18.336 Pset 4 Solutions

Due Thursday, 20 April 2006.

Problem 1: Galerkin warmup

For a basis b,(z), the matrix A is defined as
Amn = (bm, Pby). Therefore, for any c, the
product ¢+ Ac =3 (cmbm, Pcnby) = (u, Pu)
where u(z) = ", cpbp(x). If ¢ # 0 then u # 0
because we always require our basis functions to
be linearly independent, and thus (u, Pu) > 0
by assumption, and therefore c - Ac > 0 and A

is positive-definite. Q.E.D.

Problem 2: Galerkin FEM

You will implement a Galerkin finite-element
method, with piecewise linear elements, for the
Schrodinger eigen-equation in 1d:
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with a given potential V(z) and for an unknown
eigenvalue E and eigenfunction ¢ (z). As usual,
we’ll use periodic boundary conditions ¥(x+2) =
¥ (z) and only solve for ¥(x) in x € [-1,1].

As in class, we will approximate (x) by its
value ¢, at N points x,, (n = 1,2,...,N) and
linearly interpolate in between.

Our basis functions are, as in class, the “tent”
functions b,(x), which = 1 at z, and = 0 at
other x,,.n, linearly interpolated in between z,
and x,4+1. The periodic boundary conditions
simply mean that cy41 = ¢1 for ey =21 + 2.
We define Azx,, = x,+1 — @, as in class.

(a) By definition, we have By, = (b, by,) and
Apn = (bm,[—% + V(2)]b,). However,
we’d like to make this a bit more explicit
and do some of the integrals analytically. To
start with, let’s evaluate B:

By, = /bid:ﬂ = (Azp—1 + Azy,)/3,

since in each Az interval the integral
looks like fOA‘T(J:/Ax)Qdm. The off-diagonal
elements are only non-zero for B ,+1,
and come from an integral of the form

fOAI (Ax — z)/Ax?dz, giving
BTz,n+1 = Axn/(ja

Bn,nfl = A*/11'77,71/6-

A,.» can be split into two pieces: A, =
Kpn + Vinn where K is the “kinetic” energy
from the —j—; and V is the potential energy
from the V(z). K, we evaluated in class
for Poisson’s equation (with opposite sign),
and is:
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Finally, the V,,,, terms will involve integrals
over V(z), which will have to be performed
numerically in general:
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which we can make more explicit by break-
ing up the integral into Az chunks. Let
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Note that these integrals are properly set
up for Gaussian quadrature if V(z) is
smooth, since we have broken them up into
pieces with smooth integrands.

One more note: because of the peri-
odic boundary conditions, we need to set
Ay = Arpand An1 = AN N1

See the Matlab files
web site. Note that in addition to
schrodinger_galerkin, I also imple-
mented a schrodinger_galerkin_sparse
function that does the same thing but using
Matlab’s spdiags function to exploit the
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Figure 1: Wavefunctions ¢(x) for four lowest
eigenvalues, computed with a uniform grid for
N = 100. (Note that the normalization of v is
arbitrary.)

sparsity of the matrix and the eigs function
to use an iterative method to just find a few
eigenvalues (it uses the Arnoldi algorithm
I believe). This way I can calculate the
solution for much larger N values if need
be.

Here we computed the solutions for N =
100:

(i) For uniform spacing, my lowest four E
were —35.1923, —3.7363, 24.1334, and
42.6923. The corresponding eigenfunc-
tions are shown in figure. 1.

In order to choose p(x) in a reasonable
way (not necessarily the best way), I
tried to mimic what a “real” adaptive-
grid solver would likely do: I looked
at the residual of the solution and
changed the grid density to try to
equalize the residual everywhere. In
particular, I calculated the residual for
the N = 100 uniform grid as r =
Aco — EBcg where ¢ is the “exact” so-
lution on the same grid (interpolated
from N = 8000)!—in particular, we’ll
use the residual for the lowest band
since that’s what we want to compute

LA more realistic adaptive-grid code would normally
estimate the residual by comparing with the solution at
a coarser resolution.

Figure 2: Residual function
and a simplified interpolated envelope (red cir-

cles/lines) that we’ll use for p(x) ~ 1/4/|r(x)|.
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below. Now, if we believe that this
scheme is quadratically accurate, then
in order to cut the residual by 4 we
should double the resolution. Thus, if
we suppose that we want to equalize
the residual everywhere, this would ar-
gue for using p(x) ~ 1/4/|r(z)| where
r(z) is the residual function, suitably
interpolated from r. The residual r is
plotted in figure 2; since it is kind of
“bumpy” we’ll just use an r(x) formed
by interpolating an upper-bound enve-
lope of r, as shown by the straight red
lines in the figure. Using this p(z) and
N = 100 (via the makegrid function
supplied on the web site), I get eigen-
values F of -35.1944, -3.7364, 24.1668,
and 42.7061. The v (z) plots are in-
distinguishable and are therefore not
shown.

(d) The error AEy for N = 32,64, 128,256,512

is plotted in figure 3. Both are clearly
quadratic, and the p(z) helps slightly (the
error is reduced by about 1.4). Darn.
Fitting the last two points, it seems that
AEN =~ 42N~19993 for p(x). For refer-
ence, the “exact” value of E (as computed
by a uniform grid for N = 8000) should be
—35.1999808. A table of our data follows:
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Figure 3: Error AEy vs. N for a uniform
grid and the p(x) grid we selected, along with
a quadratic 1/N? line for comparison. Both are
quadratic, and our p(z) helps slightly but not
much.

(N Ex | AEy |
32 | —35.146211 | 0.04023
64 | —35.186436 | 0.010157
128 | —35.196592 | 0.0254
256 | —35.199134 | 0.000636
512 | —35.199770 | 0.000159

Problem 3: Orthogonal polynomials

Let 2, (n =1,...,N) be the roots of the orthog-
onal polynomial py(z), which we showed must
lie in (a,b). Suppose that the k-th root is re-
peated, with multiplicity M > 1; from this, we
will prove a contradiction similar to the proof in
class. In particular, form the new polynomial
S(z) = pn(z)/(x — zx)", where L = M if M is
even and L = M — 1 if M is odd. Clearly, S(x)
has smaller degree than py(x) since L > 0, and
therefore we have zero inner product (S,py) =0

However, it must also be the case that S(z)
has the same sign as py(x) everywhere. If M
is even, then px(z) does not change sign at zj
(which is an extremum), and neither does S(x)
since L = M (we removed the xj root entirely).
If M is odd, then py(x) changes sign at xj and
so does S(z) (since L = M —1 and thus S(z) con-
tains xj with multiplicity 1). All the other sign
changes are the same since the other roots were
unchanged. Therefore, we must have a positive

inner product (S, py) > 0, which contradicts the
orthogonality above. Q.E.D.



