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Abstract. In this article we give explicit formulas for the equations of
a generic genus 4 curve in terms of its theta constants. The method uses
20 tritangent planes as well as the Prym construction and the beautiful
classical geometry around it.
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1. Introduction

Recall that over k = C the theta constants of a principally polarized
abelian variety (p.p.a.v.) of dimension g with (small) period matrix τ ∈ Hg
are given by the 2g−1(2g + 1) numbers ϑ

[
a
b

]
(0, τ) with a, b ∈ 1

2 Z
g running

1
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through a set of representatives of pairs in 1
2 Z

g /Zg satisfying 4atb ≡ 0

mod 2. Here ϑ
[
a
b

]
is the Riemann theta function with characteristics, given

by

ϑ
[
a
b

]
(z, τ) =

∑
n∈Zg

exp
(
πi(n+ a)tτ(n+ a) + 2πi(n+ a)t(z + b)

)
.

Mumford [Mum66] gave a purely algebraic definition of the theta constants
that works over any algebraically closed field k of characteristic 6= 2. He also
showed that the theta constants determine the principally polarized abelian
variety uniquely.

The goal of this article is to provide closed formulas for recovering explicit
equations of a generic genus 4 curve C, given the values of its algebraic theta
constants. The result is a quadric Q and a cubic Γ in P3 such that Q ∩ Γ is
equal to the image of the canonical embedding of C.

The problem of recovering the equations of a curve from its theta con-
stants was classically studied by Rosenhain (genus 2) and Aronhold-Weber
(plane quartics). Later Takase [Tak96] generalized Rosenhain’s work to ar-
bitrary hyperelliptic curves. In all these cases they exploit the fact that
the moduli space of these curves equipped with a full level 2 structure is
rational. In the hyperelliptic case this rationality follows from the existence
of Weierstrass equations, and for plane quartics the formulas of Aronhold
give an explicit rational parametrization.

In genus 4 we are faced with a different situation, as the moduli space of
genus 4 curves with a full level 2 structure is not unirational. (This will be
proved in a later article [HPS24a].) This fact may explain why the general
problem has remained open, only garnering results in special cases. For
instance, Schottky [Sch88] managed to solve the problem in the case where
one of the theta constants vanishes, which is equivalent to the canonical
quadric being a cone.

Another phenomenon not appearing in the theory of plane quartics is
that not every p.p.a.v. is a Jacobian when g > 4. In fact, a 4-dimensional
(indecomposable) p.p.a.v. is the Jacobian of a smooth curve if and only if
the Schottky modular form vanishes [FR70, Chapter 5][Igu81][Fre83].

Recall from [FR70, Chapter 5] that the Schottky modular form is related

to the Prym construction as follows. Given an étale double cover C̃ →
C, the Prym variety Prym(C̃/C) = ker(Nm : Jac(C̃) → Jac(C))◦ is in a
natural way a principally polarized abelian variety. In particular, the theta
constants of Prym(C̃/C) must satisfy the quartic Riemann identities. The
Schottky modular form is derived from these identities by expressing the
theta constants of Prym(C̃/C) in terms of the theta constants of Jac(C).

This suggests that the Prym construction could play a role in the problem
of reconstructing the curve from the theta constants, and this is the approach
we pursue here. Furthermore, we will use a beautiful classical geometric
construction concerning the Prym due to Caporali, Wirtinger, P. Roth (see
[Cob29] for a classical textbook reference), and W. P. Milne [Mil23]. The
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modern development was pioneered by Recillas [Rec71] and henceforth it is
commonly referred to as Recillas’s trigonal construction. In this article we
mainly follow the articles of Catanese [Cat81] and Bruin–Sertöz [BS20] that
are closer to the classical works.

1.1. Motivation and applications. In addition to the intrinsic value of
recovering a genus 4 curve from its theta constants (or its period matrix),
our method also has several applications. It is interesting in arithmetic and
complex geometry to be able find higher genus curves with special proper-
ties. Being able to reconstruct a curve from the theta constants (or period
matrix) of its Jacobian allows us to construct Jacobians with interesting
properties and find corresponding curves that inherit those properties. Be-
low we list a couple of examples that illustrate this strategy. These examples
were computed using our Magma [BCP97] implementation of our algorithm
[HPS24c].

• Gluing. In [HSS21], the first and third authors, together with Sijs-
ling, described several methods for gluing genus 1 and genus 2 curves
along their torsion. More precisely, let X1 be a curve of genus 1 and
let X2 be a curve of genus 2 with Jacobian varieties J1 and J2, re-
spectively. Gluing X1 and X2 along their 2-torsion means finding a
curve X3 with Jacobian J3 and an isogeny φ : J1 × J2 → J3 such
that kerφ is contained in the 2-torsion of J1 × J2.

The analytic method described in [HSS21, §2] for computing the
period matrices of such gluings easily generalizes to higher genera.
However, after constructing the relevant period matrix, it still re-
mains to (a) determine whether the corresponding abelian variety is
a Jacobian; and (b) if so, recover the equation of the corresponding
curve. In Example 4.1, we show how our algorithm can be used to
accomplish this last step, allowing one to glue two genus 2 curves
along their 2-torsion.
• Constructing modular abelian varieties. Shimura associates to

a Hecke newform f with level Γ1(N) a subvariety Af of the modular
Jacobian J1(N). This Af is simple and EndQ(Af )⊗Q contains the
field K generated by the coefficients of the q-expansion of f . Further-
more, K is totally real and one has [K : Q] = dim(Af ). Conversely,
Khare and Wintenberger [KW09a, Corollary 10.2], [KW09b] have
shown that every simple abelian variety A over Q with the property
that EndQ(A) ⊗ Q contains an RM field K such that [K : Q] =
dim(A), must be modular. This means that there exists a Hecke
newform f with level Γ1(N) such that A is isogenous to Af . Fur-
thermore, N is then equal to the conductor of A.

John Cremona [Cre97] gave a method for computing the period
matrix of such modular abelian varieties and used this to construct
many examples of modular elliptic curves. Since the computation of
the period matrix works for general g, one can use the method of the
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present article to compute curves of genus 4 whose Jacobian is iso-
morphic to Af . Although there is no general reason why Af should
be a Jacobian, Noam Elkies (private communication) provided an
example of an eigenform f such that Af is the Jacobian of a genus
4 curve. In Example 4.2 we recover this genus 4 curve over Q whose
Jacobian is a modular abelian variety with real multiplication by the
maximal totally real subfield of Q(ζ15).

1.2. Previous work. Lehavi [Leh10] gave an effective method for recon-
structing a non-hyperelliptic genus 4 curve from its tritangent planes, which
partially inspired this paper. Lehavi’s method is based on the cartesian
diagrams

S2 H0(ΩC ⊗ η)×H0(Ω⊗2
C ) S

2 H0(ΩC) S2 H0(ΩC ⊗ η)

S2 H0(ΩC) H0(Ω⊗2
C )

ϕ

(1.1)

where η runs through all the 255 non-trivial two-torsion points in Jac(C)[2] \ {0}.
He focuses on the vector space

S2 H0(ΩC ⊗ η)×H0(Ω⊗2
C ) S

2 H0(ΩC)

rather than the map ϕ. The novelty of the present paper is a link between the
map ϕ and the Prym construction. This allows us prove that the knowledge
of ϕ for just one two-torsion point η is sufficient to recover the curve C.

Various mathematicians have written articles about reconstructing genus
4 curves using theta functions (starting from the period matrices of their
Jacobians). Agostini, Çelik, and Eken [AÇE22] describe a method using
Dubrovin threefolds to numerically reconstruct a curve of arbitrary genus
from the period matrix their Jacobian. They use theta derivatives up to
order 4 to compute degree 4 polynomials vanishing on the curve. In genus
4 they require Gröbner basis computations to write the equations as the
intersection of a quadric and a cubic.

