
The “Fastest Fourier Transform
in the West”

Steven G. Johnson, MIT Applied Mathematics
Matteo Frigo, Cilk Arts Inc.

:

In the beginning (c. 1805):
Carl Friedrich Gauss

J

J

J
J

J

J

J

J
J

J

J

J

-5

0

5

10

15

20

25

30

0 60 120 180 240 300 360

ascension angle (°)

de
cl

in
at

io
n

an
gl

e
(°

) asteroid Pallas

 • Data
— Fit

trigonometric interpolation:

€

y j = cke
i2π
n
kj

k=0

n−1

∑
generalizing work
of Clairaut (1754)
and Lagrange (1762)

€

ck =
1
n

y je
− i2π

n
kj

k=0

n−1

∑discrete Fourier transform (DFT):
(before Fourier)

Gauss’ fast Fourier transform (FFT)

€

ck =
1
n

y je
−
2π
n
kj

k=0

n−1

∑how do we compute: ?
— not directly: O(n2) operations … for Gauss, n=12

J

J

J
J

J

J

J

J
J

J

J

J

-5

0

5

10

15

20

25

30

0 60 120 180 240 300 360

 • Data
— Fit

Gauss’ insight: “Distribuamus hanc
periodum primo in tres periodos
quaternorum terminorum.”

= We first distribute this period
 [n=12] into 3 periods of length 4 …

Divide and conquer.
(any composite n)

But how fast was it?
“illam vero methodum calculi mechanici taedium magis minuere”

= “truly, this method greatly reduces
 the tedium of mechanical calculation”

(For Gauss, being less boring was good enough.)

two (of many) re-inventors:
Danielson and Lanczos (1942)

[J. Franklin Inst. 233, 365–380 and 435–452]

Given Fourier transform of density (X-ray scattering) find density:

discrete sine transform (DST-1) = DFT of real, odd-symmetry

J

J

J J

J

J

J
J

sample
 the spectrum
 at n points: DFT

J J

J

J
J

J

J

J

0

radius r

atomic
density
 × r2

n=8 n=8

J

J

J

J

J

J

J
J

J

J

J

J

J
J J

J

n=16

J J

J

J

J

J

J

J

J J

J

J

J

J

J

J
E E

E

E
E

E

E

E

n=16

J

J

J

J
JJ

J

J

J

J
J

J

J

J

J

J

JJ

J

JJ

J

J
J
J
JJJJ

J
J
J

n=32

J J

J

J

J

J

J
J

J

J

J

J

J

J

J

J

J

J

J

J

J

E E

E

E

E

E

E

E

E E

E

E

E

E

E

E

n=32

…double sampling until density (DFT) converges…

Gauss’ FFT in reverse:
Danielson and Lanczos (1942)

[J. Franklin Inst. 233, 365–380 and 435–452]

J

J

J J

J

J

J
J

double sampling
re-using results

n=8

J

J

J

J

J

J

J
J

J

J

J

J

J
J J

J

n=16

“By a certain transformation process, it is
possible to double the number of ordinates
with only slightly more than double the labor.”

from
O(n2) to ???

64-point DST in only 140 minutes!

re-inventing Gauss (for the last time)

Cooley and Tukey (1965)
1d DFT of size n:

= ~2d DFT of size p x q
 (+ phase rotation by twiddle factors)

= Recursive DFTs of sizes p and q

O(n2) O(n log n)

n = pq

n=2048, IBM 7094, 36-bit float: 1.2 seconds
(~106 speedup vs. Dan./Lanc.)

[Math. Comp. 19,
297–301]

The “Cooley-Tukey” FFT Algorithm

1d DFT of size n:
n = pq

= ~2d DFT of size p × q

first DFT columns, size q
(non-contiguous)

multiply by n “twiddle factors”

q

p

transpose

finally, DFT columns, size p
(non-contiguous)

p

q

= contiguous

“Cooley-Tukey” FFT, in math

twiddlessize-p DFTs size-q DFTs

…but how do we make it faster?

We (probably) cannot do better than Θ(n log n).
(the proof of this remains an open problem)

[unless we give up exactness]

We’re left with the “constant” factor…

Choice of factorizations: the “radix”

1d DFT of size n:
n = pq

= ~2d DFT of size p x q
= p DFTs of size q,
 … then q DFTs of size p

Usually, either p or q is small = “radix” r
e.g. p=2 is “radix-2 decimation in time”

Cooley & Tukey’s error:
thought radix 3 was optimal (closest to e)

— they forgot that size-r DFTs can also use FFT

The Next 30 Years…
Assume “time”
 = # multiplications
 # multiplications + # additions (= flops)

Winograd (1979): # multiplications = Θ(n)
(…realizable bound! … but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[unsurpassed until last 2007, another ~6% saved

by Lundy/Van Buskirk and Johnson/Frigo]

Are arithmetic counts so important?

