FFTW:

The “Fastest Fourier Transform
In the West”

Steven G. Johnson, MIT Applied Mathematics
Matteo Frigo, Cilk Arts Inc.

In the beginning (c. 1805):
Carl Friedrich Gauss

asteroid Pallas

30—

D
o = trigonometric interpolation:
éo 20—:
S n-1 2.
— 15~ l—k]
g 10- y] - E Cke !
.§ K e Data k=0
Tcg : _ Fit generqlizing work
o of Clairaut (1754)
-5?) o I6|0I - I12|0I - IléOI - IZAIlOI . I3(I)OI . I36IO and Lagl"ange (] 762)
ascension angle (°) !
] & _i2T

discrete Fourier transtorm (DFT): €, = — 2 ye "
(before Fourier) n-i-o

Gauss’ fast Fourier transform (FFT)

n-1 27

Bl
how do we compute: ¢, = —E ye " ?
o

— not directly: O(n?) operations ... for Gauss, n=12

30—

Gauss’ insight: “Distribuamus hanc
periodum primo in tres periodos
quaternorum terminorum.”

= We first distribute this period
[n=12] into 3 periods of length 4 ...

5'; 0 20 80 a0 000 360 DiVide and Conquer'
(any composite n)

But how fast was 1t?

“illam vero methodum calculi mechanici taedium magis minuere”

= “truly, this method greatly reduces
the tedium of mechanical calculation”

(For Gauss, being less boring was good enough.)

two (of many) re-inventors:

Danielson and Lanczos (1942)

[J. Franklin Inst. 233, 365-380 and 435—452]

Given Fourier transform of density (X-ray scattering) find density:

discrete sine transtform (DST-1) = DFT of real, odd-symmetry

n=32 atomic n=>32
density_;
sample X1 |
the spec.trum —_— A /
at n points: DFT \./ \ //\/

radius r

...double sampling until density (DFT) converges...

Gauss’ FFT in reverse:

Danielson and Lanczos (1942)

[J. Franklin Inst. 233, 365-380 and 435—452]

n=8

“By a certain transformation process, it 18
possible to double the number of ordinates
with only slightly more than double the labor.”

———

double sampling
re-using results

n=16

from
O(n?) to 777

64-point DST 1n only 140 minutes!

re-inventing Gauss (for the last time) [Math. Comp. 19,

Cooley and Tukey (1965) ="

n=pq
1d DFT of size n: b

=~2d DFT of size p x ¢

(+ phase rotation by twiddle factors)
= Recursive DFTs of sizes p and ¢

O(n?) > O(n log n)

n=2048,IBM 7094, 36-bit tloat: 1.2 seconds
(~10° speedup vs. Dan./Lanc.)

The “Cooley-Tukey” FFT Algorithm

n=pq
1d DFT of size n: b

= ~2d DFT of size p x g

) /\
multiply by n “twiddle factors”

>
>
>
q >
> transpose g

>

> >

) p >

— = contiguous >

first DFT columns, size ¢ finally, DFT columns, size p

(non-contiguous) (non-contiguous)

“Cooley-Tukey” FFT, 1n math

Recall the definition of discrete Fourier transform:

n—1
- 1k _ — 1/
Y = E T where w, = ¢=2mvV-1/n
=

: If n = pq, write j = pj; + j, and k = k| + ghs,.
p—1 g—1

,. _ 5 " S kL gk
Yk+aks LTt e
J2=0 71=0

q—1

_ B i I
- et o

i J'10T f |

size-q DFTs twiddles

...but how do we make 1t faster?

We (probably) cannot do better than O(n log n).

(the proof of this remains an open problem)

[unless we give up exactness |

We’re left with the “constant™ factor...

Choice of factorizations: the “radix”

n=pq
1d DFT of size n: b

= ~2d DFT of size p x g
= p DFTs of size g,
... then ¢ DFTs of size p

Usually, either p or g 1s small = “radix” r
e.g. p=2 1s “radix-2 decimation in time”
Cooley & Tukey’s error:

thought radix 3 was optimal (closest to e)
— they forgot that size-r DFT's can also use FFT

The Next 30 Years...