In [Kem86] Kempf describes a method to reconstruct a genus 4 curve using
the singular point of the theta divisor. This was implemented in the work
of Chua, Kummer, and Sturmfels [CKS18]. In order to find this singular
point they need to solve a highly non-linear system for computing the point
where both a theta function and all its derivatives vanish.

Our method is different in that we give explicit formulas for the equations
of the reconstructed curve C in terms of its theta constants. In order to
do this we use only algebraic operations, namely elementary arithmetic,
extraction of square roots, and solving linear systems of equations. We
directly obtain a model for C as the intersection of a quadric and cubic in
P3 without the need for further computation.

There are several advantages of using just theta constants and no deriva-
tives. First, it is much better understood how to compute theta constants
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efficiently; for example, Labrande and Thomé’s algorithm [LT16]. In a
forthcoming article, Elkies and Kieffer [EK24] will describe an algorithm
for computing theta constants with quasi-linear complexity. Second, when
using derivatives up to order n, the total number of evaluations is multiplied
by
(
g+n
n

)
; the number of possibilities of taking a partial derivative.

1.3. Structure of the article. The article is organized as follows. In Sec-
tion 2 we begin by defining the objects that will play key roles in our con-
struction. In Section 3 we describe our main result: an algorithm that takes
theta constants of the Jacobian of a genus 4 curve as its input and, using
only elementary arithmetic, extraction of square roots, and solving linear
systems of equations, outputs the corresponding quadric and cubic whose
solution set is equal to the image of the canonical embedding of the corre-
sponding curve. In Section 4 we present two examples as an application of
our method. First, we construct a gluing with an interesting endomorphism
algebra, and then the curve whose Jacobian is the modular abelian variety
discussed above, i.e., with real multiplication by the maximal real subfield
of Q(ζ15). Finally, in Section 5 we briefly discuss how our method can be
applied to find more interesting curves, as well as how it can be generalized
to higher genus.

For an outline of the various steps in our method, see Algorithm 3.1.

1.4. Acknowledgements. The authors would like to thank Thomas Bouchet,
Nils Bruin, Edgar Costa, Igor Dolgachev, Noam Elkies, Avi Kulkarni, Elisa
Lorenzo Garćıa, David Lubicz, Christophe Ritzenthaler, and Jeroen Sijsling
for helpful conversations during the writing of this article.

The first author is supported by MaRDI, funded by the Deutsche Forschungs-
gemeinschaft (DFG), project number 460135501, NFDI 29/1. The third au-
thor was supported by the Simons Collaboration in Arithmetic Geometry,
Number Theory, and Computation via Simons Foundation grant 550033.

2. Preliminaries

2.1. The Prym canonical map. This section summarizes results from
Catanese’s article [Cat81]. Let C be a non-hyperelliptic genus 4 curve,
η ∈ Jac(C)[2] \ {0} be a non-trivial 2-torsion point. The Prym canonical
map is the map

φη : C −→ P(H0(C,ΩC ⊗ η)) ∼= P2

associated to the linear system |ΩC ⊗ η|. The map φη is either a ramified
degree 2 map onto a smooth cubic (the bielliptic case) or a birational map
onto a singular plane sextic. (For details, see [Cat81, §1].) We will discuss
the bielliptic case in Section 2.4 below. Thus assume now we are in the
non-bielliptic case and hence the Prym canonical curve im(φη) is a singular
plane sextic embedded in P2. Let b1 : S → P2 be the repeated blow-up of P2

in the singular points of the Prym canonical curve. Denote by E1, . . . , Ek
the total transform of the exceptional divisors of the successive blow-ups.
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On S we can consider the line bundle L = b∗1OP2(3)⊗O(−
∑k

j=1(rj − 1)Ej)
where rj is the multiplicity of the singular point blown up in the jth step.
The line bundle L induces a map S → P3 whose image, which we denote by
Γη, is a cubic symmetroid [Cat81, p. 37]. We recall the definition of a cubic
symmetroid.

Definition 2.1. A cubic symmetroid is a cubic surface V which is the
vanishing scheme of the determinant of a symmetric 3 × 3 matrix of linear
forms. That is, there exists a symmetric 3 × 3 matrix A with entries aij ∈
k[x0, . . . , x3] homogeneous of degree 1 such that V = V(det(A)).

We define a rational map c : P2 99K Γη as the composition of b−1
1 with the

map b2 : S → Γη. The situation is summarized by the following commutative
diagram.

S

P2 Γη ⊆ P3

b2b1

c

(2.1)

The map b2 : S → Γη is a blow-up; this follows from the observations in
[Cat81, p. 37].

We will describe the situation for a generic C. In this case, the Prym
canonical image im(φη) has six nodes that are the pairwise intersection of
four lines, say n1, . . . , n4. The surface S is the blow-up in these six nodes.
The strict transforms of the ni under b1 are (−2)-curves. These are con-
tracted by b2 to A1 singularities on Γη.

There are two possible degenerate cases. First, it could happen that two
of the lines ni coincide. In this case, the two corresponding A1-singularities
combine to form a single A3-singularity. Then Γη has three singular points:
Two of type A1 and one of type A3.

Second, three of the lines ni could coincide. In that case, Γη has one
singularity of type A1 and one of type A5. For more details, see [Cat81, p.
33].

The main consequence of Catanese’s construction is the following theorem
that he attributes to Wirtinger–Coble–Recillas.

Theorem 2.2. The map η 7→ Γη gives a bijection between:

• Jac(C)[2] \ {0}.
• Irreducible cubic symmetroids containing C.

Proof. See [Cat81, Theorem 1.5]. �

2.2. Two linear maps. We will now define a linear map ϕ that maps
certain quadratic forms on the right P3 to quadratic forms on the left P2.
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We begin by considering the following cartesian diagram.

S2 H0(ΩC ⊗ η)×H0(Ω⊗2
C ) S

2 H0(ΩC) S2 H0(ΩC ⊗ η)

S2 H0(ΩC) H0(Ω⊗2
C )

(2.2)

where the maps S2 H0(ΩC⊗η)→ H0(C,Ω⊗2
C ), S2 H0(ΩC)→ H0(C,Ω⊗2

C ) are
given by multiplication. The injectivity of the right vertical arrow expresses
the fact that there are no quadrics vanishing on im(φη).

Definition 2.3. Following Lehavi [Leh10, p. 2] we define VC,η ⊂ S2 H0(C,ΩC)
as the image of the embedding

S2 H0(ΩC ⊗ η)×H0(Ω⊗2
C ) S

2 H0(ΩC) ↪→ S2 H0(C,ΩC).

We define Lehavi’s map ϕ to be the projection map

ϕ : VC,η → S2 H0(ΩC ⊗ η) .

From the facts that dim(S2 H0(C,ΩC)) = 10, dim(S2 H0(C,ΩC ⊗ η)) = 6
and dim(H0(C,Ω⊗2

C )) = 9 one can readily compute that dim(VC,η) = 7.
Furthermore, it will later turn out to be useful that ker(ϕ) is one-dimensional
and generated by the quadratic form Q vanishing on C.

Next, we define a right inverse ψ for ϕ using the following lemma.

Lemma 2.4. Assume that Γη is generic. Let us denote by Ni ⊂ S, i =
1, . . . , 4 the exceptional divisors of b2. Then b∗1O(2) ∼= b∗2O(2)⊗OS(−

∑
Ni).

If Γη is not generic, then the Ni have to be taken with appropriate multi-
plicities.

Proof. Consider the curves ni = b1(Ni). Then, by the discussion following
Definition 2.1, the ni ∈ P2 are lines such that the 6 singular points of im(φη)
are the intersection points of pairs from {ni | i = 1, . . . , 4}.

By definition of b2 we have an isomorphism

b∗2O(1) ∼= L = b∗1OP2(3)⊗OS

− 6∑
j=1

Ej

 .

These two facts imply the lemma. �

We define Wη ⊂ S2 H0(C,ΩC) to be the vector space of quadrics vanishing
in the nodes of Γη. Define the map ψ : S2 H0(C,ΩC ⊗ η) −→ Wη to be the
composition

H0(P2,O(2))
b∗1→ H0(S, b∗1O(2)) ∼= H0

(
S, b∗2O(2)⊗OS(−

∑
Ni)
)

=: Wη .

