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Electromagnetic Scattering Problems

We have some known incident field (such as a plane wave), scattering from
some known geometry (including objects of known shapes and materials)
and we want to know the scattered fields. (Note: all quantities ∼ e−iωt.)

known known unknown
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Methods for Solving EM Scattering Problems, 1
Expansions in special functions

Write the fields inside and outside the scatterer as expansions in sets of known Maxwell solutions
(in some convenient coordinate system) and match coefficients.

Advantages:

• Exploits known Maxwell solutions
=⇒ efficient

Disadvantages:

• Only works for a small number of geometries
=⇒ not general.

One Sphere: “Mie scattering”

f(x) ∼ jl(r)Ylm(θ, φ)

Planar Slab: “Fresnel Coefficients”

f(x) ∼ eik·x
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Methods for Solving EM Scattering Problems, 2
Finite-Difference Method

• Discretize the geometry onto a grid (each grid point can have different ε, µ)

• Write Maxwell’s equations using finite-difference approximations to derivatives

• Solve sparse linear system for the E-field values at grid points

[
∇×∇×− k2

]
E = −iωJ=⇒

 M


 E1
...

En

 = iω

 J1
...

Jn


Advantages:

• Allows different ε, µ at each grid point
−→ general

• Relatively easy to implement

Disadvantages:

• Does not make use of known Maxwell solutions
−→ not the most efficient method

• If we need to evaluate the scattered fields far from
the scattering objects, we have to discretize the
entire space between the objects and the evaluation
point. −→ Seems wasteful.
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Methods for Solving EM Scattering Problems, 3
Surface-Integral-Equation (SIE) Method

• First compute the surface current distribution K(x) induced by the incident field

• Then compute the scattered fields using K(x) and known Maxwell solutions:

E
scat

(x) =

∮
S

G(x− x
′
)K(x

′
)dx

′ where G is the solution to
[
∇×∇× − k2

]
G(r) = −iω1δ(r);

G (the “dyadic Green’s function”) is known in closed form

Advantages:

• Exploits known Maxwell solutions =⇒ efficient

• Allows scatterers of arbitrary shapes and arbitrary
(homogeneous) materials =⇒ general

• Unknown quantities confined to object surfaces,
not everywhere in space =⇒ not wasteful

Disadvantages:

• Difficult to implement

• Restricted to homogeneous scatterers, i.e.
piecewise-constant ε, µ
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SIE Formulation of Scattering Problems
Consider a perfectly electrically conducting (PEC) scatterer in vacuum.

The incident field induces a surface electric current density K(x) on the object surface.

Surface current density K: units of current
length

J(x‖, z)︸ ︷︷ ︸
volume current

= K(x‖)︸ ︷︷ ︸
surface current

· δ(z)

Once we know K(x), we can compute the scattered E−field anywhere we like:

Escat(x) =

∮
S
G(x− x′)K(x′)dx′

Gij(r) =
eikr

4πk2r3

{[
1− ikr+(ikr)3

]
δij +

[
−3+3ikr− (ikr)2

]rirj
r2

} (
r = |r|, k =

ω

c

)
We determine K(x) by requiring that the total tangential E-field vanish at the object surface:

[
Einc(x) + Escat(x)

]
‖

= 0 =⇒
∮
S
G‖(x,x

′)K(x′)dx′ = −Einc
‖ (x)

(for points x on object surfaces) “electric field integral equation” (EFIE)

The EFIE is an integral equation for K(x) in terms of Einc.
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Numerical Solution of SIEs
The boundary element method (BEM)

Given Einc(x), want to find K(x) that solves the EFIE:

∮
S
G‖(x,x

′)K(x′)dx′ = −Einc
‖ (x)

Idea: (1) expand K(x) in some convenient set of N basis functions =⇒ N unknown coefficients

K(x) =
N∑
n=1

knfn(x),
{
fn(x)

}
=

(
tangential vector-valued basis functions

defined on the object surface

)

Idea: (2) test (inner-product) the EFIE with each basis function =⇒ N equations

〈
fm,

∮
G · K︸︷︷︸∑

knfn

dA

〉
= −

〈
fm,E

inc

〉
=⇒

 M

 k1

...
kN

 =

 v1

...
vN


N ×N linear system (“BEM system”)

Matrix elements: Mmn =
〈
fm

∣∣∣G∣∣∣fn〉 RHS vector: vm = −
〈
fm

∣∣∣Einc
〉
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Basis functions for SIE/BEM solvers
One choice for compact 3D objects: “RWG basis functions”

Begin by discretizing (“meshing”) object surfaces into triangles:

Associate one basis function with each internal edge:

• These are “RWG basis functions” (named for
their inventors: Rao, Wilton, Glisson)

• # of basis functions N ∝ # of triangles

• As we refine the discretization (shrink the
triangles), the discretization errors decrease,
but the cost of solving the linear system grows
like N3
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Steps in a BEM Scattering Calculation
For a compact 3D scattering problem using RWG basis functions

1. Discretize object surfaces into triangles.

• A well-studied problem; high-quality free software packages are available.