Assume “time”’

T

multiplications + # additions (= flops)

Winograd (1979): # multiplications = O(n)
(...realizable bound! ... but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[unsurpassed until last 2007, another ~6% saved
by Lundy/Van Buskirk and Johnson/Frigo |

Are arithmetic counts so important?

- with SSE (SIMD instructions) !
Ba o/
o 'oa-0-88-a-8 0 0-q '

; o .-'Tll:l
E-.@ without SSE H ;’F
- =N NPRPNPNICEC A

FETW speed / Numerical Recipes speed
]
=

] 5 10 15 20 25
log,(n)

The Next 30 Years...

Assume “time”’

T

multiplications + # additions (= flops)

Winograd (1979): # multiplications = O(n)
(...realizable bound! ... but costs too many additions)

Yavne (1968): split-radix FFT, saves 20% over radix-2 flops
[unsurpassed until last 2007, another ~6% saved]

last 15+ years: flop count (varies by ~20%)
no longer determines speed (varies by factor of ~10+)

a basic question:

It arithmetic no longer dominates,
what does?

The Memory Hierarchy (not to scale)

disk (out of core) / remote memory (parallel)
(terabytes)

RAM (gigabytes)

L2 cache (megabytes)

registers (~100)

...what matters 1s not
how much work you
do, but when and where
you do it.

the name of the game:

* do as much work as
possible before
going out of cache

...difficult for FFT's
...many complications
...continually changing

What’s the fastest algorithfn tor

(computer science = math 4flime = math + $)

(1) Find best asymptgfic complexity
naive DFT tQ@FT: O(n?) to O(n log n)

(o _Taaod oot o q
\ZJ o

(3) Find vagfant/implementation that runs fastest
ardware-dependent — unstable answer!

Better to change the question...

A question with a more stable answer?

What’s the smallest
set of “simple” algorithmic steps
whose compositions ~always
span the ~tfastest algorithm?

the “Fastest
Fourier Tranform
in the West”

e C library for real & complex FFTs (arbitrary size/dimensionality)
(+ parallel versions for threads & MPI)

e Computational kernels (80% of code) automatically generated

e Self-optimizes for your hardware (picks best composition of steps)
= portability + performance

free software:| http://www.fftw.org/

speed (mtlops)

speed (mflops)

FEFTW performance

power-of-two sizes, double precision

833 MHz Alpha EV6 2 GHz PowerPC G5

fitw3 ont-of-place 4000 Fitw3 out-of-place
w3 in-place w3 in-place
ooura-sg grean
cxml 3500 vdsp in-place
green wdsp out-of place
ewmayer coura.sgf
sciport 3000 difipack
mpfun90 scipart
bloodworth harm
kissty . 2500 ! bloodworth
harm @ arprac
gsl-mixed-radix CIo kissfft
rmayer-buneman3 mumutils
dfftpack 5 2000 monnier
'p: - = cross
numutils i esftt
monnier “ 1500 mixfft
esiit jmffte
mixftt valkenburg
cross
jmffic 1000
valkenburg
5004
- £ o0 W o~ b
O IR - N
td#mgmi.zrugsrugfgtuﬁgmg J—mordf&gaf
ooo"mwg\o\owuuw»—-w Sk
= - = 8 -
= S 3 F

