
Fast Fourier Transform Algorithms (MIT IAP 2006)

Prof. Steven G. Johnson, MIT Dept. of Mathematics

10th February 2006

Fast Fourier transforms (FFTs),O(N log N) algorithms
to compute a discrete Fourier transform (DFT) of sizeN ,
have been called one of the ten most important algorithms
of the 20th century. They are what make Fourier transforms
practical on a computer, and Fourier transforms (which ex-
press any function as a sum of pure sinusoids) are used in
everything from solving partial differential equations to dig-
ital signal processing (e.g. MP3 compression) to multiply-
ing large numbers (for computingπ to1012 decimal places).
Although the applications are important and numerous, the
FFT algorithms themselves reveal a surprisingly rich variety
of mathematics that has been the subject of active research
for 40 years, and into which this lecture will attempt to dip
your toes. The DFT and its inverse are defined by the fol-
lowing relation betweenN inputsxn andN outputsXk (all
complexnumbers):

DFT(xn): Xk =
N−1∑
n=0

xne−
2πi
N nk, (1)

inverse DFT(Xk): xn =
1
N

N−1∑
k=0

Xke+ 2πi
N nk (2)

where i =
√
−1, recalling Euler’s identity thateiφ =

cos φ+i sinφ. Each of theN DFT outputsk = 0, · · · , N−
1 is the sum ofN terms, so evaluating this formula directly
requiresO(N2) operations.1 The trick is to rearrange this
computation to expose redundant calculations that we can
factor out.

The most important FFT algorithm is called the Cooley-
Tukey (C-T) algorithm, after the two authors who popu-
larized it in 1965 (unknowingly re-inventing an algorithm
known to Gauss in 1805). It works for anycomposite
sizeN = N1N2 by re-expressing the DFT of sizeN in
terms of smaller DFTs of sizeN1 andN2 (which are them-
selves broken down, recursively, into smaller DFTs until
the prime factors are reached). Effectively, C-T expresses
the arrayxnof lengthN as a “two-dimensional” array of
sizeN1 ×N2 indexed by(n1, n2), so thatn = N1n2 + n1

(wheren1,2 = 0, · · · , N1,2 − 1). Similarly, the output is
expressed as atransposed2d array,N2 × N1 indexed by

1Read “O(N2)” as “roughly proportional, for largeN .” e.g. 15N2 +
24N is O(N2). (Technically, I should really sayΘ(N2), but I’m going
to get that formal.)

(k2, k1), so thatk = N2k1 + k2. Substituted into the DFT
above, this gives:

XN2k1+k2 =
N1−1∑
n1=0

({
e−

2πi
N n1k2

}[N2−1∑
n2=0

e−
2πi
N2

n2k2xN1n2+n1

])
e−

2πi
N1

n1k1

(3)

where we have used the fact thate−2πin2k1 = 1 (for any
integersn2 andk1). Here, the outer sum is exactly a length-
N1 DFT of the(· · · ) terms, one for each value ofk2; and the
inner sum in[· · · ] is a length-N2 DFT, one for each value
of n1. The phase in the{· · · } is called the “twiddle factor”
(honest). Assuming thatN has small (bounded) prime fac-
tors, this algorithm requiresO(N log N) operations when
carried out recursively — the key savings coming from the
fact that we have exposed a repeated calculation: the[· · · ]
DFTs need only be carried outoncefor all Xk outputs.

For a givenN , there are many choices of factorizations
(e.g.12 = 3 ·4 and4 ·3 give a different sequence of compu-
tations). Moreover, the transposition from input to output
implies a data rearrangement process that can be accom-
plished in many ways. As a result, many different strate-
gies for evaluating the C-T algorithm have been proposed
(each with its own name), and the optimal approach is still
a matter of active research. Commonly, eitherN1 or N2 is
a small (bounded) constant factor, called theradix, and the
approach is called decimation in time (DIT) forN1 = radix
or frequency (DIF) forN2. Textbook examples are typi-
cally radix-2 DIT (dividingxn into two interleaved halves
with each step), but serious implementations employ more
sophisticated strategies.

