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Abstract

This thesis comes in two parts. The first concerns the classification of algebras of low

rank. The main goal of this part is to study the moduli space of rank 3 algebras. Our

investigations lead to a generalization of a theorem of Levin that shows that rank 3

algebras over an integral domain occur in essentially two types. We extend this result

to rank 3 algebras over a commutative ring, and then to sheaves of rank 3 algebras

over a scheme.

In the second part we describe a method for computing Belyi maps. In 1984,

Grothendieck described an action of the absolute Galois group of the rational numbers

on the set of isomorphism classes of Belyi maps. Thus Belyi maps provide a tantalizing

possibility of better understanding this important group. We explain in detail the

steps used to compute Belyi maps defined on elliptic and hyperelliptic curves. We

conclude with our progress in computing an exhaustive catalogue of Belyi maps, and

make some basic observations about the Galois action on these maps.
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Chapter 1

Introduction

This thesis comes in two parts. The first deals with the classification of algebras of

low rank, and the second with the computation of Belyi maps.

Section 1.1

On algebras of low rank

The goal of this part is to study the moduli space of rank 3 algebras. In [Levin, 2013],

the author shows that a rank 3 algebra over an integral domain is either commutative

or possesses a standard involution. The main results of the first part of the thesis are

generalizations of this result to the case of rank 3 algebras over a commutative ring,

and then to the case of sheaves of rank 3 algebras over a scheme.

We begin by studying framed algebras, that is, algebras equipped with a choice

of basis. To do this, we first form the “universal” framed rank n algebra Auniv whose

structure constants satisfy the minimal conditions to ensure that Auniv is associative

and unital. We then show in Proposition 3.2.1 that the base ring Runiv of Auniv

(the “universal base”) represents framed rank n algebras, in the sense that Xuniv :=

1



1.1 On algebras of low rank

Spec(Runiv) is the fine moduli space for the functor classifying isomorphism classes of

framed algebras over a commutative ring.

We then turn to the particular case of rank 3 algebras over a commutative ring.

We show in Theorem 3.2.5 and Corollary 3.2.6 that the moduli space of such alge-

bras has two irreducible components Xuniv,C and Xuniv,E, the first corresponding to

commutative algebras, and the second to exceptional algebras. We use this universal

result and representability to show in Theorem 3.4.1 that the same decomposition

holds over an arbitrary base ring.

Theorem (Theorem 3.4.1). Let R be a commutative ring, and let A be a free R-

algebra of rank 3.

(a) There exist ideals IC and IE of R such that

(i) AC := A⊗R (R/IC) is commutative; and

(ii) AE := A⊗R (R/IE) is exceptional,

and IC and IE are minimal in the following sense. If J is an ideal of R such that

A⊗R (R/J) is commutative (resp., exceptional), then IC ⊆ J (resp., IE ⊆ J).

(b) For any choice of modest basis (e1, e2, e3) for A with associated structure con-

stants c
(k)
ij , we have IC = (c

(3)
23 , c

(2)
32 ) and

IE = (c
(1)
22 , c

(2)
22 − c

(3)
23 , c

(3)
22 , c

(1)
23 , c

(1)
32 , c

(2)
32 − c

(3)
33 , c

(1)
33 , c

(2)
33 ) .

(c) We have

ACE := A⊗R (R/IC)⊗R (R/IE)

is isomorphic to the nilproduct algebra R[x, y]/(x, y)2.

2



1.1 On algebras of low rank

We show in Proposition 3.4.3 that the formation of the ideals IC and IE is func-

torial, in the following sense. Given a commutative ring R, the ideals IR,C and IR,E

corresponding to commutative and exceptional rank 3 algebras, respectively, are sim-

ply the extensions of the corresponding ideals of the universal base Runiv along the

unique ring homomorphism ϕ : Runiv → R. We also show that these ideals are

independent of the choice of basis.

These last two results allow us to extend our result to the case of a sheaf of rank

3 algebras over an arbitrary base scheme X. For each affine open subscheme Spec(R)

of X, our result for algebras over a commutative ring produces ideals IR,C and IR,E.

Our functoriality result allows us to glue these ideals and form corresponding qua-

sicoherent OX-ideal sheaves IC and IE in Theorem 3.5.12 and their corresponding

closed subschemes XC and XE in Corollary 3.5.14.

