
18.336 Mid-term Solutions

Problem 1 (30 points): Velocity

(a) Plugging in ei(θm−φn), and employing the
usual trig identites, we �nd:

sin(φ/2) = ±aλ sin(θ/2)

This gives a group velocity vg = dφ/dθ/λ
of:

vg

a
=

cos(θ/2)√
1− (aλ)2 sin2(θ/2)

.

This is actually exactly the same as the
group velocity for the leap-frog method from
pset 3. It clearly is 1 for θ = 0 and,
for |aλ| < 1, decreases to 0 for β∆x =
θ = π. If we've forgotten what the plot
looks like, with a little more work we can
show that it decreases monotonically. If we
take its derivative, the numerator of dvg/dθ
looks like (recall that (u/v1/2)′ = (2u′v −
uv′)/2v3/2 by the product rule):

− sin(θ/2) · [1− (aλ)2 sin2(θ/2)]

+ cos(θ/2) · (aλ)2 sin(θ/2) cos(θ/2)

= − sin(θ/2) · [1− (aλ)2] ≤ 0

so the curve must be monotonically decreas-
ing, with zero slope at θ = 0 and negative
slope elsewhere. Furthermore, we can show
that it must be concave downward, by tak-
ing the numerator of d2vg/dθ2, obtaining:

− cos(θ/2) · [1− (aλ)2 sin2(θ/2)]

− 3 sin(θ/2) · (aλ)2 sin(θ/2) cos(θ/2)

= − cos(θ/2) · [1 + 2(aλ)2 sin2(θ/2)] ≤ 0,

with equality (zero curvature) only at θ = π.
Putting this together, we conclude that the
plot must look something like Fig. 1 (which
is aλ = 0.9).

(b) The pulse must be travelling to the left.
The reason is that we saw from part (a) that
faster spatial frequencies (larger θ) travel
more slowly than smaller θ. At the start,
the pulse has the same oscillation frequency
everywhere in its envelope, but eventually
the trailing edge of the pulse will have faster
oscillations and the leading edge will have
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Figure 1: Group velocity vg/a vs. θ/π for leap-
frog wave equation, for |aλ| = 0.9.

slower oscillations (this is called a �chirped
pulse� in the signal-processing community).
Since the �gure showed a pulse with slower
oscillations at the left, and there are no
boundaries to change the pulse direction,
we conclude that we are looking at the left-
going pulse.

Problem 2 (30 points): Stability

(a) The simplest thing is to consider a �at solu-
tion (ux = 0), which gives ut = σu and thus
has solutions that grow as eσt. More gen-
erally, we can look at a wave ei(βx−ωt), and
plugging this in we see that −iω = −iaβ+σ,
or β = ω/a− iσ/a, which leads to solutions
that grow as eσx/a. This is exponentially
growing towards the right if a is positive
and to the left if a is negative, and is there-
fore exponentially growing in the direction

of propagation regardless of the sign of a�
this argument can be generalized to σ(x)
not constant via the coordinate-stretching
approach where we get exp[

∫ x
σ(x′)dx′/a]

growth. Or, for constant σ, ω = aβ + iσ so
every Fourier component grows in time as
eσt. Another way to show that all constant-
σ solutions are exponentially growing is to
write u(x, t) = f(x− at, t), which yields the
equation ft − afx = −afx + σf , and we see
that ft = σf so that f(x, t) = f(x, 0)eσt.

(b) Plugging in the usual un
m = gneiθm, we �nd:

(g − 1) = −iaλg sin θ + σ∆t,
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or

|g| = 1 + σ∆t√
1 + (aλ)2 sin2 θ

≤ 1 + σ∆t,

which is a su�cient condition for stability as
we showed in class. So, it is unconditionally
stable.

(c) Cal is over-simplifying the de�nitions. Say-
ing it is �stable� doesn't mean that �it
doesn't blow up.� Rather, it means that it
doesn't blow up in a �nite time as ∆t → 0.
And indeed, the exact solution doesn't blow
up in a �nite time either (it is well-posed,
which is a condition for Lax's theorem too).
So, there is no contradiction: the solution
converges to the exact solution, which blows
up as t →∞.

Problem 3 (30 points): Accuracy

The collocation solution will be c̃k = d̃k/k4, com-
pared to the exact solution ck = dk/k4. As we
showed in class, the L2 error in u is exactly equal
to the L2 error in the Fourier coe�cients, which
is the sum of two terms: a discretization error
in the c̃k for |k| ≤ M , and a truncation error for
the missing Fourier coe�cients with |k| > M .√ ∑

|k|≤M

|c̃k − ck|2 +
∑

|k|>M

|ck|2.

The �rst sum is of terms |c̃k − ck|2 = |d̃k −
dk|2/k8 = O( 1

M2` ) 1
k8 . A sum of 1/k8 is a conver-

gent series and is just sum number for large M ,
so we get O( 1

M2` ). The second sum is of terms

|ck|2 = |dk|2/k8 = O( 1
|k|2`+8 ); when summed,

this gives O( 1
M2`+7 ) by the usual series bound.

Obviously, the �rst term dominates, and so the
overall error is O( 1

M` ).

Extra credit (5 points): Poisson

(a) A singular matrix means that the solution
is not unique, and indeed that is the case
here: we can add any constant to φ and it
still solves the same equation.

(b) To �x this, we just need to specify a spe-
ci�c solution φ that we want out of all the
in�nite possibilities. The simplest way is to

just set the value of φ at a point, e.g. re-
quire φ(0) = 0. By periodicity, this means
that φ(2π) = 0 too, and thus we have just
changed periodic boundary conditions into
Dirichlet boundary conditions (at least in
1d)!

Note that the problem does not have anything
to do with whether

∫
ρdx = 0...the solution φ

is still not unique regardless. For our spectral
solution in class, we set the zeroth Fourier coef-
�cient of φ to zero, which is equivalent to requir-
ing

∫
φdx = 0, another possible choice (albeit

a slightly harder choice to enforce in a �nite-
di�erence scheme). If we take our formulation
from (b) above and plug in a ρ that does not have
zero integral, we will still get a solution, but it
will be one for which φ has a discontinuous slope
(since

∫
ρdx = φ′(2π)− φ′(0) by integrating the

di�erential equation).
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