18.336 Problem Set 4

Due Thursday, 20 April 2006.

Problem 1: Galerkin warmup

Consider a Galerkin method for a linear PDE Pu = f. We showed in class that this leads to a linear equation $A\mathbf{c} = \mathbf{f}$. Show that if P is positive-definite (i.e. if (u, Pu) > 0 for any function $u \neq 0$), then A is (i.e. $\mathbf{c} \cdot A\mathbf{c} > 0$ for any $\mathbf{c} \neq 0$).¹

Problem 2: Galerkin FEM

You will implement a Galerkin finite-element method, with piecewise linear elements, for the Schrodinger eigen-equation in 1d:

$$\left[-\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

with a given potential V(x) and for an unknown eigenvalue E and eigenfunction $\psi(x)$. As usual, we'll use periodic boundary conditions $\psi(x+2) = \psi(x)$ and only solve for $\psi(x)$ in $x \in [-1, 1]$.

As in class, we will approximate $\psi(x)$ by its value c_n at N points x_n (n = 1, 2, ..., N) and linearly interpolate in between.

- (a) A Galerkin method leads to a generalized Hermitian eigenproblem $A\mathbf{c} = E_N B\mathbf{c}$ with matrices A and B. Derive expressions for the matrix elements of A and B in terms of the x_n and V(x).
- (b) Implement a Matlab function that assembles the matrices A and B given an array x of the x_n and an arbitrary function V for V(x). i.e. write a function of the form:
 function [A,B] = schrodinger_galerkin(x, V)
 Note that you can pass a function as an argument in Matlab by using the @ command, for example schrodinger_galerkin([-1:0.1:0.9], @(x) exp(-x)). You can evaluate the
- (c) Solve for the four smallest eigenvalues E_N and plot the corresponding eigenstates $\psi(x)$ by using eig(A,B) with $V(x) = 50 \cdot \sin(\pi x + \cos(3\pi x))$ and N = 100 points distributed as:

Galerkin integrals numerically using Matlab's quad1 function (adaptive Gaussian quadrature).

- (i) equally spaced points $x_n x_{n-1} = \text{constant}$.
- (ii) points spaced proportional to some function $\rho(x)$ that you think will be better: $x_n x_{n-1} = \text{constant} \cdot \rho(x_{n-1})$, where the constant is chosen to give N points with $x_1 = -1$ and $x_{N+1} = 1$ (of course, x_{N+1} is not stored because of the periodic boundaries).
- (d) Given your function $\rho(x)$ from above, compute the error $\Delta E_N = |E_N E_{2N}|$ in the smallest eigenvalue as a function of N for N = 32, 64, 128, 256, 512. Plot your data and (using the last two points) fit to a power law $\Delta E_N = \alpha N^{-\gamma}$. Also give a table of your ΔE_N data. A small prize and eternal glory will be awarded for the error/convergence that is judged the best.

Problem 3: Orthogonal polynomials

In class we proved that all of the roots of the orthogonal polynomial $p_N(x)$ over [a, b] lie strictly inside (a, b). Prove that there are no repeated roots. Hint: the proof is very similar...assume there are repeated roots and construct a lower-degree polynomial s(x) that would have non-zero inner product (s, p_N) .

¹I sort of proved this in class, but I think I went a little too quickly.