
cache hit: CPU needs item in cache (fast)
cache miss: CPU needs item not in cache

— item loaded into cache for future use, replacing some other item

optimal replacement: on cache miss, loaded item replaces item that will not be needed
 for the longest time in the future

[more realistic scheme: LRU replacement — replace least recently used item
— provably within small constant factor of optimal, but much harder to analyze]

fully associative — any item in memory can go anywhere in the cache
[real caches have limited associativity, which causes “unlucky”
 memory-access patterns to go same place in cache
 …effectively shrinks cache in these cases]

temporal locality — same item is re-used for several computations that are
close to one another in time ⇒ still in-cache ⇒ efficient

[there is also spatial locality — items close to one another in main memory are
 used close in time … exploited by cache lines, TBD]

cache complexity — the number of cache misses Q(n; Z) required for a given algorithm
running on a problem of size n with cache of size Z
… usually only given as asymptotic result for large n, Z,
 ignoring constant factors

asymptotic notation:
we say a function f(n) is O(g(n)) if g(n) is an asymptotic upper bound for f(n),
ignoring constant factors. Technically, if |f(n)| < C |g(n)| for some constant C>0
for all sufficiently large n (i.e., for all n > N for some N)

we say a function f(n) is Ω(g(n)) if g(n) is an asymptotic lower bound for f(n),
ignoring constant factors. Technically, if |f(n)| > C |g(n)| for some constant C>0
for all sufficiently large n (i.e., for all n > N for some N)

we say a function f(n) is Θ(g(n)) if g(n) is an asymptotic tight bound for f(n),
ignoring constant factors. Technically, if f(n) is both O(g(n)) and Ω(g(n))

CPU
ideal cache
Z items main memory