Geometrically this means the following: for any q ∈ S2 H0(C,ΩC ⊗ η), the
image ψ(q) is the unique quadratic form that cuts out the curve

c(V(q)) = b2(b−1
1 (V(q))) ⊂ Γη .
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Remark 2.5. The map ψ is only well-defined up to multiplication by a
scalar because of the arbitrary choice of an isomorphism b∗1O(2) ∼= b∗2O(2)⊗
OS(−

∑
Ni). We resolve this ambiguity in the proof of the following lemma.

The following lemma proves that ψ is a right-inverse of ϕ.

Lemma 2.6. There exists a natural way of removing the ambiguity by a
scalar in the definition of ψ. Furthermore, with this choice one has

ϕ ◦ ψ = id .

Proof. We start by considering the diagram

C

P2 P3

φη

c

where the left map is the Prym canonical embedding. This diagram is
commutative as a consequence of [Cat81, Equation 1.13]. Therefore the
diagram

C

S

P2 P3

φη

b1 b2
c

(2.3)

commutes. Now recall from Lemma 2.4 that the definition of ψ is based on
the isomorphism

b∗1O(2) ∼= b∗2O(2)⊗OS(−
∑

Ni)

which has the ambiguity by a scalar. Restricting this isomorphism to C
gives an isomorphism

(ΩC ⊗ η)2 ∼= Ω⊗2
C
∼= Ω⊗2

C .

(Notice that C cannot go through the nodes of Γη because then Q∩Γη would
be singular.) We can now remove the ambiguity in the definition of ψ by
requiring that the latter isomorphism be the identity. This, together with
the commutativity of (2.3), implies that the diagram

S2 H0(C,ΩC ⊗ η)

S2 H0(C,ΩC) H0(C,Ω⊗2
C )

ψ

commutes.
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Consider now the diagram defining ϕ.

VC,η S2 H0(ΩC ⊗ η)

S2 H0(ΩC) H0(Ω⊗2
C )

ϕ

Since this diagram also commutes and the map S2 H0(C,ΩC⊗η)→ H0(C,Ω⊗2
C )

is injective, we conclude that

ϕ ◦ ψ = id ,

which proves the lemma. �

The situation is summarized by the following diagram.

VC,η S2 H0(ΩC ⊗ η)

S2 H0(ΩC) H0(Ω⊗2
C )

ϕ

ψ

2.3. Milne’s bijection. Let C̃ → C be the étale double cover associated to

η ∈ Jac(C)[2]\{0}, so C̃ has genus 7. Since the Prym variety Prym(C̃/C) is

principally polarized, then, up to quadratic twist, Prym(C̃/C) is isomorphic
to the Jacobian of some genus 3 curve X (see [OU73] and [BR11]). (The
Schottky-Jung relations imply that the Prym is indecomposable.) Since we
have an isomorphism H0(X,ΩX) ∼= H0(C,ΩC ⊗ η), the curve X canonically
maps to P(H0(C,ΩC ⊗ η)) ∼= P2.

Remark 2.7. The Recillas trigonal construction (see [Cob29, §50] or [BS20,
Lemma 5.6]) gives an explicit geometric construction of X as a plane quartic
(generic case), but this is not used in the present article.

In order to state the main theorem of this section we need the following
definition. Given a tritangent plane H of C, then H.C = 2D where D
is a divisor of degree 3. We say that a pair of tritangents H,H ′ differ by
η ∈ Jac(C)[2] if D − D′ is linearly equivalent to η, where H.C = 2D and
H ′.C = 2D′.

Theorem 2.8. If X is a plane quartic, there is a bijection{
Pairs of tritangent planes of C differing by η

} ∼→ {
Bitangents of X

}
such that for any pair H,H ′ viewed as elements of H0(C,ΩC) mapping to a
bitangent ` ⊂ P(H0(C,ΩC ⊗ η)) viewed as an element of H0(C,ΩC ⊗ η), we
have:

(i) The product HH ′ ∈ S2 H0(C,ΩC) lies in VC,η.
(ii) There exists λ ∈ k× such that

ϕ(HH ′) = λ`2. (2.4)
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Proof. The bijection between pairs of tritangent planes differing by η and
bitangents of X was discovered by W. P. Milne [Mil23] (see [BS20, Theorem
7.1] for a modern proof). The assertion (i) is due to Lehavi [Leh10, p. 2]. To
prove (ii) one can use the argument from [BS20, Theorem 7.1], the geometric
interpretation of the map ψ, and Lemma 2.6. �

Remark 2.9. A similar statement holds when X is a hyperelliptic curve.
The main difference is that one has to replace the bitangents of X with the
lines through the pairs of Weierstrass points of X in the bijection (see [BS20,
Section 7.2]).

Milne’s theorem will play a key role in reconstructing the genus 4 curve
because it links the map ϕ to the Prym. Since the bitangent lines of X can
be computed with classical formulas, namely the Schottky-Jung relations
[FR70, Theorem 1], and the Aronhold-Weber formulas [Dol12, Theorem
6.1.9] [Fio16, Theorem 2], the information on the righthand side of the
identity

ϕ(HH ′) = λ`2

can be readily computed, except for the unknown constant λ. A central
step of our method is to compute the map ϕ by interpolating this identity
through ten pairs of tritangent planes and their corresponding bitangents.

Remark 2.10. The formulas in [Dol12, Theorem 6.1.9, Equations (1) - (7)]
contain typos that will be corrected in a future edition. We thank Igor
Dolgachev for providing us with these corrections.

2.4. The bielliptic case. We will explain now the modifications that have
to be made in the bielliptic case. All the facts in this section are due to
Catanese and Bruin–Sertöz; see [Cat81, (1.9)], [BS20, §4.2] for proofs. Let
C be a smooth non-hyperelliptic genus 4 curve and η ∈ Jac(C)[2] \ {0}.
We will say that the pair (C, η) is bielliptic if there is a degree two map
π : C → E onto a smooth genus 1 curve and a two-torsion point η0 ∈ Jac(E)
such that π∗η0 = η.

Then (C, η) is bielliptic if and only if the Prym canonical map φη : C →
P2 factors through a degree two map onto a smooth plane cubic E ⊂ P2.
In this situation, one can still obtain Γη as the cone over E with vertex
corresponding to the one-dimensional subspace

π∗H0(E,ΩE) ⊂ H0(C,ΩC) .

One still has C ⊂ Γη and the map π : C → E is induced by projecting away
from the vertex of Γη.

On the other hand, Γη is a cubic symmetroid since the two-torsion point
η0 defines a symmetric determinantal equation for E ⊂ P2 [Dol12, Section
4.1.3]. But this cubic symmetroid is degenerate in the following sense: when
writing

Γη = V

(
det

(
3∑
i=0

Aixi

))
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with Ai ∈ Mat3,3(k) symmetric, then the matrices Ai are linearly dependent.
Also, the map c does not exist in the bielliptic case because Γη is not a
rational surface.

Nevertheless, the linear maps ϕ,ψ are still defined. Indeed, ϕ was defined
unconditionally. On the other hand, the map

ψ : S2 H0(C,ΩC ⊗ η)→Wη ⊂ S2 H0(C,ΩC)

can be defined by taking Wη to be the set of quadrics that are singular at
the vertex of Γη. The map ψ is then the map sending a conic to the affine
cone over it.

All the results from the previous sections still hold in the bielliptic case.
However, the proof of Lemma 2.6 needs a separate argument which we give
now. Indeed, instead of diagram 2.3 we consider the diagram

C

P2 P3

φη

where the map P3 99K P2 is the projection away from the vertex of Γη.
The diagram commutes because, as noted above, this projection induces the
map C → E. The rest of the proof follows the same line of reasoning as in
Lemma 2.6.

