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Fast Fourier transforms (FFTS),(N log N) algorithms  (ko, k1), so thatt = Naokq + k2. Substituted into the DFT
to compute a discrete Fourier transform (DFT) of si¥¢e above, this gives:
have been called one of the ten most important algorithms
of the 20th century. They are what make Fourier transformsy

i . . Naki+ke

practical on a computer, and Fourier transforms (which ex- N1
press any function as a sum of pure sinusoids) are used\]'1 —2min, gy - —2min,k, —2min, kg,
everything from solving partial differential equations to dig- {6 } Z - TNinatna ) | €7
ital signal processing (e.g. MP3 compression) to muItipIyT?:O n2=0 3)
ing large numbers (for computingto 10'2 decimal places).
Although the applications are important and numerous, th
FFT algorithms themselves reveal a surprisingly rich varie .
of mathematics that has been the subject of active rese gersn; andk,). Here, the outer sum is exactlly alength-
for 40 years, and into which this lecture will attempt to dip' ! FTof t_he(- ’ ) terms, one for each value bf; and the
your toes. The DFT and its inverse are defined by the fgR'€" SUM in[- -] is a lengthaV, DFT, one for each value

; ; . fni. The phase in thé- - - } is called the “twiddle factor”
lowing relation betweed inputsz,, and N outputsX;, (all ot : .
complexnumbers): (honest). Assuming tha¥ has small (bounded) prime fac-

tors, this algorithm require® (N log N') operations when

ere we have used the fact that>2k1 = 1 (for any

N-1 _ carried out recursively — the key savings coming from the
DFT(2,): X = Y ape” Xk, (1) fact that we have exposed a repeated calculation]-thé
n=0 DFTs need only be carried oahcefor all X}, outputs.

For a givenN, there are many choices of factorizations
(e.g.12 = 3-4 and4- 3 give a different sequence of compu-
tations). Moreover, the transposition from input to output
implies a data rearrangement process that can be accom-
wherei = /-1, recalling Euler's identity that’® = plished in many ways. As a result, many different strate-
cos ¢+1isin ¢. Each of theV DFT outputsk = 0,--- , N— gies for evaluating the C-T algorithm have been proposed
1 is the sum ofV terms, so evaluating this formula directlyeach with its own name), and the optimal approach is still
requiresO(N?) operations. The trick is to rearrange thisa matter of active research. Commonly, eithgror N, is
computation to expose redundant calculations that we @asmall (bounded) constant factor, called tadix, and the
factor out. approach is called decimation in time (DIT) fof; = radix

The most important FFT algorithm is called the Coolewr frequency (DIF) forN,. Textbook examples are typi-
Tukey (C-T) algorithm, after the two authors who popteally radix-2 DIT (dividingz,, into two interleaved halves
larized it in 1965 (unknowingly re-inventing an algorithnwith each step), but serious implementations employ more
known to Gauss in 1805). It works for argomposite sophisticated strategies.
size N = NN, by re-expressing the DFT of siz&€ in  The core of the DFT is the constanfy = ¢~ %" ; be-
terms of smaller DFTs of siz&; and NV, (which are them- cause this is a primitive root of unitywl = 1), any ex-
selves broken down, recursively, into smaller DFTs unfibnent ofwy is evaluatednoduloN. That is, W = Wi
the prime factors are reached). Effectively, C-T expressgBerer is the remainder when we divide by N. A great
the arrayz,,of length NV as a “two-dimensional” array of hody of number theory has been developed around such
size N1 x Ny indexed by(nq,n2), so thath = Ninz +n1 “modular arithmetic”, and we can exploit it to develop FFT
(wheren; » = 0,---, Ny 2 — 1). Similarly, the output is algorithms different from C-T. For example, Rader’s algo-
expressed as mansposed2d array, N, x Ny indexed by rithm (1968) allows us to comput®(N log N) FFTs of

TRead D(N2)" as "roughly proportional, for largeV.” e.g. 15N + prime sizesN, by turning the DFT into a cycliconvolu-

24N is O(N?). (Technically, I should really sag)(N?2), but I'm going tio_n of length NV -1 which in turn is evaluated by (npn-
to get that formal.) prime) FFTs. Giveru,, andb,, (n = 0,--- , N — 1), their

