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In the beginning (c. 1805):
Carl Friedrich Gauss

asteroid Pallas
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Gauss’ fast Fourier transform (FFT)

n-1 27

Bl
how do we compute: ¢, = —E ye " ?
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— not directly: O(n?) operations ... for Gauss, n=12
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Gauss’ insight: “Distribuamus hanc
periodum primo in tres periodos
quaternorum terminorum.”

= We first distribute this period
[n=12] into 3 periods of length 4 ...
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But how fast was 1t?

“illam vero methodum calculi mechanici taedium magis minuere”

= “truly, this method greatly reduces
the tedium of mechanical calculation”

(For Gauss, being less boring was good enough.)



two (of many) re-inventors:

Danielson and Lanczos (1942)

[ J. Franklin Inst. 233, 365-380 and 435—452]

Given Fourier transform of density (X-ray scattering) find density:

discrete sine transtform (DST-1) = DFT of real, odd-symmetry

n=32 atomic n=>32
density_;
sample X1 |
the spec.trum —_— A /
at n points: DFT \./ \ //\/

radius r

...double sampling until density (DFT) converges...



Gauss’ FFT in reverse:

Danielson and Lanczos (1942)

[ J. Franklin Inst. 233, 365-380 and 435—452]

n=8

“By a certain transformation process, it 18
possible to double the number of ordinates
with only slightly more than double the labor.”

———

double sampling
re-using results

n=16

from
O(n?) to 777

64-point DST 1n only 140 minutes!



re-inventing Gauss (for the last time) [ Math. Comp. 19,

Cooley and Tukey (1965) ="

n=pq
1d DFT of size n: b

=~2d DFT of size p x ¢

(+ phase rotation by twiddle factors)
= Recursive DFTs of sizes p and ¢

O(n?) > O(n log n)

n=2048,IBM 7094, 36-bit tloat: 1.2 seconds
(~10° speedup vs. Dan./Lanc.)



The “Cooley-Tukey” FFT Algorithm

n=pq
1d DFT of size n: b

= ~2d DFT of size p x g

) /\
multiply by n “twiddle factors”

>
>
>
q >
> transpose g

>

> >

) p >

— = contiguous >

first DFT columns, size ¢ finally, DFT columns, size p

(non-contiguous) (non-contiguous)



“Cooley-Tukey” FFT, 1n math

Recall the definition of discrete Fourier transform:
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...but how do we make 1t faster?

We (probably) cannot do better than O(n log n).

(the proof of this remains an open problem)

[ unless we give up exactness |

We’re left with the “constant™ factor...



Choice of factorizations: the “radix”

n=pq
1d DFT of size n: b

= ~2d DFT of size p x g
= p DFTs of size g,
... then ¢ DFTs of size p

Usually, either p or g 1s small = “radix” r
e.g. p=2 1s “radix-2 decimation in time”
Cooley & Tukey’s error:

thought radix 3 was optimal (closest to e)
— they forgot that size-r DFT's can also use FFT



The Next 30 Years...

Assume “time”’

T

# multiplications + # additions (= flops)

Winograd (1979): # multiplications = O(n)
(...realizable bound! ... but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[ unsurpassed until last 2007, another ~6% saved
by Lundy/Van Buskirk and Johnson/Frigo |



Are arithmetic counts so important?
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The Next 30 Years...

Assume “time”’

T

# multiplications + # additions (= flops)

Winograd (1979): # multiplications = O(n)
(...realizable bound! ... but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[ unsurpassed until last 2007, another ~6% saved]

last 15+ years: flop count (varies by ~20%)
no longer determines speed (varies by factor of ~10+)




a basic question:

It arithmetic no longer dominates,
what does?



The Memory Hierarchy (not to scale)

disk (out of core) / remote memory (parallel)
(terabytes)

RAM (gigabytes)

L2 cache (megabytes)

registers (~100)

...what matters 1s not
how much work you
do, but when and where
you do it.

the name of the game:

* do as much work as
possible before
going out of cache

...difficult for FFT's
...many complications
...continually changing



What’s the fastest algorithfn tor

(computer science = math 4flime = math + $)

(1) Find best asymptgfic complexity
naive DFT tQ@FT: O(n?) to O(n log n)

(o _Taaod oot o q
\ZJ o

(3) Find vagfant/implementation that runs fastest
ardware-dependent — unstable answer!