2. Analyze the surface mesh and assign one basis function fn(x) to each interior edge.

• Some minor computational work; not too challenging.

3. Most difficult step: Assemble the BEM matrix M and RHS vector v.

Mmn =
〈
fm

∣∣∣G∣∣∣fn〉, vm = −
〈
fm

∣∣∣Einc
〉

4. Solve the linear system Mk = v for the surface-current expansion coefficients {kn}.

• For N . 10, 000, use standard linear algebra software (lapack).

5. Use the surface current density K(x) =
∑
knfn(x) to compute the scattered fields.

Escat(x) =
∑
n

kn

∫
GEE(x,x′)fn(x′)dx′, Hscat(x) =

∑
n

kn

∫
GME(x,x′)fn(x′)dx′,

where GEE is what we called “G” before and GME ∼ ∇×GEE.
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Why is it so hard to assemble the BEM matrix?

Consider a scattering geometry with surfaces discretized into N ∼ 10, 000 triangles.

1. We have N2=100 million matrix elements.
2. Each matrix element involves a 4 dimensional integral (surface integrals over two

triangles) that must be evaluated numerically.
3. A sizeable fraction of these are singular integrals.
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SIE/BEM Techniques for Non-PEC Geometries
For non-PEC geometries we must introduce effective magnetic surface currents

For PEC scatterers, the SIE/BEM procedure reflects a physical reality: the currents induced by
the incident field are confined to the object surface.

For general (non-PEC) scatterers, this is no longer true: the incident field induces currents
throughout the volume of the scatterer.

Two
options:

1. Volume integral equation: Write an integral equation for the volume electric
current distribution J(x) throughout the bulk of the scatterer.

2. Surface integral equation: Write an integral equation for effective electric and
magnetic surface currents K(x),N(x) on the surface of the scatterer.

PEC Non-PEC

Physics Surface electric current K Volume electric current J

Mathematics Surface electric current K Surface electric and magnetic currents K,N
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Effective Surface Currents for non-PEC Geometries

The Stratton-Chu equations

Recall Green’s theorem: For a scalar field φ satisfying Laplace, knowledge of φ (or ∂φ
∂n̂

) on the
boundary ∂Ω of a closed source-free region Ω suffices to recover φ everywhere in the interior.

φ(x) =

∮
∂Ω

G(x,x′)φ(x′)dA

The Stratton-Chu equations generalize Green’s theorem to the case of vector fields satifying
Maxwell: knowledge of tangential E, H on ∂Ω suffices to recover E and H throughout Ω.

E(x) =

∮
∂Ω

{
GEE(x,x′)

[
n̂×H(x′)

]
+ GEM(x,x′)

[
− n̂×E(x′)

]}
dA

H(x) =

∮
∂Ω

{
GME(x,x′)

[
n̂×H(x′)

]
+ GMM(x,x′)

[
− n̂×E(x′)

]}
dA

The source quantities that enter the Stratton-Chu equations are n̂×H and −n̂×E. Think of
these as effective surface currents:

Keff(x) ≡ n̂×H, Neff(x) ≡ −n̂×E.
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BEM Formulation for non-PEC Scatterers
Generalizing the EFIE

Fields inside and outside the scatterer:[
Ein(x)
Hin(x)

]
= −

∮
∂Ω

[
Gin(x,x′)

] [
K(x′)
N(x′)

]
dx′

[
Eout(x)
Hout(x)

]
= +

∮
∂Ω

[
Gout(x,x′)

] [
K(x′)
N(x′)

]
dx′ +

[
Einc(x)
Hinc(x)

]
Match tangential fields at the scatterer surface (for points x ∈ ∂Ω):

Ein
‖ (x) = Eout

‖ (x)

Hin
‖ (x) = Hout

‖ (x)
=⇒

∮
∂Ω

[
Gout + Gin

]
‖

[
K(x′)
N(x′)

]
dx′ = −

[
Einc(x)
Hinc(x)

]
‖

Integral equation for K,N in terms of Einc,Hinc

Discretize by expanding K(x) =
∑
knfn(x), N(x) =

∑
nnfn(x):(

M

)(
kn

nn

)
=

(
vE
n

vH
n

)
(”PMCHW Formulation”)

=⇒ 2N × 2N linear system for the expansion coefficients {kn, nn}
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scuff-em: An open-source BEM code suite
Surface-Current / Field Formulation of ElectroMagnetism

http://homerreid.com/scuff-EM

Features currently available:

• Scattering from compact 3D objects of arbitrary shapes
• Arbitrary user-specified frequency-dependent ε, µ (isotropic, linear, piecewise constant)
• Linux/Athena command-line interface to scattering code
• C++ interface to scattering code
• Application modules: Casimir forces, RF device modeling

Features coming soon:

• Python / Matlab interfaces to scattering codes
• Scattering from periodic geometries
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Solving scattering problems with scuff-em
Scattering of a gaussian laser beam from a silver nanotip

scuff-scatter --geometry Tip.scuffgeo

--Omega 2.3

--pwDirection 0 0 1

--pwPolarization 1 0 0

--EPFile MyEvalPoints

Tip mesh:
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