2.5. Tritangent planes and theta derivatives. In order to compute of
the tritangent planes on the left-hand side of Equation (2.4), we require
formulas that express them purely in terms of the theta constants. To derive
such formulas one begins with the following well-known connection between
tritangent planes and theta derivatives.

Theorem 2.11. Let C be a smooth curve of genus 4 over C with small
period matrix τ .

For any odd theta characteristic

[
a
b

]
∈ 1

2Z
8/Z8 the equation

4∑
i=1

∂ϑ
[
a
b

]
∂zi

(0, τ)xi = 0 (2.5)

defines a tritangent plane for the canonical image of C in the P3 with coor-
dinates x1, . . . , x4. Here the basis for H0(C,ΩC) must be the basis induced
by the isomorphism

Jac(C) ∼= Cg/(Zg + τZg) .

Proof. See, e.g., [Fio16, p. 5]. �

Next, we want to replace the theta derivatives by theta constants. This is
achieved with the same approach as in the genus 3 case [Fio16]: one chooses
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5 tritangent planes and applies a coordinate transform that puts them into
the standard form

xi = 0, x1 + x2 + x3 + x4 = 0.

Then Cramer’s rule expresses the equations for the other tritangent planes
in terms of determinants of Jacobi matrices of theta functions (see [Fio16,
Equation (17)] or Equation (3.1) in the present article). The next section
explains how these determinants can be expressed in terms of theta con-
stants.

2.6. The generalized Jacobi derivative identity. In this section, we
introduce Fay’s generalization of Jacobi’s derivative formula. It expresses the
Jacobian determinant of an azygetic system of odd theta functions evaluated
at 0 as a polynomial in the theta nullvalues.

First, we will recall some definitions from the theory of theta characteris-
tics. A system of theta characteristics c1, c2, c3 ∈ 1

2Z
2g is called an azygetic

triple if

e∗(c1 + c2 + c3) = −e∗(c1)e∗(c2)e∗(c3) ,

where e∗ : 1
2Z

2g → {±1} is the parity map

[
a
b

]
7→ (−1)4atb. More generally,

an arbitrary system of characteristics c1, . . . , cn is called azygetic if any triple
contained in c1, . . . , cn is an azygetic triple.

A system of theta characteristics is called essentially independent if every
sum of a subset of even cardinality of the system is non-zero.

Definition 2.12. A special fundamental system is a system of 2g + 2 char-
acteristics m1, . . . ,mg, n1, . . . , ng+2 ∈ 1

2Z
g such that:

i) m1, . . . ,mg, n1, . . . , ng+2 is azygetic.
ii) The characteristics m1, . . . ,mg are odd.

iii) The characteristics n1, . . . , ng+2 are even.

We will now define the lefthand side of the generalized Jacobi derivative
identity.

Definition 2.13. Let m1, . . . ,mg ∈ 1
2Z

2g be a system of odd characteristics.
The Jacobian nullvalue of m1, . . . ,mg is defined to be the function on the
Siegel upper half space

D(m1, . . . ,mg) : Hg −→ C

given by the formula

D(m1, . . . ,mg)(τ) = π−g det

((
∂ϑ[mi]

∂zj

)
i,j=1,...,g

)
(0, τ) .

Now if m1, . . . ,mg is azygetic and essentially independent then, for g 6 5,
D(m1, . . . ,mg) can be expressed as the following polynomial in the theta
nullvalues.
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Theorem 2.14. Let g 6 5 and M = {m1, . . . ,mg} be an azygetic essentially
independent system of odd theta characterstics. Then for all τ ∈ Hg,

D(m1, . . . ,mg)(τ) =
∑
N

±
g+2∏
i=1

ϑ[ni](0, τ) (2.6)

where the sum runs over all sets N = {n1, . . . , ng+2} such that M ∪N is a
special fundamental system.

Furthermore, the signs ± are explicit, unique and independent of τ .

Proof. See [Fro85] for g = 4 and [Fay79] for g 6 5. �

Remark 2.15. The number of terms on the right of Fay’s generalized Ja-
cobi derivative identity is given by the following table.

g 1 2 3 4 5
no. of terms 1 1 1 2 8

Remark 2.16. Igusa [Igu80][Igu83] has a conjectural generalization of Fay’s
generalized Jacobi identity to arbitrary g > 6. However, as it is known that
in this case a Jacobian nullvalue D(m1, . . . ,mg) cannot be a polynomial in
the theta constants [Fay79, p. 12], Igusa’s conjectural formula has a sum of
Jacobian nullvalues on the left-hand side.

It would be an interesting problem to use Igusa’s conjectural identity
to express Jacobian nullvalues as rational functions in the theta constants.
Such expressions must exist by general principles [Igu72, Theorem V.9], but
they seem to be unknown.

3. Reconstructing the curve

3.1. An auxiliary set of odd theta characteristics. In order to use
the generalized Jacobi identity (Theorem 2.14) for the computation of the
pairs of tritangent planes in Equation (2.4) we will need a set of odd theta
characteristics satisfying certain properties. Indeed, on the left-hand side
of the identity we have the Jacobian nullvalue of a set of four azygetic
essentially independent odd theta characteristics. Trying to optimize the use
of the generalized Jacobi identity leads us to choose the following auxiliary
set of odd theta characteristics.

Lemma 3.1. Let η ∈ 1
2Z

8/Z8 be arbitrary. There exist odd theta character-

istics ξ1, . . . , ξ5, χ1, χ
′
1, . . . , χ10, χ

′
10 ∈ 1

2Z
8/Z8 such that

i) ξ1, . . . , ξ5 is azygetic and essentially independent.
ii) For all i ∈ {1, . . . , 10} the systems ξ1, . . . , ξ4, χi and ξ1, . . . , ξ4, χ

′
i are

azygetic and essentially independent.
iii) For all i one has χi − χ′i = η.
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Proof. Without loss of generality we can assume that η = 1
2

[
0 0 0 0
1 0 0 0

]
.

(This is the convention used in, e.g., [FR70].) An explicit answer is then
given by:

ξ1 =
1

2

[
1 1 1 0
1 1 1 0

]
, ξ2 =

1

2

[
1 0 1 0
0 0 1 0

]
, ξ3 =

1

2

[
1 1 1 0
0 0 1 0

]
,

ξ4 =
1

2

[
1 0 1 0
0 1 1 0

]
, ξ5 =

1

2

[
0 1 1 0
0 1 0 0

]
,

χ1 =
1

2

[
0 1 1 0
0 1 0 0

]
, χ2 =

1

2

[
0 1 0 0
0 1 0 0

]
, χ3 =

1

2

[
0 1 0 1
0 1 0 0

]
,

χ4 =
1

2

[
0 1 1 1
0 1 0 0

]
, χ5 =

1

2

[
0 1 0 1
0 1 1 0

]
, χ6 =

1

2

[
0 1 0 0
0 1 1 0

]
,

χ7 =
1

2

[
0 1 0 0
0 1 1 1

]
, χ8 =

1

2

[
0 1 1 1
0 1 1 1

]
, χ9 =

1

2

[
0 1 0 0
0 1 0 1

]
,

χ10 =
1

2

[
0 1 1 0
0 1 0 1

]
and χ′i = χi + η for i ∈ {1, . . . , 10}. �

Remark 3.2. The answer in the previous proof is found by choosing ξ1, . . . , ξ5

suitably and then solving a system of equations over F2 for χ1, χ
′
1, . . . , χ10, χ

′
10

allowing η to be arbitrary. In the end one transforms the characteristics such

that η becomes 1
2

[
0 0 0 0
1 0 0 0

]
.

One can still see the (affine) linear structure in the shape of the charac-
teristics χi, χ

′
i. Indeed, the χi are all the odd theta characteristics whose

left 2× 2 block is [
0 1
0 1

]
.

From this observation one sees that one cannot add further pairs χi, χ
′
i with

the required properties to the system.