Theorem (Theorem 3.5.12). Let X be a scheme, and let A be sheaf of algebras on

X that is locally free of rank 3. Then there exist quasicoherent ideal sheaves IC and

IE on X such that

(a) AC := A ⊗OX

OX

IC

is commutative; and

(b) AE := A ⊗OX

OX

IE

is exceptional;

and IC and IE are the minimal ideal sheaves with these properties in the following

sense. If J is an ideal sheaf on OX such that A ⊗OX

OX

J
is commutative (resp.,

exceptional), then IC(U) ⊆ J (U) (resp., IE(U) ⊆ J (U)) for every affine open

subset U of X.

Furthermore,

A ⊗OX

OX

IC

⊗OX

OX

IE

3



1.1 On algebras of low rank

is nilproduct.

Corollary (Corollary 3.5.14). Let X be a scheme, and let A be sheaf of algebras on

X that is locally free of rank 3. Then there exist closed subschemes ιC : XC ↪→ X and

ιE : XE ↪→ X of X such that

(a) ι∗C(A ) is commutative;

(b) ι∗E(A ) is exceptional

and XC and XE are the largest closed subschemes with these properties.

Let XCE = XC ∩XE = XC ×X XE with closed embedding ιCE : XCE ↪→ X. Then

ι∗CE(A ) is the nilproduct algebra.

In the last section we study the action on the structure constants induced by

change of basis of a rank 3 algebra. The orbits of this action are naturally in bijective

correspondence with isomorphism classes of rank 3 algebras (without a choice of basis).

This points toward a direction of future research: classify algebras without a choice

of basis. We would like to obtain an explicit description of the moduli space of rank

3 algebras (without a choice of basis). We hope to achieve this by forming the GIT

quotient of the moduli space of framed algebras by the action given by change of

basis.

We also study “degenerations” of rank 3 algebras. We realize the moduli space of

framed rank 3 algebras as a subset of the affine space A27 by means of the structure

constants. It is then natural to wonder what the closure of the moduli space in P27

looks like, and if we can give some algebraic meaning to the points on the hyperplane

at infinity. We make some initial steps toward understanding the class of objects this

compactified moduli functor represents.

4



1.2 On computing Belyi maps

Section 1.2

On computing Belyi maps

The second part of the thesis discusses a method for computing Belyi maps, i.e.,

three-point branched covers of the projective line. This is based on joint work with

Michael Klug, Michael Musty, Jeroen Sijsling, and John Voight in [Klug et al., 2014]

and [Musty et al., 2019].

Belyi maps have many applications, but our interest in them arises from their

connection to the absolute Galois group Gal(Q/Q). Belyi showed that an algebraic

curve X over C has a model over Q if and only if X admits a Belyi map. This

result enthralled Grothendieck and led him to define an action of the absolute Galois

group Gal(Q/Q) on the set of isomorphism classes of Belyi maps. He then recast this

action in terms of a certain graphs called dessins d’enfants, providing the tantalizing

possibility of understanding this important and mysterious group Gal(Q/Q) in a

combinatorial way.

Our goal is to compute explicit equations for Belyi maps in hopes of understanding

the Galois action. The method we employ relies on a web of bijections between several

different classes of objects. We traverse this web, beginning in a combinatorial setting

with permutations, passing to a group theoretic setting with subgroups of triangle

groups, and finally arriving at an algebro-geometric setting with Belyi maps. We

outline this strategy and then discuss in detail the steps necessary to obtain explicit

equations for Belyi maps defined on elliptic and hyperelliptic curves.

We have used this method to compute an exhaustive database of Belyi maps

of low degree. This data is available in the beta version of the L-functions and

5



1.2 On computing Belyi maps

Modular Forms Database (LMFDB) at https://beta.lmfdb.org/Belyi/, and the

raw text files of which the database is comprised are available on GitHub at https:

//github.com/michaelmusty/BelyiDB. We make some basic observations about the

arithmetic features of the data, namely counting the number of orbits of the action of

Gal(Q/Q) in each degree and genus, which are described in the following theorems.

Theorem (Theorem 4.4.8). There are 118 Galois orbits of elliptic Belyi maps with

degree d ≤ 7. They are distributed with respect to degree as shown in the table below.

d Number of orbits
3 1
4 2
5 7
6 35
7 73

Theorem (Theorem 4.5.8). There are 12 Galois orbits of hyperelliptic Belyi maps

with degree d ≤ 6. There are 4 orbits of Belyi maps in degree 5 and 8 orbits in degree

6.