Better to change the question...




A question with a more stable answer?

What’s the smallest
set of “simple” algorithmic steps
whose compositions ~always
span the ~tfastest algorithm?



the “Fastest
Fourier Tranform
in the West”

e C library for real & complex FFTs (arbitrary size/dimensionality)
(+ parallel versions for threads & MPI)

e Computational kernels (80% of code) automatically generated

e Self-optimizes for your hardware (picks best composition of steps)
= portability + performance

free software:| http://www.fftw.org/




speed (mtlops)

speed (mflops)

FEFTW performance

power-of-two sizes, double precision

833 MHz Alpha EV6 2 GHz PowerPC G5
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FEFTW performance

non-power-of-two sizes, double precision

unusual: non-power-of-two sizes 833 MHz Alpha EV6
receive as much optimization
as powers of two

speed (mflops)

2 GHz AMD Opteron
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speed (mflops)
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FEFTW performance

double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2)

powers of two
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Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition is critical.



FEFTW 1s easy to use

complex x[n];
plan p;

p = plan dft 1d(n, x, x, FORWARD, MEASURE);

execute(p); /* repeatas needed =*/

destroy plan(p); \\\\

Key fact: usually,
many transforms of same size
are required.



Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition 1s critical.



Why is FFTW slow?

1965 Cooley & Tukey, IBM 7094, 36-bit single precision:
size 2048 DFT 1n 1.2 seconds

2003 FFTW3+SIMD, 2GHz Pentium-IV 64-bit double precision:
size 2048 DFT 1n 50 microseconds (24,000x speedup)

(= 30% 1mprovement per year)

Moore’s prediction:) (= doubles every ~30 months)
30 nanoseconds

FFTs are hard: don’t get “peak” CPU speed
especially for large n,
unlike e.g. dense matrix multiply



Discontiguous Memory Access

n=pq
1d DFT of size n: b

= ~2d DFT of size p x g

) /\
multiply by n “twiddle factors”

rranspose q
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viviviv vy

>

. 1% >
— = contiguous >

>

first DFT columns, size ¢ finally, DFT columns, size p
(non-contiguous) (non-contiguous)



Cooley-Tukey 1s Naturally
Recursive

Size 8 DFT

/9 = 2 (radix 2\

Size 4 DFT Size 4 DFT

NN

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

But traditional implementation 1s non-recursive,
breadth-first traversal:

log, n passes over whole array



Traditional cache solution: Blocking

Size 8 DFT

/9 = 2 (radix 2\

Size 4 DFT Size 4 DFT

/NN

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

breadth-first, but with blocks of size = cache
optimal choice: radix = cache size
radix >> 2

...requires program specialized for cache size
...multiple levels of cache = multilevel blocking



Recursive Divide & Conquer 1s Good
(depth-first traversal) [Singleton, 1967]

Size 4 DFT

\

Size 2 DFT

eventually small enough to fit in cache
...no matter what size the cache 1s



Cache Obliviousness

e A cache-oblivious algorithm does not know the cache size
— for many algorithms [Frigo 1999],
can be provably “big-O” optimal for any machine
& for all levels of cache simultaneously

... but this 1gnores e.g. constant factors, associativity, ...

cache-obliviousness 1s a good beginning,
but 1s not the end of optimization

we’ll see: FFTW combines both styles
(breadth- and depth-first) with self-optimization




Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition 1s critical.



The Codelet Generator

a domain-specific FFT “compiler”

* Generates fast hard-coded C for FFT of a given size

Necessary to give the planner a
large space of codelets to
experiment with (any
factorization).

Exploits modern CPU
deep pipelines & large register sets.

Allows easy experimentation with
different optimizations & algorithms.