For the rest of the article, we define Hi, H
′
i ∈ H0(C,ΩC) to be the linear

forms cutting out the tritangent planes corresponding to χi, χ
′
i. By con-

struction, for any i = 1, . . . , 10 the tritangent planes Hi and H ′i differ by η.
We denote by `i ∈ H0(C,ΩC ⊗ η) the linear form cutting out the bitangent
of X that corresponds to (Hi, H

′
i) under Milne’s bijection (Theorem 2.8).

The main point of the special conditions in Lemma 5.1 is that they guar-
antee that the tritangent planes Hi, H

′
i can be written with simple formulas

in terms of the theta constants, as we now explain. Indeed, we choose the
coordinate system for P3 such that the tritangent planes corresponding to
the odd characteristics ξi, i = 1, . . . , 5 are in normal form

xi = 0, i ∈ {0, . . . 3},
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x0 + x1 + x2 + x3 = 0 .

Then, with the same argument as in [Fio16, Equation (17)] one sees that
for any i ∈ {1, . . . , 10} the tritangent plane Hi is given by the equation

D(χi, ξ2, ξ3, ξ4)

D(ξ5, ξ2, ξ3, ξ4)
x0+

D(ξ1, χi, ξ3, ξ4)

D(ξ1, ξ5, ξ3, ξ4)
x1+

D(ξ1, ξ2, χi, ξ4)

D(ξ1, ξ2, ξ5, ξ4)
x2 +

D(ξ1, ξ2, ξ3, χi)

D(ξ1, ξ2, ξ3, ξ5)
x3 = 0

(3.1)

in this coordinate system. An analogous formula with χi replaced by χ′i
gives the tritangent planes H ′i.

By Lemma 3.1 the set ξ1, . . . , ξ5 and all the sets ξ1, . . . , ξ4, χi as well
as ξ1, . . . , ξ4, χ

′
i for i = 1, . . . , 10 are azygetic and essentially independent.

This implies that the Jacobian nullvalue in our equations for Hi, H
′
i can be

expressed in terms of theta constants via Theorem 2.14.

Remark 3.3. The denominators in Equation (3.1) are non-zero for a generic
curve. But it can happen that they vanish: such curves must exist because
the corresponding locus in the Satake compactification of the Siegel mod-
uli space is given by the vanishing locus of a non-zero polynomial in the
theta constants on the (open) Torelli locus. By [FC14, Theorem 2.3] such
a polynomial is a section of an ample line bundle. Furthermore, since the
boundary of the Torelli locus in the Satake compactification has codimen-
sion two, this locus must be non-empty. Nevertheless, the authors do not
know an explicit example of this phenomenon.

3.2. Finding the quadric. In this section, we describe how to recover the
quadric. The first step is obtaining the equation for the map ϕ defined in
the diagram (2.2). To do this, we construct and solve a linear system as
follows.

Recall from Theorem 2.8 that

ϕ(HH ′) = λ`2

for any pair of tritangent planes (H,H ′) that maps to a bitangent ` under
Milne’s bijection.

Lemma 3.4. For a generic genus 4 curve, the elements HiH
′
i ∈ VC,η, for

i = 1, . . . , 10 form a generating set of VC,η.

Proof. Since the property is open in the moduli space and the moduli space
is irreducible, it suffices to show that one genus 4 curve satisfies the condition
of the lemma. We will give an example in the proof of Lemma 3.5 below. �

Using the knowledge of the equations of the pairs of tritangent planes
Hi, H

′
i and the corresponding bitangents `i for i = 1, . . . , 10, we know ev-

erything in the equations

ϕ(HiH
′
i) = λi`

2
i , i = 1, . . . , 10 (3.2)
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except for the scalars λi. The linear dependencies satisfied by the HiH
′
i yield

a homogeneous linear system of equations with unknowns λi. (Recall that
HiH

′
i ∈ VC,η and dim(VC,η) = 7, as mentioned in Section 2.2.) Solving this

linear system, we recover the linear map ϕ, and thus the quadric Q from
ker(ϕ).

Lemma 3.5. . For a generic genus 4 curve the vector (λi)1,...,10 is uniquely
determined from this linear system up to a scalar.

Proof. With the same argument as in Lemma 3.4 it suffices to check one
example.

We will now construct an example over F37 and verify the required proper-
ties with the aid of Magma. (See the files rational-trits.m and illustration.m

in [HPS24c].) Consider the plane quartic X ⊂ P2 with equation

X : t4 + 14t3u+ 16t3v + 32t2u2 + 26t2uv + 18t2v2 + 29tu3 + 4tu2v + 11tuv2

+ 2tv3 + 26u4 + 16u3v + 27u2v2 + 22uv3 + 11v4 = 0.

Using Recillas’s trigonal construction [Rec93, Theorem 2.15] with the ex-
plicit geometric version of [BS20, Theorem 1.5] one can compute a genus 4
curve C with a two-torsion point η such that Jac(X) is isomorphic to the
Prym. All the explicit properties of the curve C that we claim below will
be a consequence of this construction.

We find that the canonical embedding of the curve C into P3 is cut out
by the equations

0 = 11xw + yz,

0 = x3 + 3x2y + 9x2z + 15x2w + 23xy2 + 10xyw + 12xz2 + 6xzw + 12xw2

+ 8y3 + y2w + 17yw2 + 11z3 + 14z2w + 7zw2 + 28w3 .

C has the following 10 products of pairs of tritangent planes (Hi, H
′
i) dif-

fering by η. (Note that many of these are irreducible quadrics over F37, but
factor as a product of two linear forms over F372 .)

H1H
′
1 = 2x2 + 9xy + 18xz + 6xw + 8y2 + 20yz + 5yw + 15z2 + 23zw + 33w2,

H2H
′
2 = 21x2 + 25xy + 20xz + 29xw + 2y2 + 32yz + 34yw + 16z2 + 5zw + 36w2,

H3H
′
3 = 4x2 + 13xy + 28xz + 9xw + 7y2 + 28yz + 22yw + 19z2 + 20zw + 33w2,

H4H
′
4 = 30x2 + 27xy + 6xz + 29xw + 28y2 + 4yz + 16yw + 25z2 + 4zw + 13w2,

H5H
′
5 = 24x2 + 22xy + 2xz + 32xw + 22y2 + 4yz + 27yw + 31zw + 21w2,

H6H
′
6 = 9x2 + 16xy + 19xz + 6xw + 17y2 + 12yz + 14yw + 23z2 + 15zw + 32w2,

H7H
′
7 = 29x2 + 26xy + 30xz + 36xw + 22y2 + 34yz + 11yw + 12z2 + 35zw + 23w2,

H8H
′
8 = 25x2 + 26xy + 30xz + 24xw + 32y2 + 16yz + 2yw + 28z2 + 3zw + 33w2,

H9H
′
9 = 8x2 + 30xz + 17xw + 19y2 + 31yz + 3yw + 23z2 + 17w2,

H10H
′
10 = 13x2 + 34xy + 28xz + 14y2 + 13yz + 22yw + 29z2 + 16zw + 14w2 .
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(It is important to ensure that the odd theta characteristics corresponding
to (Hi, H

′
i) are given by the (χi, χ

′
i) from Lemma 3.1.)

By explicit computation one checks that the 7 quadratic formsH3H
′
3, . . . ,H10H

′
10

are linearly independent and thus form a basis of VC,η. This proves Lemma
3.4.

Next, the bitangent lines of X corresponding to (Hi, H
′
i) under Milne’s

bijection are given by

`1 = 12t+ 16u+ 23v,

`2 = 3t+ 19u+ 10v,

`3 = t+ u+ v,

`4 = 10t+ 35u+ 23v,

`5 = 7t+ 17u+ 24v,

`6 = 23t+ 27u+ 30v,

`7 = 24t+ 27u+ 31v,

`8 = t,

`9 = 35t+ 19u+ v,

`10 = 13t+ 17u+ 23v .

To recover ϕ, we now use the Equations (3.2) ϕ(HiH
′
i) = λi`

2
i , which imply

that the row vector Λ = (λi) must satisfy the system of linear equations
ΛM = 0 where M is the matrix below.