6
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Chapter 2

Background on algebras

Section 2.1

Introduction

The endeavor to classify (associative) algebras dates back to at least the late 1800s,

when Benjamin Peirce [Peirce, 1881] sought to classify all algebras of dimension at

most 5. Peirce approached the problem by considering multiplication tables for the

basis elements. However, the scope of his results are somewhat difficult to determine:

Peirce used his own peculiar notation and terminology, and did not explicity state the

base ring or field over which the algebras are defined, though from his presentation

it seems that he considered C-algebras. (See [Fialowski and Penkava, 2009, §2] for

more on the validity and shortcomings of Peirce’s work.)

Since Peirce’s work, many different techniques have been used in an effort to

classify algebras. In the 1960s, Gerstenhaber [Gerstenhaber, 1964] presented a de-

formation theoretic approach using Hochschild cohomology, which has been further

pursued in many other works, such as [Fialowski and Penkava, 2009]. Deformation
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2.1 Introduction

theory has also been used in classifying other algebraic structures, such as Lie alge-

bras, Jordan algebras, Weyl algebras, and infinity algebras.

Later in the 1960s, Flanigan [Flanigan, 1968] coined the phrase “algebraic geog-

raphy” for his study of the moduli space of associative, but not necessarily unital,

algebras, the action of GLn given by change of basis, and the orbits of this action.

Flanigan considered this moduli space concretely, as we will, in terms of the structure

constants of an algebra. Flanigan also connected his study of the GLn-orbits to the

deformation theoretic approach of Gerstenhaber.

In the 1970s Gabriel [Gabriel, 1974] and Mazzola [Mazzola, 1979] classified alge-

bras of dimensions 4 and 5, respectively, using the representation theory of quivers.

(See also [Assem et al., 2006] and [Benson, 1998] for more recent presentations of

this approach.) The basic idea is to associate to an algebra A a quiver Q (called

the Ext-quiver of A in [Benson, 1998]), and then realize A as a quotient of the path

algebra of Q. This allows one to classify algebras just by creating an exhaustive list

of the possible quivers, as done in [Gabriel, 1974, §5] and [Mazzola, 1979, §1].

Benson extends the definition of the Ext-quiver of an algebra to an arbitrary base

field (not assumed algebraically closed), but it is no longer clear that one can realize

the algebra as a quotient of its path algebra. At the end of [Benson, 1998, §4.1], the

author remarks, “There should be a way of modifying the definition of the Ext-quiver

of A to contain sufficient cocycle information so that a suitable ‘path algebra’ will

always map onto A. To the best of my knowledge no-one has attempted to do this.”

All the above mentioned efforts concentrated on the case of algebras defined over

a field, often assumed algebraically closed, or even just the particular case of algebras

over C. In this work we are interested in a more arithmetic setting—we seek to classify

8



2.1 Introduction

algebras over an arbitrary commutative base ring, and even sheaves of algebras over

an arbitrary base scheme.

Some results have already been obtained in this direction. In [Poonen, 2008],

Poonen studies the moduli space of commutative algebras that are locally free of

rank n over a commutative ring, equipped with a choice of basis. He investigates its

geometric properties, and explicitly determines the isomorphism type of the moduli

space for n ≤ 3, discovering that in each of these cases it is isomorphic to an affine

space.

In [Gross and Lucianovic, 2009], the authors fix a base ring R that is either

a local ring or a principal ideal domain, and consider two types of algebras over

R: commutative algebras that are free of rank 3, which they call cubic rings, and

quaternion rings, which are generalizations of quaternion algebras. They study the

action of GLn given by change of basis and in each case identify this representation as

a symmetric power twisted by the determinant. This allows them to find bijections

between isomorphism classes of cubic rings (resp., quaternion rings) and the orbits of

these actions.

In [Voight, 2011a], Voight extends the results of Gross and Lucianovic by clas-

sifying quaternion rings over an arbitrary commutative ring. He first gives several

different characterizations of quaternion rings, one in terms of Clifford algebras. He

then gives an enhanced version of the bijection presented in [Gross and Lucianovic,

2009, Proposition 4.1] that preserves extra structure. (Similar results are shown in

[Venkata Balaji, 2007], but in slightly different language.)

