method!



Today’s menu

• Laser basics

• The SALT nonlinear eigenproblem

• Noise, linear-response theory, & linewidths



Lasers: Quick Review
laser = lossy optical resonance + nonlinear gain

threshold: increase pump until
gain ≥ loss at amplitude=0

confined mode
in gain medium

�pump� energy

mirrors/confinement

gain

loss

nonlinear gain/loss
⇒ stable amplitude

mode
|amplitude|2

[ image: wikipedia ]

above threshold:



Lasers: Quick Review
laser = lossy optical resonance + nonlinear gain

gain

loss

nonlinear gain/loss
⇒ stable amplitude

above threshold:

da1
dt

= C11 a1
0 2 − a1

2( )a1 ⇒ a1 → a1
0

a1
0 2

a1
2

nonlinear
coefficient

a1(t)E1(x)e
−iω1t

steady state
= zero linewidth!

(δ-function spectrum)

toy “van der Pol” oscillator model of single-mode laser [e.g. Lax (1967)]:

(toy instantaneous
nonlinearity)



Laser noise:

random (quantum/thermal) currents
�kick� the laser mode

⇒ Brownian phase drift = finite linewidth



Microscopic current fluctuations

Fluctuating currents J produce
fluctuating electromagnetic fields.

Fields carry:
• Momentum ⇒ Casimir forces
• Energy ⇒ thermal radiation

In a laser: J = random forcing
= phase drift
= nonzero laser linewidth



Toy Laser + Noise
[ = nonlinear “van der Pol” oscillator,

similar to e.g. Lax (1967) ] 

da1
dt

≈C11 a1
0 2 − a1

2( )a1 + f1(t)

lowest-order stochastic ODE:

random
forcing

ωω1

δ fluctuations ⇒
�thermal� background

Lorentzian lineshape,
width Δω = R/2π

~ |a1
0|2

tricky part: getting f & C

a1 = a1
0 +δ1(t)⎡⎣ ⎤⎦e

iϕ1(t )

⇒ … ⇒ <φ2> = Rt 

Brownian (Wiener) phase

linearize:



o Schawlow-Townes (’58) - inverse power 1/P scaling
o Incomplete inversion (’67) - due to partial inversion
o Petermann (‘79) - enhancement for lossy cavities
o Bad-cavity (’67) - reduction due to dispersion
o α-factor (‘82) - coupling of intensity/phase fluctuations

… all make approximations invalid for µ-scale lasers…

ST PI B

Linewidth formulas: a long history

α

chaotic cavity photonic crystal random laser



Maxwell–Bloch

gain 
polarization 

population 
inversion

electric field

Starting point:

[Arecchi & Bonifacio, 1965]



gain 
polarization 

population 
inversion

electric field

noise

[Arecchi & Bonifacio, 1965]

Langevin Maxwell–Bloch
Starting point:

Noise correlations: fluctuation–dissipation theorem at T < 0 

[Callen & Welton, 1957]



Starting point:
Langevin MB.

(with SALT + FDT)

Dynamical eqs.
for lasing mode 

amplitudes
(oscillator eqs.)

formulas for 
multimode 

linewidths & 
RO side peaks

The Noisy-SALT linewidth
Maxwell

perturbation theory

ODE linearization +

closed-form 

integration

[ Pick et al., PRA 91, 063806 (2015) ]



Oscillator equations

Most general dynamical equations (class A+B lasers)

time-delayed, spatially inhomogeneous restoring force

Simple limit:  Single-mode “class A” lasers

instantaneous restoring force

Noise-free SALT:

SALT modes
Noisy N-SALT:

often derived
heuristically
[ Lax (1967) ]



Solving the oscillator equations

Expand mode amplitudes around steady state: 
aμ = (aμ0 + δμ) exp(iϕμ) [small noise = linearize in δμ]

oMiracle #1: can solve analytically for < ϕμ ϕν> 
correlation function, which gives linewidths.

oMiracle #2: γ(x) exactly cancels and gives same answer 
as instantaneous model! The simple “class A” model is 
correct for “class B!”



cavity bandwith Petermann factor Bad-cavity factor

α factorIncomplete inversion

ST PI B α

Single-mode linewidth formula
[ Pick et al., PRA 91, 063806 (2015) ]



A. Cerjan et al., Opt. Exp. 23, 28316 (2015)
Brute-force validation

N-SALT

FDTD

CS ST

Brute-force simulations of Langevin–Maxwell–Bloch show
excellent agreement with N-SALT linewidth formula

Only N-SALT captures all relevant physics in MB