33 14 34 34 33 11 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 9 3 23 28 10 26 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1
19 22 6 20 21 18 2 14 24 6 10 35 10 33 9 30 13 27
29 14 35 17 11 23 19 13 14 29 34 24 31 29 17 22 36 8
11 21 11 26 29 12 10 9 10 27 23 21 4 11 4 33 24 1
26 3 24 4 27 34 35 14 1 31 15 23 36 7 19 34 26 30
21 0 0 0 0 0 22 0 0 0 0 0 29 0 0 0 0 0
4 35 33 28 1 1 21 8 16 36 33 33 32 21 5 2 8 8
8 1 34 22 16 13 1 14 32 12 2 34 7 24 2 10 14 16


One readily verifies that the left kernel of M is one-dimensional and gener-
ated by (1, 21, 13, 32, 8, 33, 17, 3, 19, 18). This proves Lemma 3.5. �

For illustrational purposes we continue to explain how the quadric con-
taining C is recovered. The matrix for

ϕ : VC,η −→ S2 H0(C,ΩC ⊗ η)
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is given by 
18 22 30 24 3 2 8
15 17 27 17 0 36 1
31 24 30 25 0 35 34
17 18 7 35 0 14 22
16 16 32 5 0 19 16
19 20 26 20 0 19 13


with respect to the basisH3H

′
3, . . . ,H10H

′
10 on VC,η and the standard (mono-

mial) basis on S2 H0(C,ΩC ⊗ η). By computing the kernel of ϕ one recovers
the quadratic form

27xw + 26yz = 26(11xw + yz)

which vanishes on C.

3.3. Finding the cubic. In this section, we explain how the knowledge of
the map

ϕ : VC,η −→ S2 H0(C,ΩC ⊗ η)

can be used to recover the equations of the curve C. As we know that ϕ
recovers Q, it remains to explain the calculation of the cubic. We begin by
giving a connection between the natural right-inverse ψ of ϕ and the Cayley
cubic Γη. For this purpose, we will introduce a sextic form G which vanishes
with multiplicity two on Γη. In this definition we use the abbreviations
V = H0(C,ΩC), W = H0(C,ΩC ⊗ η).

Let G be the homogeneous form that is given by the following composition
of polynomial maps

V ∨ → S2(V ∨) ∼= (S2V )∨ → V ∨C,η
ψ∨−→ (S2W )∨ ∼= S2(W∨)

disc−→ k , (3.3)

where the first map is x 7→ x⊗x and the map (S2V )∨ → V ∨C,η is dual to the
defining inclusion.

It is easy to see that G has degree 6 because the first map has degree 2,
the map disc has degree dim(W ) = 3, and all the other maps are linear.

The next proposition will show that the homogeneous form G is the square
of a cubic form cutting out the cubic symmetroid.

Remark 3.6. The intuition behind considering the composition

V ∨ → S2(V ∨) ∼= (S2V )∨ → V ∨C,η
ψ∨−→ (S2W )∨ ∼= S2(W∨)

is as follows: we want to understand the image Γη of the map

c : P2 99K P3 .

But we do not have access to the map c explicitly; we only have the map
ϕ which is linked to the way c transforms quadrics. The best we can do
starting from a point x ∈ P3 is to form the subvector space of quadrics
vanishing at x and, then, apply the map ϕ. This gives us a linear system of
conics on P2 from which we can hope to detect whether or not x is in the
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image of c. Dualizing this consideration shows that it is natural to study
the composition

V ∨ → S2(V ∨) ∼= (S2V )∨ → V ∨C,η
ψ∨−→ (S2W )∨ ∼= S2(W∨) .

Proposition 3.7. One has V(G) = 2Γη.

Proof. Assume first that (C, η) is not bielliptic. We begin by showing that
G vanishes on Γη. Let U ⊂ Γη be the complement of the base locus of the
birational map c−1 : Γη 99K P2. We will show that G vanishes on the open
subset U . To that end, let x ∈ U be arbitrary and let y = c−1(x) ∈ P2

denote its image. Then x (resp., y) gives a non-zero vector in V ∨ (resp.,
W∨). We claim that under the composition

γ : V ∨ → S2(V ∨) ∼= (S2V )∨ → V ∨C,η
ψ∨−→ (S2W )∨ ∼= S2(W∨) ,

x maps to a multiple of y ⊗ y.
Recall that Wη denotes the image of ψ. Then the map γ factors as

V ∨ → S2(V ∨) ∼= (S2V )∨ →W∨η
ψ∨−→ (S2W )∨ ∼= S2(W∨)

Next, we know that the map ψ is given by pull-pushing quadrics through
the diagram

S

P(H0(C,ΩC ⊗ η)) ∼= P2 Γη ,c

i.e., for every q ∈ S2W = S2 H0(C,ΩC ⊗ η) the quadratic form ψ(q) is the
unique quadratic form vanishing on the curve c(V(q)) ⊂ Γη. Therefore,
γ(x) must be orthogonal to the quadratic forms vanishing at y and thus is
a multiple of y ⊗ y. (It could possibly be zero.) This proves the claim.

Next, the observation disc(y ⊗ y) = 0 shows that G vanishes on Γη.
To prove that G vanishes with multiplicity two, one can use the same

argument with adjugate matrices as in the discussion preceding Theorem
4.1.4 in [Dol12] to show that γ3

η | G2 where γη is a cubic form cutting out

Γη. This implies that γ2
η | G because Γη is irreducible.

It remains to show that G 6= 0. One possible argument would be to go
through the classification of symmetroid cubic surfaces on [Cat81, §1, p. 33]
and explicitly verify that G 6= 0 in every case. Alternatively, we propose
the following general proof. Choose a plane H ⊂ P3 such that Γη ∩ H is
smooth. Then Γη ∩ H is a smooth plane curve and the restriction γη|H
gives a determinantal equation for it. Hence, the general theory of deter-
minantal equations for smooth plane curves from Dolgachev’s book [Dol12,
Section 4.1.2] applies. The degree six form G|H appears as a special case of
the construction preceding [Dol12, Theorem 4.1.4] (where it is denoted by
det(N)). In loc. cit. he proves that this polynomial is non-zero. Therefore,
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we conclude that G|H 6= 0 and thus G 6= 0. This proves the non-bielliptic
case.

Assume now that (C, η) is bielliptic. Then Γη is a cone over a smooth
plane cubic E ⊂ P2. Furthermore, it is easy to see that V(G) is a cone over
the same vertex. Thus we are reduced to a statement about the symmetric
determinantal representation of E in P2. Then Dolgachev’s argument applies
directly and the proposition follows. �

However, we do not have direct access to the map ψ in our reconstruction
method. The next lemma shows how to find a cubic vanishing on C from
the knowledge of ϕ alone.

Lemma 3.8. Let ψ̃ be any right inverse of ϕ. Define G̃ using the same

formula as for G in (3.3) but with ψ replaced by ψ̃. Then the congruence

G ≡ G̃ mod Q

holds true.

Proof. By Lemma 2.6, the map ψ satisfies ϕ ◦ ψ = id after fixing the ambi-

guity in the definition. Then ψ, ψ̃ are two right inverses of ϕ. Therefore the

difference ψ − ψ̃ satisfies

im(ψ − ψ̃) ⊆ ker(ϕ) = span(Q) .

Dually, the difference ψ∨ − ψ̃∨ : V ∨C,η −→ (S2W )∨ vanishes on span(Q)⊥ ⊂
V ∨C,η.

We are now ready to show that G ≡ G̃ mod Q. We claim that the two

polynomial maps defining G, G̃ agree when restricted to the vanishing locus
of Q. Indeed, let x ∈ V ∨ be an arbitrary vector satisfying Q(x) = 0. The
latter means that the element x ⊗ x ∈ S2(V ∨) ∼= (S2V )∨ is orthogonal to

Q. Therefore under the first arrows in the composition defining G, G̃

V ∨ → S2(V ∨) ∼= (S2V )∨ → V ∨C,η

x maps into span(Q)⊥. Above we noted that ψ∨ and ψ̃∨ agree on span(Q)⊥.
This is sufficient to prove the claim. Therefore the two polynomial maps

defining G, G̃ agree when restricted to the vanishing locus of Q. This implies
that

G ≡ G̃ mod Q .