The Next 30 Years…
Assume “time”
 = # multiplications
 # multiplications + # additions (= flops)

Winograd (1979): # multiplications = Θ(n)
(…realizable bound! … but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[unsurpassed until last 2007, another ~6% saved]

last 15+ years: flop count (varies by ~20%)
no longer determines speed (varies by factor of ~10+)

a basic question:

If arithmetic no longer dominates,
what does?

The Memory Hierarchy (not to scale)

disk (out of core) / remote memory (parallel)
(terabytes)

L2 cache (megabytes)

L1 cache (10s of kilobytes)

registers (~100)

RAM (gigabytes)

the name of the game:
• do as much work as
 possible before
 going out of cache

…what matters is not
how much work you
do, but when and where
you do it.

…difficult for FFTs
…many complications
…continually changing

What’s the fastest algorithm for _____?
(computer science = math + time = math + $)

1

3

Find best asymptotic complexity
naïve DFT to FFT: O(n2) to O(n log n)

Find variant/implementation that runs fastest
hardware-dependent — unstable answer!

2 Find best exact operation count?

Better to change the question…

What’s the smallest
set of “simple” algorithmic steps

whose compositions ~always
span the ~fastest algorithm?

A question with a more stable answer?

FFTW

• C library for real & complex FFTs (arbitrary size/dimensionality)

• Computational kernels (80% of code) automatically generated

• Self-optimizes for your hardware (picks best composition of steps)
= portability + performance

(+ parallel versions for threads & MPI)

free software: http://www.fftw.org/

the “Fastest
Fourier Tranform

in the West”

FFTW performance
power-of-two sizes, double precision

833 MHz Alpha EV6 2 GHz PowerPC G5

2 GHz AMD Opteron 500 MHz Ultrasparc IIe

FFTW performance
non-power-of-two sizes, double precision

833 MHz Alpha EV6

2 GHz AMD Opteron

unusual: non-power-of-two sizes
receive as much optimization

as powers of two

…because we
let the code do the optimizing

FFTW performance
double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2)

powers of two

…because we
let the code write itself

non-powers-of-two

exploiting CPU-specific
SIMD instructions
(rewriting the code)

is easy

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

A recursive framework enhances locality.

3

1

2

Three ideas:

Computational kernels (codelets)
should be automatically generated.

Determining the unit of composition is critical.

FFTW is easy to use
{

complex x[n];
plan p;

p = plan_dft_1d(n, x, x, FORWARD, MEASURE);
...
execute(p); /* repeat as needed */
...
destroy_plan(p);

}

Key fact: usually,
many transforms of same size

are required.

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

A recursive framework enhances locality.

3

1

2

Three ideas:

Computational kernels (codelets)
should be automatically generated.

Determining the unit of composition is critical.

Why is FFTW slow?
1965 Cooley & Tukey, IBM 7094, 36-bit single precision:

size 2048 DFT in 1.2 seconds
2003 FFTW3+SIMD, 2GHz Pentium-IV 64-bit double precision:

size 2048 DFT in 50 microseconds (24,000x speedup)
(= 30% improvement per year)

(= doubles every ~30 months)

don’t get “peak” CPU speed
especially for large n,

unlike e.g. dense matrix multiply

FFTs are hard:

Moore’s prediction:
30 nanoseconds()

Discontiguous Memory Access

1d DFT of size n:
n = pq

= ~2d DFT of size p x q

first DFT columns, size q
(non-contiguous)

multiply by n “twiddle factors”

q

p

transpose

finally, DFT columns, size p
(non-contiguous)

p

q

= contiguous

But traditional implementation is non-recursive,
breadth-first traversal:

log2 n passes over whole array

Cooley-Tukey is Naturally
Recursive

Size 8 DFT

Size 4 DFT Size 4 DFT

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

p = 2 (radix 2)

breadth-first, but with blocks of size = cache
optimal choice: radix = cache size

radix >> 2

Traditional cache solution: Blocking

Size 8 DFT

Size 4 DFT Size 4 DFT

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

p = 2 (radix 2)

…requires program specialized for cache size
…multiple levels of cache = multilevel blocking

Recursive Divide & Conquer is Good

Size 8 DFT

Size 4 DFT Size 4 DFT

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

p = 2 (radix 2)

eventually small enough to fit in cache
…no matter what size the cache is

(depth-first traversal) [Singleton, 1967]

Cache Obliviousness
• A cache-oblivious algorithm does not know the cache size

— for many algorithms [Frigo 1999],
 can be provably “big-O” optimal for any machine

 & for all levels of cache simultaneously

… but this ignores e.g. constant factors, associativity, …

cache-obliviousness is a good beginning,
but is not the end of optimization

we’ll see: FFTW combines both styles
(breadth- and depth-first) with self-optimization

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

A recursive framework enhances locality.

