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Figure 1: A volume V with a surface ∂V , and an outward unit normal vector n at each point on ∂V .

18.303 Problem Set 5

Due Monday, 27 October 2014.

Problem 1: Distributions

This problem concerns distributions as defined in the notes: continuous linear functionals f{φ} from test functions
φ ∈ D, where D is the set of infinitely differentiable functions with compact support (i.e. φ = 0 outside some region
with finite diameter [differing for different φ], i.e. outside some finite interval [a, b] in 1d).

(a) In this part, you will consider the function f(x) =

{
ln |x| x 6= 0

0 x = 0
and its (weak) derivative, which is connected

to something called the Cauchy Principal Value.

(i) Show that f(x) defines a regular distribution, by showing that f(x) is locally integrable for all intervals
[a, b].

(ii) Consider the 18.01 derivative of f(x), which gives f ′(x) =

{
1
x x 6= 0

undefined x = 0
. Suppose we just set

“f ′(0) = 0” at the origin to define g(x) =

{
1
x x 6= 0

0 x = 0
. Show that this g(x) is not locally integrable,

and hence does not define a distribution.

But the weak derivative f ′{φ} must exist, so this means that we have to do something different from
the 18.01 derivative, and moreover f ′{φ} is not a regular distribution. What is it?

(iii) Write f{φ} = limε→0+ fε{φ} where fε{φ} =
´ −ε
−∞ ln(−x)φ(x)dx +

´∞
ε

ln(x)φ(x)dx, since this limit exists
and equals f{φ} for all φ from your proof in the previous part.1 Compute the distributional derivative
f ′{φ} = limε→0+ f

′
ε{φ}, and show that f ′{φ} is precisely the Cauchy Principal Value (google the definition,

e.g. on Wikipedia) of the integral of g(x)φ(x).

(iv) Alternatively, show that f ′{φ(x)} = g{φ(x) − φ(0)} =
´∞
−∞ g(x)[φ(x) − φ(0)]dx (which is a well-defined

integral for all φ ∈ D).

(b) In class, we only looked explicitly at 1d distributions, but a distribution in d dimensions Rd can obviously be
defined similarly, as maps f{φ} from smooth localized functions φ(x) to numbers. Analogous to class, define the
distributional gradient ∇f by ∇f{φ} = f{−∇φ}.

Consider some finite volume V with a surface ∂V , and assume ∂V is differentiable so that at each point
it has an outward-pointing unit normal vector n, as shown in figure 1. Define a “surface delta function”
δ(∂V ){φ} =

¸
∂V

φ(x)dd−1x to give the surface integral
¸
∂V

of the test function.

1More explicitly, f{φ} − fε{φ} =
´ ε
−ε ln |x|φ(x)dx ≤ (maxφ)

´ ε
−ε ln |x|dx → 0, since you should have done the something like the last

integral explicitly in the previous part.
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Suppose we have a regular distribution f{φ} defined by the function f(x) =

{
f1(x) x ∈ V
f2(x) x /∈ V

, where we may

have a discontinuity f2 − f1 6= 0 at ∂V .

(i) Show that the distributional gradient of f is

∇f = δ(∂V ) [f1(x)− f2(x)]n(x) +

{
∇f1(x) x ∈ V
∇f2(x) x /∈ V

,

where the second term is a regular distribution given by the ordinary 18.02 gradient of f1 and f2 (assumed
to be differentiable), while the first term is the singular distribution

δ(∂V ) [f1(x)− f2(x)]n(x){φ} =

˛
∂V

[f1(x)− f2(x)]n(x)φ(x)dd−1x.

You can use the integral identity that
´
V
∇ψddx =

¸
∂V

ψndd−1x to help you integrate by parts.

(ii) Defining ∇2f{φ} = f{∇2φ}, derive a similar expression to the above for ∇2f . Note that you should have
one term from the discontinuity f1 − f2, and another term from the discontinuity ∇f1 −∇f2. (Recall how
we integrated ∇2 by parts in class some time ago.)

Problem 2: Green’s functions
Consider Green’s functions of the self-adjoint indefinite operator Â = −∇2 − ω2 (κ > 0) over all space (Ω = R3 in
3d), with solutions that → 0 at infinity. (This is the multidimensional version of problem 2 from pset 5.) As in class,
thanks to the translational and rotational invariance of this problem, we can find G(x,x′) = g(|x− x′|) for some g(r)
in spherical coordinates.

(a) Solve for g(r) in 3d, similar to the procedure in class.

(i) Similar to the case of Â = −∇2 in class, first solve for g(r) for r > 0, and write g(r) = limε→0+ fε(r)
where fε(r) = 0 for r ≤ ε. [Hint: although Wikipedia writes the spherical ∇2g(r) as 1

r2 (r2g′)′, it may be
more convenient to write it equivalently as ∇2g = 1

r (rg)′′, as in class, and to solve for h(r) = rg(r) first.
Hint: if you get sines and cosines from this differential equation, it will probably be easier to use complex
exponentials, e.g. eiωr, instead.]

(ii) In the previous part, you should find two solutions, both of which go to zero at infinity. To choose between
them, remember that this operator arose from a e−iωt time dependence. Plug in this time dependence and
impose an “outgoing wave” boundary condition (also called a Sommerfield or radiation boundary condition):
require that waves be traveling outward far away, not inward.

(iii) Then, evaluate Âg = δ(x) in the distributional sense: (Âg){q} = g{Âq} = q(0) for an arbitrary (smooth,
localized) test function q(x) to solve for the unknown constants in g(r). [Hint: when evaluating g{Âq}, you
may need to integrate by parts on the radial-derivative term of ∇2q; don’t forget the boundary term(s).]

(b) Check that the ω → 0+ limit gives the answer from class.
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