N-—-1

i 1 iy
inverse DFTXy): z, = ,;) XpetFnk (2




convolutionc,, is defined by the sum Homework Problems
Problem 1: Consider the Cooley-Tukey algorithm féf =

N-1
Cp = Z T (4) 22" where instead of using a fixed radix we use ragli¥
o — that is, at each step we writ§; = N, = /N, recur-
sively.

where the convolution iscyclic if the n — m sub-  (a) Argue that the number of operations is still
script is “wrapped” periodically onto0,--- ,N — 1. O(N log N).
This operation is central to dlgltal filtering, differential Now, instead of the number of arithmetic operations, con-
equations, and other applications, and is evaluatedsjfer the number ahemoryoperations on a system with a
O(Nlog N) time by the convolution theorem ¢, = slow main memory that holds all of the data and a smaller,
inverse FFTFFT(a,) - FFT(b,)). Now, back to the FFT... faster (idealizedachethat can hold some numbét of

For prime N, there exists aeneratorg of the multi- the most recently accessed inputs/outputs (ignoring storage
plicative group modulaV: this means thag? mod N for for the program itself, etc.). If the main memory is slowest
p=0,---,N—2produces alh = 1,--- , N — 1 exactly part of the computer (this is typical), then the time will be
once (but not in order!). Thus, we can write all non-zero dominated by the number ehche misseghe times that a
andk in the formn = g? andk = g™V ~'~4 for somep and number must be read into/out of cache from/to main mem-

g, and rewrite the DFT as ory. For a radix-2 recursi¥eC-T algorithm, the number
M (N) of cache misses can therefore be expressed by the
i following recurrence:
XO = Z T, (5)
n=0 [ 2M(N/2)+O(N) if N> C
. M(N)—{ o(N) f N<cC
p+N—-1—q
Xppo = Xgn-1-a =20+ »_ 0l zg», (6) Thatis, if the problem fits in cachéV( < C) then you just
p=0 read the data into cache and no more reads are required.

where (6) is exactly the cyclic convolution of, = z,» Otherwise, you need/ (IN/2) twice for the two halves plus

with b, = w;‘{,N """ This convolution has non-prime Iengthgg(ﬁivﬁgdﬁgrgkggisghe two halves (withy/2 size-2 DFTs
N —1, and so we can evaluate it via the convolution theorem(b) Argue that t.his recurrence leads to(N) —

\év;?esF)FTs inO(N log N) time (except for some unusuaIO<N log %) cache misses.

M her FET algorith ist f he “orime-f (c) Write down a similatM’ (V) recurrence for the radix-
any other algorit ms exist, “?mt € ‘prime- aCtO(/N algorithm. (Remember that each stage of the algorithm
algorithm” (1958) that exploits the Chinese remainder th@énsists of three computations: §aV length/N DFTs
orem forng(Nl’ Na) = 1 to approache; that express thﬁ]ultiply by N twiddle factors, then do anothefN length-
DFT as recursive reductions of polynomials or even mult\vﬁ DFTs). Solve the recurrence to show that (V) —

dimensional polynomials. O(?77), and show that this is better whéh — oo than the
radix-2 caseéV/ (V) from (b).
Further Reading (In fact, M’(N) is provably optimal, but it doesn’t be-

come better in practice untiV is very large. Since the
e D. N. Rockmore, “The FFT: An Algorithm the Wholealgorithm itself does not depend on the cache §izéhis
Family Can Use,Comput. Sci. Eng2 (1), 60 (2000). is called an “optimatache-obliviousalgorithm. See also
Special issue on “top ten” algorithms of century. Sehttp://tinyurl.com/77k3e)
http://tinyurl.com/3wjvk and http://tinyurl.com/6l4jn

e “Fast Fourier transform,Wikipedia: The Free Ency-
clopedia(http://tinyurl.com/5c6f3). Edited by SGJ for
correctness as of 10 Jan 2006 (along with subsidiary
articles on C-T and other specific algorithms).

e “The Fastest Fourier Transform in the West,” a free
FFT implementation obviously named by arrogant
MIT graduate students. http://www.fftw.org/ 2That is, we imagine the FFT is implemented in the most straight-

forward recursive fashion..."depth-first” traversal of the decomposition of
N for you computer-science geeks. Actually, many implementations in
practice use “breadth-first” traversal, which has much worse cache perfor-
mance (at least in this idealized memory model).