3

1

2

Three ideas:

Computational kernels (codelets)
should be automatically generated.

Determining the unit of composition is critical.

The Codelet Generator

• Generates fast hard-coded C for FFT of a given size

a domain-specific FFT “compiler”

Necessary to give the planner a
large space of codelets to

experiment with (any
factorization).

Exploits modern CPU
deep pipelines & large register sets.

Allows easy experimentation with
different optimizations & algorithms.

…CPU-specific hacks (SIMD) feasible

(& negates recursion overhead)

The Codelet Generator

Symbolic graph (dag)

Simplifications

Optimal cache-oblivious
scheduling

(cache .EQ. registers)

Optimized C code (or other language)

written in Objective Caml [Leroy, 1998], an ML dialect

n

powerful enough
to e.g. derive real-input FFT
from complex FFT algorithm

and even find “new” algorithms

Abstract FFT algorithm
Cooley-Tukey: n=pq,

Prime-Factor: gcd(p,q) = 1,
Rader: n prime, …

The Generator Finds Good/New FFTs

Symbolic Algorithms are Easy
Cooley-Tukey in OCaml

Simple Simplifications

Well-known optimizations:

Algebraic simplification, e.g. a + 0 = a

Constant folding

Common-subexpression elimination

Symbolic Pattern Matching in OCaml

 stimesM = function
 | (Uminus a, b) -> stimesM (a, b) >>= suminusM
 | (a, Uminus b) -> stimesM (a, b) >>= suminusM
 | (Num a, Num b) -> snumM (Number.mul a b)
 | (Num a, Times (Num b, c)) ->
 snumM (Number.mul a b) >>= fun x -> stimesM (x, c)
 | (Num a, b) when Number.is_zero a -> snumM Number.zero
 | (Num a, b) when Number.is_one a -> makeNode b
 | (Num a, b) when Number.is_mone a -> suminusM b
 | (a, b) when is_known_constant b && not (is_known_constant a) ->
 stimesM (b, a)
 | (a, b) -> makeNode (Times (a, b))

The following actual code fragment is
solely responsible for simplifying multiplications:

(Common-subexpression elimination is implicit
 via “memoization” and monadic programming style.)

Simple Simplifications

Well-known optimizations:

Algebraic simplification, e.g. a + 0 = a

Constant folding

Common-subexpression elimination

FFT-specific optimizations:

_________________ negative constants…

Network transposition (transpose + simplify + transpose)

A Quiz: Is One Faster?

a = 0.5 * b;
c = 0.5 * d;
e = 1.0 + a;
f = 1.0 - c;

a = 0.5 * b;
c = -0.5 * d;
e = 1.0 + a;
f = 1.0 + c;

Both compute the same thing, and
have the same number of arithmetic operations:

Faster because no
separate load for -0.5

10–15% speedup

Non-obvious transformations
require experimentation

Quiz 2: Which is Faster?

array[stride * i] array[strides[i]]

strides[i] = stride * i
using precomputed stride array:

accessing strided array
inside codelet (amid dense numeric code), nonsequential

…namely, Intel Pentia:
integer multiplication

conflicts with floating-point

This is faster, of course!
Except on brain-dead architectures…

up to ~10–20% speedup

(even better to bloat:
pregenerate various constant strides)

Machine-specific hacks
are feasible

if you just generate special code

stride precomputation

SIMD instructions (SSE, Altivec, 3dNow!)

fused multiply-add instructions…

The Generator Finds Good/New FFTs

Why is FFTW fast?
FFTW implements many FFT algorithms:

A planner picks the best composition (plan)
by measuring the speed of different combinations.

A recursive framework enhances locality.

3

1

2

Three ideas:

Computational kernels (codelets)
should be automatically generated.

Determining the unit of composition is critical.

What does the planner compose?
• The Cooley-Tukey algorithm presents many choices:

— which factorization? what order? memory reshuffling?

FFTW 1 (1997):

Find simple steps that combine without restriction
to form many different algorithms.

steps solve out-of-place DFT of size n

… steps to do WHAT?

“Composable” Steps in FFTW 1

SOLVE — Directly solve a small DFT by a codelet

CT-FACTOR[r] — Radix-r Cooley-Tukey step =
 execute loop of r sub-problems of size n/r

Many algorithms difficult to express via simple steps.

— e.g. expresses only depth-first recursion
(loop is outside of sub-problem)

— e.g. in-place without bit-reversal
requires combining

two CT steps (DIT + DIF) + transpose

What does the planner compose?
• The Cooley-Tukey algorithm presents many choices:

— which factorization? what order? memory reshuffling?

