
18.336 Pset 1 Solutions

Problem 1: Trig. interp. poly.

(a) When aliasing is included, the general form
for the interpolated function is:

f(x) =
N−1∑
k=0

ckei(k+`kN)x,

and thus the mean-square slope is:

1
2π

∫ 2π

0

|f ′(x)|2dx =
N−1∑
k=0

(k + `kN)2|ck|2

since the integration kills all of the cross terms
in the squared summation, by the usual orthog-
onality. Each of these terms is non-negative,
and so the mean-square slope is minimized when
each coe�cient (k+`kN)2 is minimized indepen-
dently. If N = 2M + 1 (odd), then for k ≤ M
this is minimized for `k = 0, and for k > M
it is minimized for `k = −1 (since in that case
|k−N | ≤ M < k). Q.E.D. (since M = (N−1)/2
and M + 1 = (N + 1)/2).
(b) The symmetric form from (a) can equiva-

lently be written as

f(x) =
M∑

k=−M

ckeikx,

where c−k ≡ cN−k according to aliasing. Since

ck =
1
N

N−1∑
n=0

fnωnk
N ,

then for real fn (fn = f∗n) it immediately follows
that c−k = c∗k, and thus

f(x) = c0 +
M∑

k=1

(ckeikx + c∗ke−ikx).

This is manifestly real, since c0 = c∗0 is real and
each term in the sum is 2<[ckeikx].
This is not a unique real interpolating poly-

nomial, however. In particular, we could also
choose any shifts `k as long as `−k ≡ `N−k +1 =
−`k, as this would preserve the property that we
have a sum of terms and their complex conju-
gates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

x / 2π

|ρ
(x

)
−

 d
2 φ 10

0/d
x2 |

Figure 1: The absolute error |ρ(x) − φ′′N (x)| vs.
x/2π, using a �nite-di�erence approximation for
the derivative φ′′N .

Problem 2: Solving Poisson's eq.

(a) To evaluate φ′′N (x) via �nite dif-
ferences in Matlab, we simply use
diff(diff(phi))/(2*pi/100)^2. This is
equivalent to:

φ′′N (x) ∼=
φN (x + ∆x)− 2φN (x) + φN (x−∆x)

∆x2

which (as we shall explore in more detail in
lecture) is a second-order approximation with
O(∆x2) error. In �gure 1 we plot |ρ(x)−φ′′N (x)|
versus x using this approximation. As we noted
in class, there is a happy �accident� in this case�
often, the peak error would be at the point of
discontinuity, but in this case the error is exactly
zero there, and the error elsewhere is lower than
we might expect from pessimistic upper bounds.
(Similarly, in Fourier space the c0 = 0 coe�cient
is computed exactly.) Still, the peak error is O(1)
due to Gibb's phenomena.
(b) In �gure 2, we show the approximate L2

error ∆N vs. N for three functions ρ(x). First,
the original discontinuous �sawtooth� ρ1(x). Sec-
ond, ρ2(x) = | sinx| − 2/π which is continuous
with discontinuous slope. Third, we consider
ρ3(x) = 2x/π − 1 + cos x for x < π and ρ3(x) =
2x/π − 3 − cos x for x > π, which is continuous
with continuous �rst derivative but discontinu-
ous second derivative. After some initial bumpi-
ness (see below), we see that both ρ1 and ρ2 give
O(1/N2) convergence. The simple upper bound

1

10
1

10
2

10
3

10
4

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N

ap
pr

ox
. L

2 e
rr

or
 ∆

N

ρ = sawtooth
ρ = |sin x|
ρ = 2x/π ± cos x ...

1/N2

1/N4

Figure 2: Approximate L2 error ∆N vs. N for
three ρ(x) with delta-function �rst, second, and
third derivatives respectively. Also shown are
1/N2 and 1/N4 lines, for reference.

from class would be O(1/N) for discontinuous ρ
and O(1/N2) for discontinuous-slope ρ, but we
explained in class why this ρ1 happens to do bet-
ter. The ρ3 convergence goes as O(1/N4); the
general upper bound for discontinuous�second-
derivative ρ is O(1/N3), but this function hap-
pens to do better because of a similar accident
as ρ1 (we have constructed ρ3 so that its c0 = 0
is summed exactly, whereas this is not true for
ρ2) .

The initial �bumpiness� of the ρ1 convergence
is not random, however�it follows a straight
line with 1/N convergence. In fact, if we com-
puted ∆N for more N values we would see that
there are a whole sequence of N points, extend-
ing to large N , where ∆N is Θ(1/N) instead of
Θ(1/N2). What's going on? The answer is that
there is a bug in the code: at the point x = π,
ρ1(π) should be zero, but because of rounding er-
ror in the linspace function the middle x value
is sometimes slightly greater or less than pi, and
for these values of N we get sum(rho) 6= 0. Then
the c0 Fourier coe�cient is not computed exactly
and the error returns to the 1/N upper bound.
To �x this and get O(1/N2) convegence every-
where we could simply set rho(N/2+1)=0, how-
ever.