900 =« o fftw3 in-place
3000 e« o fiwd in-place @—a fitw3 out-of-place
o—a fiiw3 ontof-place »—m ooura-sgf
3£ ©oura-sg 300 s gresn
Bt ol s sunpert
2500 o green o
#---% harm 700 emayer
G—o darprec dffpack
dfftpack 600 ® % harm
2000 rmayer-lookup o—a arprec
200 sciport - & -8 mpfund0
o8 bloedworth o 500 monnier
= = kissfit = = — kissfit
fur-fht 1‘5, scipart
1500 numnutils = 00 bleodworth
monnisr £4m w--n st
#--e mixfit @ - - mixfft
= .m mpfun77 numutils
+—4 cross 300 +—t Cross
1000 w--m st valkenburg
fut-matrixftt i joffe
jmffte 200
valkenburg
500 | 100
Ow £ oo o= woo A= = S -~ T - AR s =
05, »w = w o IR o‘“*‘iﬁoiﬁsggt«g&;m;g
O\N#MOESE%E\‘:‘JQ.—M +* Jﬁoocr«-qj;:
B = B~ O L — [}
SR

FEFTW performance

non-power-of-two sizes, double precision

unusual: non-power-of-two sizes 833 MHz Alpha EV6
receive as much optimization
as powers of two

speed (mflops)

2 GHz AMD Opteron

2500

2000

Lo o T o T o R WY L B o B R i =
—

000LT
CLESIT

1500

speed (mtlops)

8
(=]

...because we
let the code do the optimizing

L R T e o v e o L
—

S

8

¥

9

0

0

01

+0

000

096
CTLY
89£01
000LT
0095 L
CLECIT

speed (mflops)

]

bJ
8
[=]

1500

1000

FEFTW performance

double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2)

powers of two

L et

=tr ===
ra 4+ oa — el Lopl — ra n — ("] 4= oa — el o = ra
3 B p) L o— O E o = O bk L
[=4] LA e] () WO WO el =] n — ra
= A T S T - Y » N VY Y —
= o - j:
(8] -

...because we
let the code write itself

o—a ffiw?3 ont-of-place

* = o fitw3 in-place

s = w intel-mkl<dfti in-place
G= © intel-mkl-f

g intel-mkl-dfti out-of-place

exploiting CPU-specific
SIMD instructions

3] ooura-sg
— fite
dfftpack
L] L]
% harm
g (rewriting the code)
= = lissfit
sciport R
G—g Arprac
monnier 1S easy
OB bloodworth
nurmutils
w . m mpfun77
rmayer-simple
o—=a gsl-mixed-radix
= esifft
#--# mixth
+—+ cross f
iz non-powers-of-two
valkenburg
o—a fftw3out-of-place
* = e fitwlin-place
B intel-mkl-dfti cut-of-place
diftpack
= . = intel-mkl-dfti in-place
— ffte
monnier
#--% mixttt
o—= gsl-mixed-radix
i~ Jjmfite
& numutils
] valkenburg
g
=]
o
£

Lo S = B e T AL T =< B e o B I e S S Ot T N
wmoo-J‘—O‘\OO.—-ES\D-JO-JmO‘\.

[= R [A o B VY R = R

[= T = R R+ (O = N = B

0000&4

Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition is critical.

FEFTW 1s easy to use

complex x[n];
plan p;

p = plan dft 1d(n, x, x, FORWARD, MEASURE);

execute(p); /* repeatas needed =*/

destroy plan(p); \\\\

Key fact: usually,
many transforms of same size
are required.

Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition 1s critical.

Why is FFTW slow?

1965 Cooley & Tukey, IBM 7094, 36-bit single precision:
size 2048 DFT 1n 1.2 seconds

2003 FFTW3+SIMD, 2GHz Pentium-IV 64-bit double precision:
size 2048 DFT 1n 50 microseconds (24,000x speedup)

(= 30% 1mprovement per year)

Moore’s prediction:) (= doubles every ~30 months)
30 nanoseconds

FFTs are hard: don’t get “peak” CPU speed
especially for large n,
unlike e.g. dense matrix multiply

Discontiguous Memory Access

n=pq
1d DFT of size n: b

= ~2d DFT of size p x g

) /\
multiply by n “twiddle factors”

rranspose q

oS
viviviv vy

>

. 1% >
— = contiguous >

>

first DFT columns, size ¢ finally, DFT columns, size p
(non-contiguous) (non-contiguous)