...CPU-specific hacks (SIMD) feasible

(& negates recursion overhead)



The Codelet Generator

written in Objective Caml [Leroy, 1998], an ML dialect

Abstract FFT algorithm "
Cooley-Tukey: n=pq,
Prime-Factor: ged(p.g) = 1, Symbolic graph (dag)
Rader: n prime, ... /

Simplifications
powerful enough

to e.g. derive real-input FFT Optimal cache-oblivious
from complex FFT algorithm scheduling

and even find “new” algorithms .
s (cache .EQ. registers)

Optimized C code (or other language)




The Generator Finds Good/New FFT's

n | FFTW (adds+mults) literature (adds+mults)
- complex |
13] 176+ 68 = 244 172+90 =262 [LCT93]
188 +40 =228 [SB96]
15 156 + 56 = 212 162+ 50 =212 [BP835]
162 + 36 = 198  [BP8&3] |
64 912 + 248 = 1160 964 + 196 = 1160 [Yavne68§]
| | real |
15] 644+25=289 67+25=92 [HBJ84]
67+ 17 =84 STHB87]
64 394 + 124 = 518 420498 =518  [SJHB87]
| real symmetric (even)
16 26+ 9 = 35 30+5=235  [Duhamel86] !
64 172+ 67 = 239 190 + 49 =239 [Duhamel86] |




Symbolic Algorithms are Easy

Cooley-Tukey in OCaml
DSP book:

i— 1

Z- W eliiel uky \ | gaky
Y = Liwn = ZA \L.: “pi1+9%4 o

_,u'.—.[] 19=I h=>0

where n = pg and k = £k + qk,.

OCaml code:
let cooley_tukey n p q X

let inner j2 = fftgen g
(fun j1 -> x (p * j1 + j2)) in

let twiddle k1l )2 =
(omega n (j2 * k1)) @* (inner j2 k1) in

let outer k1 = fftgen p (twiddle k1) 1in
(fun k —> outer (k mod q) (k / q@))



Simple Simplifications

Well-known optimizations:
Algebraic simplification,e.g.a +0=a

Constant folding

Common-subexpression elimination



Symbolic Pattern Matching in OCaml

The following actual code fragment 1s
solely responsible for simplifying multiplications:

stimesM = function

| (Uminus a, b) -> stimesM (a, b) >>= suminusM

| (a, Uminus b) -> stimesM (a, b) >>= suminusM

| (Num a, Num b) -> snumM (Number.mul a b)

| (Num a, Times (Num b, c)) ->
snumM (Number.mul a b) >>= fun x -> stimesM (x, c)

| (Num a, b) when Number.is zero a -> snumM Number.zero

| (Num a, b) when Number.is one a -> makeNode b

| (Num a, b) when Number.is mone a -> suminusM b

| (a, b) when is known constant b && not (is_known constant a) ->
stimesM (b, a)

| (a, b) -> makeNode (Times (a, b))

(Common-subexpression elimination 1s implicit
via “memoization” and monadic programming style.)



Simple Simplifications

Well-known optimizations:
Algebraic simplification,e.g.a +0=a

Constant folding

Common-subexpression elimination

FFT-specific optimizations:
Network transposition (transpose + simplify + transpose)

negative constants...




A Quiz: Is One Faster?

Both compute the same thing, and
have the same number of arithmetic operations:

a = 0.5 * b; a = 0.5 * b;
c = 0.5 * d; c = -0.5 * d;
e = 1.0 + a; e = 1.0 + a;
f=1.0 - c; f=1.0 + c;

Faster because no
separate load for -0.5

10-15% speedup



Non-obvious transtormations
require experimentation



Quiz 2: Which 1s Faster?

accessing strided array
inside codelet (amid dense numeric code), nonsequential

array[stride * 1] array[strides[i]]
A using precomputed stride array:
strides[i] = stride * 1
This is faster, of course! ---Pamely, In.tel. Pgnt1a:
Except on brain-dead architectures... integer multiplication

contlicts with floating-point

up to ~10-20% speedup

(even better to bloat:
pregenerate various constant strides)



Machine-specific hacks
are feasible
if you just generate special code

stride precomputation
SIMD 1nstructions (SSE, Altivec, 3dNow!)

fused multiply-add instructions...



The Generator Finds Good/New FFT's

n | FFTW (adds+mults) literature (adds+mults)
- complex |
13] 176+ 68 = 244 172+90 =262 [LCT93]
188 +40 =228 [SB96]
15 156 + 56 = 212 162+ 50 =212 [BP835]
162 + 36 = 198  [BP8&3] |
64 912 + 248 = 1160 964 + 196 = 1160 [Yavne68§]
| | real |
15] 644+25=289 67+25=92 [HBJ84]
67+ 17 =84 STHB87]
64 394 + 124 = 518 420498 =518  [SJHB87]
| real symmetric (even)
16 26+ 9 = 35 30+5=235  [Duhamel86] !
64 172+ 67 = 239 190 + 49 =239 [Duhamel86] |




Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition is critical.