In [Voight, 2011c], Voight proves two main results on algebras of low rank. He

first shows that under some mild assumptions, an algebra B has degree 2 if and only

9



2.2 Definitions and conventions

if it possesses a standard involution. He then proceeds to show that in the case of a

rank 3 algebra B has a standard involution if and only if it is exceptional. (These

terms will be defined in the following section.)

The central goal of this chapter is to generalize the main result of [Levin, 2013].

Levin shows that for R an integral domain, every free R-algebra of rank 3 is either

commutative or possess a standard involution. We aim to extend this result in various

directions, first to the case of arbitrary commutative base rings, then to locally free

rank 3 algebras over a commutative ring, and finally to sheaves of locally free rank 3

algebras over an arbitrary base scheme.

Section 2.2

Definitions and conventions

Throughout we insist that all rings are unital, and that all ring homomorphisms map

1 to 1. Let R be a commutative ring.

Definition 2.2.1. An algebra over R (or R-algebra) is a ring A together with a ring

homomorphism ϕ : R→ A such that ϕ(R) is contained in the center of A. We call ϕ

the structure map of A.

Given an R-algebra A with structure map ϕ : R → A, let I = ker(ϕ). Then

there is a natural (R/I)-module structure on A induced by the canonical quotient

map R→ R/I. Moreover, the induced structure map ϕ : R/I → A is injective. Thus

by replacing R by R/I, we may assume that the structure map is an embedding.

Henceforth, we insist that the structure map is injective. Thus an R-algebra is a ring

A equipped with an embedding ϕ : R ↪→ A such that ϕ(R) is contained in the center

of A. Furthermore, we identify R with its image under the embedding R ↪→ A.

10



2.2 Definitions and conventions

Definition 2.2.2. An R-algebra A is free if it is free as an R-module, and its rank

is its rank as an R-module.

2.2.1. An example: quaternion algebras

The moduli space of algebras is vast. In order to try to navigate it, we stratify it

using different sorts of discrete invariants. Many of these occur in “nature” and can

be seen in particular in quaternion algebras.

Let F be a field of characteristic 6= 2.

Definition 2.2.3. An algebra A over F is a quaternion algebra if there exists a basis

1, i, j, k for A as an F -vector space such that

i2 = a, j2 = b, k = ij = −ji

for some a, b ∈ F×. We denote the algebra defined in this way by

(
a, b

F

)
. We begin

by examining some of the properties of a quaternion algebra A—we will abstract and

generalize these properties as we investigate algebras of low rank.

Rank. Since 1, i, j, k is a basis, then A has dimension 4 as an F -vector space.

Nearly all the algebras we will consider will be free, or at least locally free.

Involution. A quaternion algebra A has a notion of conjugation: for α ∈ A with

α = t+ xi+ yj + zk, let

α = t− xi− yj − zk .

The map · : A→ A is F -linear and satisfies the following properties:

(i) 1 = 1;

(ii) · is an anti-homomorphism: αβ = β α for all α, β ∈ A;

11



2.2 Definitions and conventions

(iii) · is an involution, i.e., α = α for all α ∈ A; and

(iv) αα ∈ F for all α ∈ A.

A map with these properties is called a standard involution.

Degree. For α ∈ A define the reduced trace and norm of α by

trd(α) = α + α nrd(α) = αα .

Then every α ∈ A satisfies a polynomial of degree 2, namely

µα(T ) := T 2 − trd(α)T + nrd(a) ∈ F [T ] .

Characteristic polynomial. Let A act on itself by left multiplication. This gives a

ring homomorphism λ : A→ M4(F ). With µα as above, then we have

χα(T ) = µα(T )2

for all α ∈ A, where χα is the characteristic polynomial of λ(α).

2.2.2. Properties of algebras

We remind the reader of our running assumption that R is a commutative ring and

A is an R-algebra, as stated in section 2.2.

Definition 2.2.4. An involution · : A → A is an R-linear map that is self-inverse

(i.e., x = x for all x ∈ A), and a ring anti-homomorphism, meaning xy = y x for all

x, y ∈ A. An involution · is standard if xx ∈ R for all x ∈ A.