Cooley-Tukey 1s Naturally
Recursive

Size 8 DFT

/9 = 2 (radix 2\

Size 4 DFT Size 4 DFT

NN

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

But traditional implementation 1s non-recursive,
breadth-first traversal:

log, n passes over whole array

Traditional cache solution: Blocking

Size 8 DFT

/9 = 2 (radix 2\

Size 4 DFT Size 4 DFT

/NN

Size 2 DFT Size 2 DFT Size 2 DFT Size 2 DFT

breadth-first, but with blocks of size = cache
optimal choice: radix = cache size
radix >> 2

...requires program specialized for cache size
...multiple levels of cache = multilevel blocking

Recursive Divide & Conquer 1s Good
(depth-first traversal) [Singleton, 1967]

Size 4 DFT

\

Size 2 DFT

eventually small enough to fit in cache
...no matter what size the cache 1s

Cache Obliviousness

e A cache-oblivious algorithm does not know the cache size
— for many algorithms [Frigo 1999],
can be provably “big-O” optimal for any machine
& for all levels of cache simultaneously

... but this 1gnores e.g. constant factors, associativity, ...

cache-obliviousness 1s a good beginning,
but 1s not the end of optimization

we’ll see: FFTW combines both styles
(breadth- and depth-first) with self-optimization

Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition 1s critical.

The Codelet Generator

a domain-specific FFT “compiler”

* Generates fast hard-coded C for FFT of a given size

Necessary to give the planner a
large space of codelets to
experiment with (any
factorization).

Exploits modern CPU
deep pipelines & large register sets.

Allows easy experimentation with
different optimizations & algorithms.

...CPU-specific hacks (SIMD) feasible

(& negates recursion overhead)

The Codelet Generator

written in Objective Caml [Leroy, 1998], an ML dialect

Abstract FFT algorithm "
Cooley-Tukey: n=pq,
Prime-Factor: ged(p.g) = 1, Symbolic graph (dag)
Rader: n prime, ... /

Simplifications
powerful enough

to e.g. derive real-input FFT Optimal cache-oblivious
from complex FFT algorithm scheduling

and even find “new” algorithms .
s (cache .EQ. registers)

Optimized C code (or other language)

The Generator Finds Good/New FFT's

n | FFTW (adds+mults) literature (adds+mults)
- complex |
13] 176+ 68 = 244 172+90 =262 [LCT93]
188 +40 =228 [SB96]
15 156 + 56 = 212 162+ 50 =212 [BP835]
162 + 36 = 198 [BP8&3] |
64 912 + 248 = 1160 964 + 196 = 1160 [Yavne68§]
| | real |
15] 644+25=289 67+25=92 [HBJ84]
67+ 17 =84 STHB87]
64 394 + 124 = 518 420498 =518 [SJHB87]
| real symmetric (even)
16 26+ 9 = 35 30+5=235 [Duhamel86] !
64 172+ 67 = 239 190 + 49 =239 [Duhamel86] |

Symbolic Algorithms are Easy

Cooley-Tukey in OCaml
DSP book:

i— 1

Z- W eliiel uky \ | gaky
Y = Liwn = ZA \L.: “pi1+9%4 o

_,u'.—.[] 19=I h=>0

where n = pg and k = £k + qk,.

OCaml code:
let cooley_tukey n p q X

let inner j2 = fftgen g
(fun j1 -> x (p * j1 + j2)) in

let twiddle k1l)2 =
(omega n (j2 * k1)) @* (inner j2 k1) in

let outer k1 = fftgen p (twiddle k1) 1in
(fun k —> outer (k mod q) (k / q@))