The core of the DFT is the constantωN = e−
2πi
N ; be-

cause this is a primitive root of unity (ωN
N = 1), any ex-

ponent ofωN is evaluatedmoduloN . That is,ωm
N = ωr

N

wherer is the remainder when we dividem by N . A great
body of number theory has been developed around such
“modular arithmetic”, and we can exploit it to develop FFT
algorithms different from C-T. For example, Rader’s algo-
rithm (1968) allows us to computeO(N log N) FFTs of
prime sizesN , by turning the DFT into a cyclicconvolu-
tion of lengthN − 1, which in turn is evaluated by (non-
prime) FFTs. Givenan andbn (n = 0, · · · , N − 1), their

1



convolutioncn is defined by the sum

cn =
N−1∑
m=0

ambn−m, (4)

where the convolution iscyclic if the n − m sub-
script is “wrapped” periodically onto0, · · · , N − 1.
This operation is central to digital filtering, differential
equations, and other applications, and is evaluated in
O(N log N ) time by the convolution theorem: cn =
inverse FFT(FFT(an) · FFT(bn)). Now, back to the FFT...

For primeN , there exists ageneratorg of the multi-
plicative group moduloN : this means thatgp mod N for
p = 0, · · · , N − 2 produces alln = 1, · · · , N − 1 exactly
once (but not in order!). Thus, we can write all non-zeron
andk in the formn = gp andk = gN−1−q for somep and
q, and rewrite the DFT as

X0 =
N−1∑
n=0

xn, (5)

Xk 6=0 = XgN−1−q = x0 +
N−2∑
p=0

ωgp+N−1−q

N xgp , (6)

where (6) is exactly the cyclic convolution ofap = xgp

with bp = ωgN−1−p

N . This convolution has non-prime length
N−1, and so we can evaluate it via the convolution theorem
with FFTs inO(N log N) time (except for some unusual
cases).

Many other FFT algorithms exist, from the “prime-factor
algorithm” (1958) that exploits the Chinese remainder the-
orem forgcd(N1, N2) = 1, to approaches that express the
DFT as recursive reductions of polynomials or even multi-
dimensional polynomials.

Further Reading

• D. N. Rockmore, “The FFT: An Algorithm the Whole
Family Can Use,”Comput. Sci. Eng.2 (1), 60 (2000).
Special issue on “top ten” algorithms of century. See:
http://tinyurl.com/3wjvk and http://tinyurl.com/6l4jn

• “Fast Fourier transform,”Wikipedia: The Free Ency-
clopedia(http://tinyurl.com/5c6f3). Edited by SGJ for
correctness as of 10 Jan 2006 (along with subsidiary
articles on C-T and other specific algorithms).

• “The Fastest Fourier Transform in the West,” a free
FFT implementation obviously named by arrogant
MIT graduate students. http://www.fftw.org/

Homework Problems

Problem 1: Consider the Cooley-Tukey algorithm forN =
22m

, where instead of using a fixed radix we use radix-
√

N
— that is, at each step we writeN1 = N2 =

√
N, recur-

sively.
(a) Argue that the number of operations is still

O(N log N ).
Now, instead of the number of arithmetic operations, con-

sider the number ofmemoryoperations on a system with a
slow main memory that holds all of the data and a smaller,
faster (idealized)cachethat can hold some numberC of
the most recently accessed inputs/outputs (ignoring storage
for the program itself, etc.). If the main memory is slowest
part of the computer (this is typical), then the time will be
dominated by the number ofcache misses: the times that a
number must be read into/out of cache from/to main mem-
ory. For a radix-2 recursive2 C-T algorithm, the number
M(N) of cache misses can therefore be expressed by the
following recurrence:

M(N) =
{

2M(N/2) + O(N) if N > C
O(N) if N ≤ C

.

That is, if the problem fits in cache (N < C) then you just
read the data into cache and no more reads are required.
Otherwise, you needM(N/2) twice for the two halves plus
O(N) to combine the two halves (withN/2 size-2 DFTs
and twiddle factors).

(b) Argue that this recurrence leads toM(N) =
O(N log N

C ) cache misses.
(c) Write down a similarM ′(N) recurrence for the radix-√
N algorithm. (Remember that each stage of the algorithm

consists of three computations: do
√

N length-
√

N DFTs,
multiply by N twiddle factors, then do another

√
N length-√

N DFTs). Solve the recurrence to show thatM ′(N) =
O(???), and show that this is better whenN

C →∞ than the
radix-2 caseM(N) from (b).

(In fact, M ′(N) is provably optimal, but it doesn’t be-
come better in practice untilN is very large. Since the
algorithm itself does not depend on the cache sizeC, this
is called an “optimalcache-oblivious” algorithm. See also
http://tinyurl.com/77k3e)

2That is, we imagine the FFT is implemented in the most straight-
forward recursive fashion...”depth-first” traversal of the decomposition of
N for you computer-science geeks. Actually, many implementations in
practice use “breadth-first” traversal, which has much worse cache perfor-
mance (at least in this idealized memory model).

2