12



2.2 Definitions and conventions

Remark 2.2.5. Note that if · is a standard involution, then

R 3 (x+ 1)(x+ 1) = (x+ 1)(x+ 1) = xx+ x+ x+ 1

and hence x+x = xx−1 ∈ F for all x ∈ A as well. Consequently, (x+x)x = x(x+x)

so xx = xx for all x ∈ A.

Remark 2.2.6. An algebra equipped with a standard involution is sometimes called a

Cayley algebra; cf., [Bourbaki, 1998, Ch. III, §2.4].

Definition 2.2.7. The degree of an R-algebra A, written degR(A), is the smallest

positive integer n such that every α ∈ A satisfies a monic polynomial of degree n with

coefficients in R. If no such n exists, then A has degree ∞.

Remark 2.2.8. We have seen that quaternion algebras, and indeed all algebras with

a standard involution, have degree at most 2.

Proposition 2.2.9. Let A be a free R-algebra of rank n. Then A has degree ≤ n.

This proposition follows from a generalized version of the classical Cayley-Hamilton

theorem from linear algebra.

Proposition 2.2.10 (Theorem 4.3, [Eisenbud, 2013]). Let I ⊆ R be an ideal and M

an R-module that can be generated by n elements. Let ϕ be an endomorphism of M .

If

ϕ(M) ⊆ IM,

then there is a monic polynomial

p(x) = T n + p1T
n−1 + · · ·+ pn

13



2.2 Definitions and conventions

with pj ∈ Ij for each j, such that p(ϕ) = 0 as an endomorphism of M .

Proof of 2.2.9. Given a ∈ A, let λa : A→ A, x 7→ ax be the R-algebra endomorphism

given by left multiplication by a. Taking ϕ = λa in Proposition 2.2.10, we obtain

a polynomial p with the properties above. In particular, p(T ) ∈ R[T ] is monic and

p(λa) = 0 ∈ End(M). Then

0 = p(λa)(1) = an + p1a
n−1 + · · ·+ pn ,

so a has degree ≤ n.

It turns out that the näıve notion of degree introduced above is not invariant

under base change. In [Voight, 2011c, Example 1.20], Voight presents an example of

an algebra whose degree increases under base change. The author then proposes the

following variant of degree, which is manifestly invariant under base change.

Definition 2.2.11. The geometric degree of A, denoted gdegR(A), is the maximum

of degS(A⊗R S) taken over all homomorphisms R→ S with S a commutative ring.

Remark 2.2.12. [Voight, 2011c, Lemma 1.23] shows that the above definition of geo-

metric degree can be interpreted in terms of a “universal” or “generic” element, and

consequently agrees with the definition of degree given in [Jacobson, 1963].

One more related property that will be useful is the notion of an exceptional

algebra.

Definition 2.2.13. An R-algebra A is exceptional if there exists a left ideal M of A

such that A = R ⊕M (as R-modules) and an R-linear map t : M → R such that

14



2.3 Moduli spaces and representability

the map M → HomR(M,A) given by left multiplication factors through t, i.e., the

following diagram commutes.

M HomR(M,A)

R

t

In other words, αβ = t(α)β for all α, β ∈M .

Remark 2.2.14. For an exceptional algebra A, the map α := t(α)−α defines a standard

involution on A. Thus exceptional algebras have degree at most 2.

Section 2.3

Moduli spaces and representability

In the following we state the definitions for contravariant functors, but they are also

valid for covariant functors with the necessary reversing of arrows.

Definition 2.3.1. Let C and D be categories and F ,G : C → D be contravariant

functors. A morphism or natural transformation of functors τ : F → G is a collection

of morphisms {τX}X∈Ob(C ) in D such that for each morphism ϕ : X → Y in C (i.e.,

X, Y ∈ Ob(C ) and ϕ ∈ HomC (X, Y )), the following diagram commutes.

F (Y ) F (X)

G (Y ) G (X)

F (ϕ)

τY τX

G (ϕ)

A natural isomorphism or isomorphism of functors is a natural transformation with

a two-sided inverse.

15



2.3 Moduli spaces and representability

Remark 2.3.2. Equivalently, a natural transformation τ is an isomorphism if and only

if τX is an isomorphism for each object X.

Definition 2.3.3. Let C be a locally small category and C be an object in C . The

covariant and contravariant hom-functors hC and hC are defined as

hC = HomC (C, ) : C → (sets)

X 7→ HomC (C,X)

hC = HomC ( , C) : C → (sets)

X 7→ HomC (X,C)

and acting on morphisms by post- and pre-composition, respectively.