What does the planner compose?

* The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n



“Composable” Steps in FFTW 1

— Directly solve a small DFT by a codelet

[r] — Radix-r Cooley-Tukey step =
execute loop of » sub-problems of size n/r

x Many algorithms difficult to express via simple steps.

— e.g. expresses only depth-first recursion
(loop 1s outside ot sub-problem)

— ¢e.g. In-place without bit-reversal
requires combining
two CT steps (DIT + DIF) + transpose



What does the planner compose?

e The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n

Steps cannot solve problems that cannot be expressed.



What does the planner compose?

* The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 3 (2003):

steps solve a problem, specified as a DFT(input/output, v n):
multi-dimensional “vector loops” v of multi-dimensional transforms n

\ _—

{sets of (size, input/output strides)}



Some Composable Steps (out of ~16)

— Directly solve a small DFT by a codelet

|7] — Radix-r Cooley-Tukey step =
r (loop) sub-problems of size n/r
(& recombine with size-r twiddle codelet)

— Perform one vector loop

(can choose any loop, 1.e. loop reordering)

— DFT = copy + in-place DFT
(separates copy/reordering from DFT)

— solve in-place m x n transpose



Many Resulting “Algorithms”™

. + gives in-place DFTs,
— bit-reversal = product of transpositions

... No separate bit-reversal “pass”
[ Johnson (unrelated) & Burrus (1984) ]

. can push topmost loop to “leaves”
— “vector” FFT algorithm [ Swarztrauber (1987) |

. then (s) gives “breadth-first” FFT,
— erases 1terative/recursive distinction



Many Resulting “Algorithms”™

e INDIRECT + TRANSPOSE gives in-place DFTs,
— bit-reversal = product of transpositions

... No separate bit-reversal “pass”
| Johnson (unrelated) & Burrus (1984) ]

* VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [ Swarztrauber (1987) |

. then (s) gives “breadth-first” FFT,
— erases 1terative/recursive distinction



Depth- vs. Breadth- First
forsize n =30=3 x5 x2

A “depth-first” plan:
3
X3
2

[2, 5]

A “breadth-first” plan:
3
2
X3
[2,5]

(Note: both are executed by explicit recursion.)



Many Resulting “Algorithms”™

. + gives in-place DFTs,
— bit-reversal = product of transpositions

... ho separate bit-reversal “pass”
[ Johnson (unrelated) & Burrus (1984) ]

e VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [ Swarztrauber (1987) ]

e CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction



In-place plan for size 2'* = 16384
(2 GHz PowerPC G5, double precision)

— 32
16

32 x 32 xI16
> [512,32]

Radix-32 DIT + Radix-32 DIF = 2 loops = transpose

... Where leaf ~ “radix” 32 x 1



Out-of-place plan for size 2'7=524288
(2GHz Pentium IV, double precision)

4 (buffered variant)
32 (buffered variant)

x32
64
INDIRECT
+
VECLOOP (reorder) x64
(+...) x4
. [64]
huge improvements
for large 1d sizes X4
[64, 64]

Unpredictable: (automated) experimentation is the only solution.




Dynamic Programming

the assumption of “optimal substructure”

Try all applicable steps:

CT-FACTOR|[2]: 2 DFT(8)

DFT(16) = fastest of: CT-FACTORJ[4]: 4

CT-FACTOR]|2]: 2
DFT(8) = fastestof: CT-FACTORI[4]: 4
SOLVE]1,8]

If exactly the same problem appears twice,
assume that we can re-use the plan.
— 1.e. ordering of plan speeds 1s assumed independent of context



Planner Unpredictability

double-precision, power-of-two sizes, 2GHz PowerPC G5

4000
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§ el
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Classic strategy:
minimize op’s
fails badly

another test:

Use plan from:
another machine?
e.g. Pentium-1V?

... lose 20—-40%



We’ve Come a Long Way?

* In the name of performance, computers have become
complex & unpredictable.

e Optimization is hard: simple heuristics (e.g. fewest flops)
no longer work.

e One solution 1s to avoid the details, not embrace them:

(Recursive) composition of simple modules
+ feedback (selt-optimization)

High-level languages (not C) & code generation
are a powerful tool for high performance.