�

Using the previous lemma we can find a cubic Γ vanishing on C by extract-

ing a square root of G̃ mod Q. Furthermore, one has C = Q ∩ Γη = Q ∩ Γ.
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3.4. Main result. Summarizing the discussion of the previous sections, we
have proven the following theorem.

Theorem 3.9. Let C be a generic genus 4 curve over an algebraically closed
field k of characteristic 0 or of characteristic p with p large enough. There
are explicit formulas for the equations of C in terms of its theta constants.
They use only the following algebraic operations: Elementary arithmetic,
taking square roots, and solving linear systems of equations.

We now give an overview of these formulas:

Algorithm 3.1: Reconstruct a genus 4 curve from its theta constants

Input : Theta constants ϑC
[
a
b

]
of a smooth non-hyperelliptic genus

4 curve C defined over k.
Output: A quadric Q and a cubic Γ in P3

k such that C ∼= Q ∩ Γ or
an error if C is not generic enough.

1 Choose the two-torsion point given by η = 1
2

[
0 0 0 0
1 0 0 0

]
.

2 Compute the theta constants for the plane quartic X via the
Schottky-Jung relations

ϑX
[
a
b

]2
= ϑC

[
0 a
0 b

]
ϑC
[

0 a
1 b

]
.

Compute the 10 bitangent lines `i via the Aronhold-Weber formulas
[Dol12, Theorem 6.1.9] [Fio16, Theorem 2] from the theta constants
ϑX
[
a
b

]
. (Make sure to take the bitangents with the correct odd

theta characteristics.)
3 Try to compute the tritangent planes Hi, H

′
i from the Equations

(3.1). If there is a division by zero, give an error.
4 Verify that the HiH

′
i generate a linear space of dimension 7 or throw

an error.
5 From the Equations (3.2)

ϕ(HiH
′
i) = λi`

2
i

we get a homogeneous linear system of equations for the λi.
6 Verify that the kernel of this linear system of equations is

one-dimensional or give an error.
7 From the λi compute a matrix for the linear map ϕ.

8 Compute a generator for ker(ϕ) and call it Q.

9 Choose a linear map ψ̃ such that ϕ ◦ ψ̃ = id.

10 Compute the degree six polynomial G̃ as in Lemma 3.8.

11 Compute a square root Γ of G̃ mod Q.

12 Return Q and Γ.

Remark 3.10. When using the Schottky-Jung relations one takes a square
root to compute the ϑX

[
a
b

]
. This leads to a sign choice that has to be made

correctly. For this one can use the discussion following [Gla80, Theorem 3.1]
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where Glass makes use of the quartic Riemann identities to find a correct
choice of signs. At this point, the assumption that the ϑC

[
a
b

]
are the theta

constants of a genus 4 curve is used. Indeed, the latter implies that the
Schottky modular form vanishes. By construction of this modular form,
this is equivalent to requiring that the ϑX

[
a
b

]
satisfy the quartic Riemann

identities.

Remark 3.11. If one of the ϑC
[

0 a
0 b

]
or ϑC

[
0 a
1 b

]
vanish, then the Schottky-

Jung relations imply that X has a vanishing even theta-null. This means
that the curve X becomes hyperelliptic. Our method still works in this
case by making the following adjustment: the canonical map X → P2 is a
degree two cover of a smooth conic ramified in eight points. Replace the
28 bitangent lines by the

(
8
2

)
= 28 lines through pairs of ramification points

(see also Remark 2.9).
Notice that in this situation, the curve C has a vanishing theta null and

thus the canonical quadric Q becomes singular. Conversely, if C has a
vanishing theta null, we can achieve that ϑC

[
0
0

]
= 0 by choosing the level

structure appropriately. Thus we can arrange for the curve X to be hyper-
elliptic.

In computations over C it is advantageous to exploit this because using
a hyperelliptic curve X will increase the speed and minimize the numerical
error.

Remark 3.12. There are three possibilities for the curve C to not be generic
enough: (i) there is a division by zero in step 3, (ii) the products HiH

′
i do

not generate VC,η, or (iii) the λi are not uniquely determined by the linear
system of equations in step 6. The first situation can occur; see Remark 3.3.
However, the authors do not know if there exist curves satisfying one of the
other two phenomena. Using the same strategy as in the proof of Lemma
3.4, 3.5, i.e., by exhibiting an example over a finite field, we obtained that
the open locus in the moduli space given by conditions (ii) and (iii) has
non-empty intersection with the following loci:

• C has a vanishing even theta constant, i.e., the quadric Q is singular;
• Any degeneration of the cubic symmetroid Γη;
• In particular, the bielliptic locus.

Anyway, if the reconstruction fails for one of the three reasons above, all
hope is not lost—one can choose a different 2-torsion point η and try again.
We conjecture that for every non-hyperelliptic genus 4 curve over a field of
characteristic 6= 2 there exists a two-torsion point η ∈ Jac(C)[2] \ {0} such
that our reconstruction method works.

4. Examples

Example 4.1. Gluing. Consider the hyperelliptic genus 2 curve

C1 : y2 = 24x5 + 36x4 − 4x3 − 12x2 + 1
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which has LMFDB label 20736.l.373248.1. From the information on
the curve’s homepage, we see that the geometric endomorphism algebra
of Jac(C1) is the quaternion algebra B2,3, i.e., the unique quaternion alge-
bra over Q ramified at 2 and 3. We look for interesting genus two curves
C2 such that the quotient of A = Jac(C1)× Jac(C2) by a maximal isotropic
subgroup of A[2] is the Jacobian of a smooth genus 4 curve C (possibly up
to a quadratic twist). Using the criterion of [BK23, Theorem 1.2] one finds
that, for example, the curve

C2 : y2 = 3x5 − 68x4 + 159x3 + 232x2 − 132x+ 16

has this property. Using the methods of Costa–Mascot–Sijsling–Voight
[CMSV19], we verify that End0

Q(Jac(C2)) ∼= Q(
√

5).

Our method produces the following equations for the genus 4 curve C:

0 = 10x2 + 8xy − 9y2 − 33z2 − 30zw − 40w2

0 = −6x3 − 2x2y − xy2 + 5xz2 − 22xzw − 5xw2 + 3y3 + 11yz2

+ 10yzw − 11yw2 .

By construction we have that End0
Q(Jac(C)) ∼= B2,3 ×Q(

√
5).

A priori the curve will come out in a coordinate system where the equa-
tions are not defined over Q. Using the knowledge of a big period matrix for
Jac(C) associated to a Q-rational basis for H0(C,ΩC), we found the PGL4

transformation that changes coordinates into this Q-rational basis.

Example 4.2. Modular Jacobians. Let f be the modular form orbit with
LMFDB label 778.2.a.a. We use our method to compute the abelian fourfold
that corresponds to it via modularity for RM abelian varieties over Q. This
abelian variety A is the subvariety of J0(778) = Jac(X0(778)) corresponding
to a 4-dimensional Hecke-invariant subspace. It has RM by the field of Hecke
eigenvalues which is the totally real subfield of Q(ζ15); this is the quartic field
with LMFDB label 4.4.1125.1. We begin by computing its period matrix
using Magma’s command Periods. However, this period matrix need not
correspond to a principally polarized abelian variety: the pullback of the
principal polarization on J0(778) is not in general principal.

To remedy this, we call the command SomePrincipalPolarizations

from the ModularCurves GitHub repository [S+23]. This produces several
big period matrix candidates. Evaluating the Schottky modular form on the
first of these yields a complex number with absolute value 6.2124 · 10−300

when calculated with precision 300, indicating that this principally polarized
abelian variety is likely a Jacobian. Applying our method then produces the
corresponding genus 4 curve, which, after a change of variable, is isomorphic

https://www.lmfdb.org/Genus2Curve/Q/20736/l/373248/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/778/2/a/a/
https://www.lmfdb.org/NumberField/4.4.1125.1
https://github.com/AndrewVSutherland/ModularCurves/
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to the curve C in P3 given by the following equations.