Definition 2.3.4. The functor of points of a scheme X is the contravariant hom-

functor

hX = Hom( , X) : (schemes)→ (sets)

Y 7→ Hom(Y,X)

which acts on morphisms by pre-composition. That is, given a morphism f : Y → Y ′

of schemes, define

f# := hX(f) : hX(Y ′) = Hom(Y ′, X)→ Hom(Y,X) = hX(Y )

16



2.3 Moduli spaces and representability

by f#(g) = g ◦ f .

Y Y ′

X

f

g◦f
g

A contravariant functor F : (schemes) → (sets) is representable if there exists a

scheme X such that F and hX are isomorphic as functors. In this case we say that

X represents F .

Remark 2.3.5. Given a commutative ring R, we define the functor of points of R to

be that of Spec(R).

Definition 2.3.6. If a contravariant functor M : (schemes) → (sets) is represented

by a scheme X, we say that X is a fine moduli space for M.

Lemma 2.3.7 (Yoneda). Let C be a category, X an object in C and F : C → (sets)

a contravariant functor. There exists a natural bijection

Hom(hX ,F )
∼−→ F (X) .

Proof. Given a natural transformation τ : hX → F , the key idea is to consider the

identity element idX ∈ Hom(X,X) = hX(X). We get a map

α : Hom(hX ,F )→ F (X)

τ 7→ τX(idX) .

Conversely, suppose ξ ∈ F (X). We seek to construct a natural transformation

τ ξ : hX → F such that τ ξX(idX) = ξ. If we had such a transformation, then for each

17



2.3 Moduli spaces and representability

morphism f : Y → X we would have the following commutative diagram.

idX f#(idX) = f

hX(X) hX(Y )

F (X) F (Y )

τ ξX(idX) = ξ F (f)(ξ) = τ ξY (f)

f#

τξX τξY

F (f)

Thus we are forced to define τ ξ by τ ξY (f) = F (f)(ξ) for each morphism f : Y →

X in C . We show that with this definition τ ξ = {τ ξY }Y ∈Ob(C ) is indeed a natural

transformation. Given a morphism f : Y → Z, we must show that the following

diagram is commutative.

hX(Z) hX(Y )

F (Z) F (Y )

f#

τξZ τξY

F (f)

Given g ∈ hX(Z) = Hom(Z,X), then

F (f)(τ ξZ(g)) = F (f)(F (g)(ξ)) = F (g ◦ f)(ξ) = τ ξY (g ◦ f) = τ ξY (f#(g))

so the diagram commutes and τ ξ is natural. Thus the above definition yields a map

β : F (X)→ Hom(hX ,F )

ξ 7→ τ ξ .

18



2.4 Framed algebras

We claim that α and β are mutually inverse. Given ξ ∈ F (X), then

α(β(ξ)) = α(τ ξ) = τ ξX(idX) = F (idX)(ξ) = idF (X)(ξ) = ξ .

Given τ ∈ Hom(hX ,F ), then β(α(τ)) = β(τX(idX)) = τ τX(idX). Thus it suffices to

show that τ τX(idX) = τ . Given a morphism f : Y → X in C , then

τ
τX(idX)
Y (f) = F (f)(τX(idX)) = τY (f#(idX)) = τY (f)

by the commutativity of the above diagram. Thus τ τX(idX) = τ .

Remark 2.3.8. The quantity F (f)(ξ) ∈ F (X) considered in the above proof plays

an important role. It is sometimes denoted f ∗ξ.

Definition 2.3.9. Let C be a category and F : C → (sets) be a contravariant

functor. A pair (U, ξ) consisting of an object U in C and ξ ∈ F (U) is called a

universal pair and U a universal object if for each pair (C, x) consisting of an object

C in C and x ∈ F (C) there is a unique morphism ϕ : U → C with F (f)(ξ) = x.

Proposition 2.3.10. Let C be a category, F : C → (sets) a contravariant functor,

U be an object of C , and τ : hU → F a natural transformation. Then τ is an

isomorphism (i.e., U represents F ) iff (U, τX(idX)) is a universal pair of F .

Section 2.4

Framed algebras

The presence of automorphisms makes it difficult or impossible to construct mod-

uli spaces as schemes. To eliminate these unwanted automorphisms, we equip our

19



2.4 Framed algebras

algebras with a choice of basis.