Simple Simplifications

Well-known optimizations:
Algebraic simplification,e.g.a +0=a

Constant folding

Common-subexpression elimination

Symbolic Pattern Matching in OCaml

The following actual code fragment 1s
solely responsible for simplifying multiplications:

stimesM = function

| (Uminus a, b) -> stimesM (a, b) >>= suminusM

| (a, Uminus b) -> stimesM (a, b) >>= suminusM

| (Num a, Num b) -> snumM (Number.mul a b)

| (Num a, Times (Num b, c)) ->
snumM (Number.mul a b) >>= fun x -> stimesM (x, c)

| (Num a, b) when Number.is zero a -> snumM Number.zero

| (Num a, b) when Number.is one a -> makeNode b

| (Num a, b) when Number.is mone a -> suminusM b

| (a, b) when is known constant b && not (is_known constant a) ->
stimesM (b, a)

| (a, b) -> makeNode (Times (a, b))

(Common-subexpression elimination 1s implicit
via “memoization” and monadic programming style.)

Simple Simplifications

Well-known optimizations:
Algebraic simplification,e.g.a +0=a

Constant folding

Common-subexpression elimination

FFT-specific optimizations:
Network transposition (transpose + simplify + transpose)

negative constants...

A Quiz: Is One Faster?

Both compute the same thing, and
have the same number of arithmetic operations:

a = 0.5 * b; a = 0.5 * b;
c = 0.5 * d; c = -0.5 * d;
e = 1.0 + a; e = 1.0 + a;
f=1.0 - c; f=1.0 + c;

Faster because no
separate load for -0.5

10-15% speedup

Non-obvious transtormations
require experimentation

Quiz 2: Which 1s Faster?

accessing strided array
inside codelet (amid dense numeric code), nonsequential

array[stride * 1] array[strides[i]]
A using precomputed stride array:
strides[i] = stride * 1
This is faster, of course! ---Pamely, In.tel. Pgnt1a:
Except on brain-dead architectures... integer multiplication

contlicts with floating-point

up to ~10-20% speedup

(even better to bloat:
pregenerate various constant strides)

Machine-specific hacks
are feasible
if you just generate special code

stride precomputation
SIMD 1nstructions (SSE, Altivec, 3dNow!)

fused multiply-add instructions...

The Generator Finds Good/New FFT's

n | FFTW (adds+mults) literature (adds+mults)
- complex |
13] 176+ 68 = 244 172+90 =262 [LCT93]
188 +40 =228 [SB96]
15 156 + 56 = 212 162+ 50 =212 [BP835]
162 + 36 = 198 [BP8&3] |
64 912 + 248 = 1160 964 + 196 = 1160 [Yavne68§]
| | real |
15] 644+25=289 67+25=92 [HBJ84]
67+ 17 =84 STHB87]
64 394 + 124 = 518 420498 =518 [SJHB87]
| real symmetric (even)
16 26+ 9 = 35 30+5=235 [Duhamel86] !
64 172+ 67 = 239 190 + 49 =239 [Duhamel86] |

Why is FFTW fast?

FFTW 1mplements many FFT algorithms:
A planner picks the best composition (plan)
by measuring the speed of different combinations.

Three 1deas:

@ A recursive framework enhances locality.

@ Computational kernels (codelets)
should be automatically generated.

@ Determining the unit of composition is critical.

What does the planner compose?

* The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n

“Composable” Steps in FFTW 1

— Directly solve a small DFT by a codelet

[r] — Radix-r Cooley-Tukey step =
execute loop of » sub-problems of size n/r

x Many algorithms difficult to express via simple steps.

— e.g. expresses only depth-first recursion
(loop 1s outside ot sub-problem)

— ¢e.g. In-place without bit-reversal
requires combining
two CT steps (DIT + DIF) + transpose

What does the planner compose?

e The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 1 (1997): steps solve out-of-place DFT of size n

Steps cannot solve problems that cannot be expressed.

What does the planner compose?

* The Cooley-Tukey algorithm presents many choices:
— which factorization? what order? memory reshuffling?

Find simple steps that combine without restriction
to form many different algorithms.

... steps to do WHAT?