Finally, in �gure 3, we show ∆N for ρ(x) =
1/(1+2 cos x)− 1

2π

∫ 2π

0
dx

1+2 cos x , which is smooth
on the real-x axis and should thus give geomet-

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N

ap
pr

ox
. L

2 e
rr

or
 ∆

N

Figure 3: Approximate L2 error ∆N vs. N for
smooth ρ(x) = f(x)− 1

2π

∫
f(x)dx, where f(x) =

1/(2 + cos x).

ric convergence. We therefore plot on a semilog
scale, and indeed obtain the expected straight-
line e−αN behavior. At least, we get a straight
line until the error reaches 10−16 or so, at which
point it saturates�this is nothing more than the
limit imposed by the �nite precision of double-
precision �oating-point arithmetic (numbers on
the computer are represented with only about 16
signi�cant digits of precision).

Problem 3: FFTs

For radix-2 DIT Cooley-Tukey, the outputs are
computed via (from class, taking N1 = 2 and
N2 = N/2):

yN
2 k1+k2

=
1∑

n1=0

ωn1k2
N

N
2 −1∑

n2=0

xn1+2n2ω
n2k2
N/2

 ωn1k1
2

where the inner sum is a size-N/2 DFT com-
puted recursively, and the outer sum is a size-2
DFT.
(a) Let T (N) be the number of real-arithmetic

operations. Then T (N) = 2T (N/2) + Θ(N) +
(N/2)T (2), where the Θ(N) represents the mul-
tiplications by the twiddle factors ωn1k2

N . To get
T (N) more explicitly, we need to count the num-
ber of operations in T (2) and the twiddle multi-
plications.

T (2) is easy since ω2 = e−πi = −1: a DFT
of length 2 is just an addition y0 = x0 + x1 and

2

a subtraction y1 = x0 − x1, and since these are
complex-number additions we get T (2) = 4.
Naively, we might think that the ωn1k2

N mul-
tiplications require N complex multiplications,
but many of these are multiplications by 1 and
hence have no cost. In particular, for n1 = 0
they are multiplications by 1 so we only need
to consider the N/2 multiplications for n1 = 1.
Some of these also simplify: for k2 = 0 it is 1,
and for k2 = N/4 it is −i which is also cost-free,
and if you really care about counting operations
you also must note that for k2 = N/4 ± N/8
you get −(i ± 1)/

√
2 which requires only 2 real

multiplications and 2 real additions. However,
the important point is that the number of these
special cases is bounded (at most four of them),
and so we know that the twiddle multiplications
require 6N/2 − O(1) real-arithmetic operations
(since each general complex multiply takes 6 op-
erations). Thus, we now know that

T (N) = 2T (N/2) + 5N −O(1)
= 2[2T (N/4) + 5N/2−O(1)] + 5N −O(1)
= · · ·

Now we are almost done. If we repeat this recur-
sively down to N = 2, there are log2 N−1 stages.
From each stage we pick up 5N operations (N
halves at each stage but the number of trans-
forms doubles), which gives us 5N(log2 N − 1)
operations. From each stage we also pick up O(1)
operations multiplied by 1, 2, 4, · · · but the sum
of this geometric series is ∼ 2log2 N = N and thus
this term is at most O(N). Thus,

T (N) = 5N log2 N −O(N)

and # = 5.1

(b) Let Tr(N) denote the number of real-
arithmetic operations required for the same al-
gorithm specialized to the case of real inputs.
Then the Cooley-Tukey algorithm breaks the
DFT of length N into two DFTs of length N/2,
both of which again have real inputs and thus
Tr(N) = 2Tr(N/2)+??. Denote the results of
these two real-input sub-DFTs as ek2 and ok2

(the transforms of the even- and odd-indexed
xn, respectively). Note that eN/2−k2 = e∗k2

by

1In 1968, Yavne's �split-radix� algorithm achieved

T (N) = 4N log2 N +Θ(N), which was the best count for

N = 2m for 36 years. The current best count for N = 2m,

achieved in 2004, is T (N) = 34
9

N log2 N + Θ(N).

the usual conjugate symmetry, and similarly for
ok2 . In order to combine the outputs of these
two sub-DFTs, we must do:

yk = ek + ωk
Nok

for 0 ≤ k < N/2, and yN/2+k = ek − ωk
Nok for

the other half�this is the DFT of size 2 (the
n1 sum). However, since yN−k = y∗k, we need
only compute half of these outputs (0 ≤ k ≤
N/2). Right away, this saves us half of the 4N/2
additions that were previously required for the
T (2) transforms. However, it still seems like we
are multiplying by N/2 twiddle factors ωk

N�we
need to save half of these somehow.
We can save half of the twiddle multiplies by

using the conjugate symmetry of ek and ok, to
get yN/2−k for k < N/4. In particular:

yN/2−k = eN/2−k+ω
N/2−k
N oN/2−k = e∗k−(ωk

Nok)∗,

where we have used the fact that ω
N/2−k
N =

−ω−k
N . Therefore, we only need to compute

ωk
Nok for k ≤ N/4 and obtain the N/4 <

k < N/2 values by conjugation (which is only
a sign �ip and requires no multiplies or addi-
tions). Thus, we have saved roughly half of the
5N operations that were previously required to
combine the sub-transforms:

Tr(N) = 2Tr(N/2) +
5
2
N + O(1)

where O(1) is again some ± bounded value that
takes into account a bounded number of extra
optimizations and special cases: the few twiddle
factors that simplify as before such as k = N/4
and k = N/8, the k1 = 1, k2 = 0 term for yN/2,
and the k1 = k2 = 0 term which is purely real.
Then, by the same arguments as above,

Tr(N) = 5
2N log2 N + O(N) and we asymptoti-

cally save half the operations. Q.E.D.

3

