
18.336 Pset 4 Solutions

Due Thursday, 20 April 2006.

Problem 1: Galerkin warmup

For a basis bn(x), the matrix A is de�ned as
Amn = (bm, P bn). Therefore, for any c, the
product c · Ac =

∑
m,n(cmbm, P cnbn) = (u, Pu)

where u(x) =
∑

n cnbn(x). If c 6= 0 then u 6= 0
because we always require our basis functions to
be linearly independent, and thus (u, Pu) > 0
by assumption, and therefore c · Ac > 0 and A
is positive-de�nite. Q.E.D.

Problem 2: Galerkin FEM

You will implement a Galerkin �nite-element
method, with piecewise linear elements, for the
Schrodinger eigen-equation in 1d:

[− d2

dx2
+ V (x)]ψ(x) = Eψ(x)

with a given potential V (x) and for an unknown
eigenvalue E and eigenfunction ψ(x). As usual,
we'll use periodic boundary conditions ψ(x+2) =
ψ(x) and only solve for ψ(x) in x ∈ [−1, 1].
As in class, we will approximate ψ(x) by its

value cn at N points xn (n = 1, 2, . . . , N) and
linearly interpolate in between.
Our basis functions are, as in class, the �tent�

functions bn(x), which = 1 at xn and = 0 at
other xm6=n, linearly interpolated in between xn

and xn±1. The periodic boundary conditions
simply mean that cN+1 = c1 for xN+1 = x1 + 2.
We de�ne ∆xn = xn+1 − xn as in class.

(a) By de�nition, we have Bmn = (bm, bn) and
Amn = (bm, [− d2

dx2 + V (x)]bn). However,
we'd like to make this a bit more explicit
and do some of the integrals analytically. To
start with, let's evaluate B:

Bnn =
∫
b2ndx = (∆xn−1 + ∆xn)/3,

since in each ∆x interval the integral
looks like

∫ ∆x

0
(x/∆x)2dx. The o�-diagonal

elements are only non-zero for Bn,n±1,
and come from an integral of the form∫ ∆x

0
x(∆x− x)/∆x2dx, giving

Bn,n+1 = ∆xn/6,

Bn,n−1 = ∆xn−1/6.

Amn can be split into two pieces: Amn =
Kmn + Vmn where K is the �kinetic� energy
from the − d2

dx2 and V is the potential energy
from the V (x). Kmn we evaluated in class
for Poisson's equation (with opposite sign),
and is:

Kmn =


0 m 6= n, n± 1
1

∆xm−1
+ 1

∆xm
m = n

− 1
∆xm

m = n− 1
− 1

∆xm−1
m = n+ 1

.

Finally, the Vmn terms will involve integrals
over V (x), which will have to be performed
numerically in general:

Vmn =
∫
bm(x)V (x)bn(x)dx

which we can make more explicit by break-
ing up the integral into ∆x chunks. Let

Pn =
∫ ∆xn

0

V (x+ xn)
(

x

∆xn

)2

dx,

Mn =
∫ ∆xn

0

V (x+ xn)
(

∆xn − x

∆xn

)2

dx,

Cn =
∫ ∆xn

0

V (x+ xn)
x(∆xn − x)

∆x2
n

dx.

Then:

Vmn =


0 m 6= n, n± 1

Pm−1 +Mm m = n
Cm m = n− 1
Cm−1 m = n+ 1

.

Note that these integrals are properly set
up for Gaussian quadrature if V (x) is
smooth, since we have broken them up into
pieces with smooth integrands.

One more note: because of the peri-
odic boundary conditions, we need to set
A1,N = A1,0and AN,1 = AN,N+1.

(b) See the Matlab �les posted on the
web site. Note that in addition to
schrodinger_galerkin, I also imple-
mented a schrodinger_galerkin_sparse

function that does the same thing but using
Matlab's spdiags function to exploit the

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

ψ

1st
2nd
3rd
4th

Figure 1: Wavefunctions ψ(x) for four lowest
eigenvalues, computed with a uniform grid for
N = 100. (Note that the normalization of ψ is
arbitrary.)

sparsity of the matrix and the eigs function
to use an iterative method to just �nd a few
eigenvalues (it uses the Arnoldi algorithm
I believe). This way I can calculate the
solution for much larger N values if need
be.