FFTW 3 (2003):

steps solve a problem, specified as a DFT(input/output, v n):
multi-dimensional “vector loops” v of multi-dimensional transforms n

\ _—

{sets of (size, input/output strides)}

Some Composable Steps (out of ~16)

— Directly solve a small DFT by a codelet

|7] — Radix-r Cooley-Tukey step =
r (loop) sub-problems of size n/r
(& recombine with size-r twiddle codelet)

— Perform one vector loop

(can choose any loop, 1.e. loop reordering)

— DFT = copy + in-place DFT
(separates copy/reordering from DFT)

— solve in-place m x n transpose

Many Resulting “Algorithms”™

. + gives in-place DFTs,
— bit-reversal = product of transpositions

... No separate bit-reversal “pass”
[Johnson (unrelated) & Burrus (1984)]

. can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987) |

. then (s) gives “breadth-first” FFT,
— erases 1terative/recursive distinction

Many Resulting “Algorithms”™

e INDIRECT + TRANSPOSE gives in-place DFTs,
— bit-reversal = product of transpositions

... No separate bit-reversal “pass”
| Johnson (unrelated) & Burrus (1984)]

* VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987) |

. then (s) gives “breadth-first” FFT,
— erases 1terative/recursive distinction

Depth- vs. Breadth- First
forsize n =30=3 x5 x2

A “depth-first” plan:
3
X3
2

[2, 5]

A “breadth-first” plan:
3
2
X3
[2,5]

(Note: both are executed by explicit recursion.)

Many Resulting “Algorithms”™

. + gives in-place DFTs,
— bit-reversal = product of transpositions

... ho separate bit-reversal “pass”
[Johnson (unrelated) & Burrus (1984)]

e VECLOOP can push topmost loop to “leaves”
— “vector” FFT algorithm [Swarztrauber (1987)]

e CT-FACTOR then VECLOOP(s) gives “breadth-first” FFT,
— erases iterative/recursive distinction

In-place plan for size 2'* = 16384
(2 GHz PowerPC G5, double precision)

— 32
16

32 x 32 xI16
> [512,32]

Radix-32 DIT + Radix-32 DIF = 2 loops = transpose

... Where leaf ~ “radix” 32 x 1

Out-of-place plan for size 2'7=524288
(2GHz Pentium IV, double precision)

4 (buffered variant)
32 (buffered variant)

x32
64
INDIRECT
+
VECLOOP (reorder) x64
(+...) x4
. [64]
huge improvements
for large 1d sizes X4
[64, 64]

Unpredictable: (automated) experimentation is the only solution.

Dynamic Programming

the assumption of “optimal substructure”

Try all applicable steps:

CT-FACTOR|[2]: 2 DFT(8)

DFT(16) = fastest of: CT-FACTORJ[4]: 4

CT-FACTOR]|2]: 2
DFT(8) = fastestof: CT-FACTORI[4]: 4
SOLVE]1,8]

If exactly the same problem appears twice,
assume that we can re-use the plan.
— 1.e. ordering of plan speeds 1s assumed independent of context

Planner Unpredictability

double-precision, power-of-two sizes, 2GHz PowerPC G5

4000

3300

§ el
s 2
= =

speed (mflops)
I~J
S
S

with fewest

/\

heuristic: pick plan

adds + multiplies + loads/stores

— -

=

+9
8C1
9ct
1S

0T

80T

960t

C6TR

FEETT

B9LCE

9ELE9
CLOTET

F179C

Classic strategy:
minimize op’s
fails badly

another test:

Use plan from:
another machine?
e.g. Pentium-1V?

... lose 20—-40%

We’ve Come a Long Way?

* In the name of performance, computers have become
complex & unpredictable.

e Optimization is hard: simple heuristics (e.g. fewest flops)
no longer work.

e One solution 1s to avoid the details, not embrace them:

(Recursive) composition of simple modules
+ feedback (selt-optimization)

High-level languages (not C) & code generation
are a powerful tool for high performance.

