
18.303: Notes on the
1d-Laplacian Green’s function

Steven G. Johnson

October 12, 2011

In class, we solved for the Green’s function G(x,x′) of the 1d Poisson equation
− d2

dx2 u = f where u(x) is a function on [0,L] with Dirichlet boundaries u(0) = u(L) = 0.
We obtained:
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which can be derived in any number of ways. Once we understand delta “functions”
and distributions, we can derive it from − ∂ 2

∂x2 G(x,x′) = δ (x− x′), where the δ (x− x′)
yields a a slope discontinuity of 1 in G at x = x′. Instead, we first derived it the “long”
way, by taking a width-∆x approximation for the delta function (= 1/∆x in [x′,x′+∆x]
and = 0 otherwise) on the right-hand side, solving, and then taking the limit ∆x→ 0
on the solution (whereas the limit ∆x→ 0 of the right-hand side does not exist as an
ordinary function).

Regardless of how it is obtained, we get the G(x,x′) above. Clearly, this G satisfies
the reciprocity property G(x,x′) = G(x′,x), which (as shown in class) follows from the
fact that the Laplacian is real-symmetric with these boundary conditions. Physically,
G(x,x′) could be thought of as a “plucked string:” a stretched string where you have
concentrated a finite force at one “point” x′ in the string.

It is also good to check that

u(x) =
ˆ L

0
G(x,x′) f (x′)dx′

satisfies − d2

dx2 u = f for any f (x). Note that u(0) = u(L) = 0 automatically, since
G(0,x′) = G(L,x′) = 0 by construction. If we use delta functions, taking the second
derivative of G is easy. However, let’s do it the “hard way” instead, performing one
derivative at a time and avoiding differentiating any discontinuous function. We can do
this by breaking the integral up into two pieces [0,x] and [x,L] based on the two pieces
of G(x,x′):
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where we have pulled the x terms out of the x′ integrals. The first derivative is then:
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where the terms on the second line [which cancel each other] come from the derivatives
of the integration limits. [Recall the fundamental theorem of calculus: d
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limits in u′, the second derivative is then given by the fundamental theorem of calculus
again:
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and thus −u′′ = f as desired.
More abstractly, the key properties are that G(x,x′) is continuous: G(x,x−) =

G(x,x+) [where x± denote the limits as x′→ x from the left and right], while G′(x,x′) =
∂

∂x G(x,x′) has a jump discontinuity G′(x,x−)= G′(x,x+)−1, and G′′(x,x′)= ∂ 2

∂x2 G(x,x′)=
0 for x 6= x′. That means:
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u′′(x) = G′(x,x−) f (x)−G′(x,x+) f (x) =− f (x)

as desired (omitting the G′′ = 0 terms from the last line).
So, all of this can be solved without delta functions or discontinuities, and people

did this historically. But it is much easier if we don’t have to continually dodge discon-
tinuities and can differentiate them naturally. Generalizing functions as distributions
(or solving the “weak form” of the PDE), and setting up the rules for differentiating
distributions, will allow us to do that.
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