(c) Here we computed the solutions for N =
100:

(i) For uniform spacing, my lowest four E
were −35.1923, −3.7363, 24.1334, and
42.6923. The corresponding eigenfunc-
tions are shown in �gure. 1.

(ii) In order to choose ρ(x) in a reasonable
way (not necessarily the best way), I
tried to mimic what a �real� adaptive-
grid solver would likely do: I looked
at the residual of the solution and
changed the grid density to try to
equalize the residual everywhere. In
particular, I calculated the residual for
the N = 100 uniform grid as r =
Ac0−EBc0 where c0 is the �exact� so-
lution on the same grid (interpolated
from N = 8000)1�in particular, we'll
use the residual for the lowest band
since that's what we want to compute

1A more realistic adaptive-grid code would normally

estimate the residual by comparing with the solution at

a coarser resolution.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

x

|r
(x

)|
1/

2

Figure 2: Residual function
√
|r(x)| (blue dots),

and a simpli�ed interpolated envelope (red cir-
cles/lines) that we'll use for ρ(x) ∼ 1/

√
|r(x)|.

below. Now, if we believe that this
scheme is quadratically accurate, then
in order to cut the residual by 4 we
should double the resolution. Thus, if
we suppose that we want to equalize
the residual everywhere, this would ar-
gue for using ρ(x) ∼ 1/

√
|r(x)| where

r(x) is the residual function, suitably
interpolated from r. The residual r is
plotted in �gure 2; since it is kind of
�bumpy� we'll just use an r(x) formed
by interpolating an upper-bound enve-
lope of r, as shown by the straight red
lines in the �gure. Using this ρ(x) and
N = 100 (via the makegrid function
supplied on the web site), I get eigen-
values E of -35.1944, -3.7364, 24.1668,
and 42.7061. The ψ(x) plots are in-
distinguishable and are therefore not
shown.

(d) The error ∆EN for N = 32, 64, 128, 256, 512
is plotted in �gure 3. Both are clearly
quadratic, and the ρ(x) helps slightly (the
error is reduced by about 1.4). Darn.
Fitting the last two points, it seems that
∆EN ≈ 42N−1.9993 for ρ(x). For refer-
ence, the �exact� value of E (as computed
by a uniform grid for N = 8000) should be
−35.1999808. A table of our data follows:

2

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

N

er
ro

r
∆E

N
 =

 |E
N

 −
 E

2N
|

uniform grid
ρ(x) grid

1/N2 line

Figure 3: Error ∆EN vs. N for a uniform
grid and the ρ(x) grid we selected, along with
a quadratic 1/N2 line for comparison. Both are
quadratic, and our ρ(x) helps slightly but not
much.

N EN ∆EN

32 −35.146211 0.04023
64 −35.186436 0.010157
128 −35.196592 0.0254
256 −35.199134 0.000636
512 −35.199770 0.000159

Problem 3: Orthogonal polynomials

Let xn (n = 1, . . . , N) be the roots of the orthog-
onal polynomial pN (x), which we showed must
lie in (a, b). Suppose that the k-th root is re-
peated, with multiplicity M > 1; from this, we
will prove a contradiction similar to the proof in
class. In particular, form the new polynomial
S(x) = pN (x)/(x − xk)L, where L = M if M is
even and L = M − 1 if M is odd. Clearly, S(x)
has smaller degree than pN (x) since L > 0, and
therefore we have zero inner product (S, pN) = 0
However, it must also be the case that S(x)

has the same sign as pN (x) everywhere. If M
is even, then pN (x) does not change sign at xk

(which is an extremum), and neither does S(x)
since L = M (we removed the xk root entirely).
If M is odd, then pN (x) changes sign at xk and
so does S(x) (since L = M−1 and thus S(x) con-
tains xk with multiplicity 1). All the other sign
changes are the same since the other roots were
unchanged. Therefore, we must have a positive

inner product (S, pN) > 0, which contradicts the
orthogonality above. Q.E.D.

3