0 = x2 − xz − xw − y2 − yw + 2z2 + zw − 4w2

0 = 2xyw − 2xz2 − 12xzw − 10xw2 − y2z − 2y2w + yzw + 4yw2 + 2z3

− 20zw2 − 18w3

As a sanity check for this heuristic example, we compute the places of bad
reduction of C. Using the methods from [Bou23], we compute the invariants
of C and in particular the discriminant. The result is 29 · 11330 · 3894 and
therefore candidates for the primes of bad reduction are 2, 113, and 389.
But, modulo 113 the given equations reduce to a smooth genus 4 curve,
although the canonical quadric degenerates to a cone. Thus the primes of
bad reduction are 2 and 389 as one would expect, since the level of f is
778 = 2 · 389. As a further sanity check, we have computed and compared
the local L-factors of f and C for primes up to 1000 and verified that they
match. A priori the Jacobian of C could have been a quadratic twist of the
abelian variety corresponding to f , but our computations also showed this
is not the case.

We thank Noam Elkies for suggesting this example, as well as Edgar Costa
for his help in computing polarizations.

5. Future work

5.1. Constructing CM curves. Abelian varieties with complex multipli-
cation are another source of examples where the period matrix is known,
but the actual equations defining the varieties are not. Furthermore, there
are interesting conjectures about when a CM p.p.a.v. variety is a Jacobian.
Indeed, for certain values of n, a CM p.p.a.v. is automatically the Jacobian
of a degree n superelliptic curve if the CM order contains a primitive nth

root of unity and certain conditions on the CM-type are satisfied, as shown
in the work of de Jong and Noot [DJN91]. For example, if n = 3 and g = 4,
then they require that the CM order contains a primitive third root of unity,
say ζ3. Furthermore, the action of ζ3 on the differential forms of the abelian
variety must be the same as the action of the automorphism y 7→ exp

(
2πi
3

)
y

on the differential forms of a superelliptic curve of the form

y3 = x(x− 1)(x− λ)(x− µ)(x− ν) . (5.1)
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This can be translated into requiring that the CM type Φ = {ϕ1, . . . , ϕ4}
satisfies

ϕ1(ζ3) = exp

(
2πi

3

)
ϕ2(ζ3) = exp

(
2πi

3

)2

ϕ3(ζ3) = exp

(
2πi

3

)2

ϕ4(ζ3) = exp

(
2πi

3

)2

.

(5.2)

The family 5.1 and the other families of superelliptic curves from [DJN91]
have the special property that the dimension of the family (3, in the above
example) matches the dimension of a PEL-Shimura subvariety where the en-
domorphism structure is given by Z[ζn] with a certain tangent space action.
(In our example this action would be given by the same conditions as in
(5.2).) From this they conclude that the CM-points of that Shimura variety
give rise to infinitely many curves with CM Jacobian. Moonen [Moo10] has
shown that the collection of special (in the above sense) families of superel-
liptic curves is finite and listed all of them.

To rule out CM fields containing primitive roots of unity, Moonen and
Oort [MO11] defined the notion of a Weyl CM field. These are CM fields
K of degree [K : Q] = 2g such that the Galois group of the splitting field is
as large as possible, i.e., (Z/2)g oSg. They put forward the conjecture that
for a given fixed g > 4 there are finitely curves of genus g whose Jacobian
has CM by a Weyl CM field.

From this perspective it would be interesting to compute explicit examples
of genus 4 curves with CM.

5.2. Higher genus. In work in progress [HPS24b] we plan to generalize the
Milne correspondence to arbitrary g. This would give a bijection between
pairs of odd theta hyperplanes in Pg−1 for C and odd theta hyperplanes in
Pg−2 for the Prym variety Prym(C, η). Notice that in this context the Prym
variety is no longer automatically a Jacobian. Nevertheless, one can define
odd theta hyperplanes for arbitrary p.p.a.v.s; however, these will lack the
geometric interpretation as multitangents of a canonically embedded curve
(unless the p.p.a.v. happens to be a Jacobian).

This generalization would give formulas for the equations of a generic
genus 5 curve in terms of its theta constants. Indeed, for g > 5 the image of
the canonical embedding of a generic curve of genus g is cut out by quadratic
equations. For g = 5, one should be able to compute these equations with
a suitable adaption of the results in Section 3.2.

For g = 6 we also expect that our method works. However, in order to
get a formula purely in terms of theta constants, it remains to find a formula
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for the Jacobian nullvalues as a rational function in the theta constants; see
also Remark 2.16.

For g > 7 another challenge appears: there will be quadratic forms van-
ishing on the image of the Prym canonical map

φη : C −→ P
(
H0(C,Ω⊗ η)

) ∼= Pg−2 .

This means that we can no longer view VC,η as a linear subspace of S2 H0(C,ΩC)
because here the injectivity of the map

S2 H0(C,ΩC ⊗ η)→ H0(C,Ω⊗2
C )

in (2.2) was crucially used. Nonetheless, one can still use odd theta data
to produce a system of equations satisfied by the analogues of the unknown
constants λi from Equation (3.2), but these equations will be quadratic
instead of linear.

References
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[FR70] Hershel M. Farkas and Harry E. Rauch. Period Relations of Schottky Type on

Riemann Surfaces. Annals of Mathematics, 92(3):434–461, 1970. URL: http:
//www.jstor.org/stable/1970627. 2, 10, 14

[Fre83] Eberhard Freitag. Die Irreduzibilität der Schottkyrelation (Bemerkung zu
einem Satz von J. Igusa). Archiv der Mathematik, 40:255– 259, 1983. 2
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della Unione Matemàtica Italiana. Serie VII. B, 01 1993. 16
[S+23] Andrew V. Sutherland et al. ModularCurves. GitHub repository, https://

github.com/AndrewVSutherland/ModularCurves, 2023. 23
[Sch88] Friedrich Schottky. Ueber specielle Abelsche Functionen vierten Ranges. Jour-

nal für die reine und angewandte Mathematik, 1888(103):185–203, 1888. URL:
https://doi.org/10.1515/crll.1888.103.185. 2

[Tak96] Koichi Takase. A generalization of Rosenhain’s normal form for hyperellip-
tic curves with an application. Proceedings of the Japan Academy, Series A,
Mathematical Sciences, 72(7):162 – 165, 1996. doi:10.3792/pjaa.72.162. 2

Jeroen Hanselman, RPTU Kaiserslautern-Landau
Email address: hanselman@mathematik.uni-kl.de

Andreas Pieper, IRMAR
Email address: andreas.pieper@univ-rennes1.fr

Sam Schiavone, MIT
Email address: sschiavo@mit.edu

https://eprint.iacr.org/2016/179
https://doi.org/10.1112/plms/s2-21.1.373
https://arxiv.org/abs/1112.0933
https://arxiv.org/abs/1112.0933
https://doi.org/10.1007/BF01389737
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7130147
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7130147
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7130147
https://github.com/AndrewVSutherland/ModularCurves
https://github.com/AndrewVSutherland/ModularCurves
https://doi.org/10.1515/crll.1888.103.185
https://doi.org/10.3792/pjaa.72.162

	1. Introduction
	1.1. Motivation and applications
	1.2. Previous work
	1.3. Structure of the article
	1.4. Acknowledgements

	2. Preliminaries
	2.1. The Prym canonical map
	2.2. Two linear maps
	2.3. Milne's bijection
	2.4. The bielliptic case
	2.5. Tritangent planes and theta derivatives
	2.6. The generalized Jacobi derivative identity

	3. Reconstructing the curve
	3.1. An auxiliary set of odd theta characteristics
	3.2. Finding the quadric
	3.3. Finding the cubic
	3.4. Main result

	4. Examples
	5. Future work
	5.1. Constructing CM curves.
	5.2. Higher genus

	References