FFTW 1 (1997):

Find simple steps that combine without restriction
to form many different algorithms.

steps solve out-of-place DFT of size n

… steps to do WHAT?

Steps cannot solve problems that cannot be expressed.

What does the planner compose?
• The Cooley-Tukey algorithm presents many choices:

— which factorization? what order? memory reshuffling?

FFTW 3 (2003):

Find simple steps that combine without restriction
to form many different algorithms.

steps solve a problem, specified as a DFT(input/output, v,n):
multi-dimensional “vector loops” v of multi-dimensional transforms n

{sets of (size, input/output strides)}

… steps to do WHAT?

Some Composable Steps (out of ~16)

SOLVE — Directly solve a small DFT by a codelet

CT-FACTOR[r] — Radix-r Cooley-Tukey step =
 r (loop) sub-problems of size n/r

VECLOOP — Perform one vector loop
(can choose any loop, i.e. loop reordering)

INDIRECT — DFT = copy + in-place DFT
(separates copy/reordering from DFT)

TRANSPOSE — solve in-place m × n transpose

(& recombine with size-r twiddle codelet)

Many Resulting “Algorithms”
• INDIRECT + TRANSPOSE gives in-place DFTs,

— bit-reversal = product of transpositions
… no separate bit-reversal “pass”

[Johnson (unrelated) & Burrus (1984)]

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction

• VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987)]

Many Resulting “Algorithms”
• INDIRECT + TRANSPOSE gives in-place DFTs,

— bit-reversal = product of transpositions
… no separate bit-reversal “pass”

[Johnson (unrelated) & Burrus (1984)]

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction

• VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987)]

Depth- vs. Breadth- First
for size n = 30 = 3 × 5 × 2

A “depth-first” plan:
CT-FACTOR[3]

VECLOOP x3
CT-FACTOR[2]

SOLVE[2, 5]

CT-FACTOR[3]

VECLOOP x3
CT-FACTOR[2]

SOLVE[2, 5]

A “breadth-first” plan:

(Note: both are executed by explicit recursion.)

30

10 10 10

5 5 5 5 5 5

30

10 10 10

5 5 5 5 5 5

Many Resulting “Algorithms”
• INDIRECT + TRANSPOSE gives in-place DFTs,

— bit-reversal = product of transpositions
… no separate bit-reversal “pass”

[Johnson (unrelated) & Burrus (1984)]

• CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction

• VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987)]

In-place plan for size 214 = 16384
(2 GHz PowerPC G5, double precision)

CT-FACTOR[32]
CT-FACTOR[16]

INDIRECT

SOLVE[512, 32]
TRANSPOSE[32 × 32] x16

Radix-32 DIT + Radix-32 DIF = 2 loops = transpose
… where leaf SOLVE ~ “radix” 32 x 1

Out-of-place plan for size 219=524288
(2GHz Pentium IV, double precision)

CT-FACTOR[4] (buffered variant)
CT-FACTOR[32] (buffered variant)

VECLOOP (reorder) x32
CT-FACTOR[64]

INDIRECT

VECLOOP x4
SOLVE[64, 64]

VECLOOP (reorder) x64
VECLOOP x4

COPY[64]

Unpredictable: (automated) experimentation is the only solution.

INDIRECT
+

VECLOOP (reorder)
(+ …)

=
huge improvements

for large 1d sizes

~2000 lines
hard-coded C!

Dynamic Programming
the assumption of “optimal substructure”

DFT(16) = fastest of: CT-FACTOR[2]: 2 DFT(8)
CT-FACTOR[4]: 4 DFT(4)

DFT(8) = fastest of:
CT-FACTOR[2]: 2 DFT(4)
CT-FACTOR[4]: 4 DFT(2)
SOLVE[1,8]

Try all applicable steps:

If exactly the same problem appears twice,
assume that we can re-use the plan.

— i.e. ordering of plan speeds is assumed independent of context

Planner Unpredictability
double-precision, power-of-two sizes, 2GHz PowerPC G5

FFTW 3

heuristic: pick plan
with fewest

adds + multiplies + loads/stores

Classic strategy:
minimize op’s

fails badly

Use plan from:
another machine?
e.g. Pentium-IV?
… lose 20–40%

another test:

We’ve Come a Long Way?
In the name of performance, computers have become
 complex & unpredictable.

•

Optimization is hard: simple heuristics (e.g. fewest flops)
 no longer work.

•

One solution is to avoid the details, not embrace them:
(Recursive) composition of simple modules

+ feedback (self-optimization)
High-level languages (not C) & code generation
 are a powerful tool for high performance.

•