A framed R-algebra is an (associative, unital) R-algebra A that is free of rank n

over R, along with a choice of basis e1, . . . , en. A morphism of framed R-algebras

(A, (e1, . . . , en)) and (A′, (e′1, . . . , e
′
n)) is an R-algebra homomorphism Φ : A → A′

such that Φ(ei) = e′i for each i = 1, . . . , n.

Since A is free of rank n, then each product eiej can be written as an R-linear

combination of the ek:

eiej =
n∑
k=1

c
(k)
ij ek (2.4.1)

for some constants c
(k)
ij ∈ R, with i, j, k ∈ {1, . . . , n}, called the structure constants

of the framed algebra (A, (e1, . . . , en)). As every a ∈ A can be written as a linear

combination of e1, . . . , en, these structure constants determine the multiplication table

for A.

The associativity of A imposes polynomial relations on the structure constants

c
(k)
ij . Note that

(eiej)ek =
∑
`

c
(`)
ij e`ek =

∑
`

c
(`)
ij

∑
m

c
(m)
`k em =

∑
`

∑
m

c
(`)
ij c

(m)
`k em

ei(ejek) = ei
∑
`

c
(`)
jk e` =

∑
`

c
(`)
jk eie` =

∑
`

c
(`)
jk

∑
m

c
(m)
i` em =

∑
`

∑
m

c
(`)
jk c

(m)
i` em .

Since (eiej)ek = ei(ejek), equating the coefficient of em in the above equations yields

n∑
`=1

c
(`)
ij c

(m)
`k =

n∑
`=1

c
(`)
jk c

(m)
i` (2.4.2)

for all choices of i, j, k,m ∈ {1, . . . , n}. Conversely, given any constants c
(k)
ij ∈ R
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2.5 Modest bases

satisfying (2.4.2), we can define a framed R-algebra by defining multiplication of

basis elements as in (2.4.1) and extending linearly. This allows us to associate to each

framed R-algebra (A, (ei)i) with associated structure constants c
(k)
ij the point (c

(k)
ij )i,j,k

in the affine subvariety of An3

cut out by (2.4.2).

An important example of a framed R-algebra is the algebra

R[x1, . . . , xn−1]

(x1, . . . , xn−1)2

with basis (1, x1, . . . , xn−1).

Definition 2.4.1. A framed R-algebra A with basis (e1, . . . , en−1) is nilproduct if it

is isomorphic as framed R-algebras to

R[x1, . . . , xn−1]

(x1, . . . , xn−1)2

with basis (1, x1, . . . , xn−1).

Section 2.5

Modest bases

Given a framed R-algebra A, we can equip it with a particular kind of basis that

further rigidifies the situation and makes our classification easier. In [Voight, 2011c],

Voight shows that R is a direct summand of A (as an R-module).

Lemma 2.5.1 ([Voight, 2011c, Lemma 1.3]). Let A be an R-algebra that is finitely

generated and projective as an R-module. Assume further that A has constant rank,

meaning that there is some constant c ∈ Z≥0 such that rankRp(Ap) = c for all p ∈
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2.5 Modest bases

Spec(R). Then R is a direct summand of A.

In the course of the proof of this lemma, Voight shows that A/R is locally free.

Thus there exist f1, . . . , fm ∈ R with (f1, . . . , fm) = R such that (A/R)fi = (A/R)⊗R

Rfi is free for each i. Since

Afi
∼= (R⊕ A/R)fi

∼= Rfi ⊕ (A/R)fi ,

and 1 is a basis for Rfi , then for each i there is a basis of Afi containing 1.

Definition 2.5.2. Let A be a free R algebra. A basis (ei)i of A is unital if e1 = 1.

For the moment, suppose we are in the case where A itself has a unital basis.

Since e1 = 1, this imposes further restrictions on the structure constants. Since

ei = eie1 =
∑
k

c
(k)
i1 ek

ej = e1ej =
∑
k

c
(k)
1j ek

we see that

c
(k)
i1 = δik =


1 , if i = k ;

0 , otherwise ;

and c
(k)
1j = δjk =


1 , if j = k ;

0 , otherwise ;

(2.5.1)

for all i, j, k ∈ {1, . . . , n}. (Here δik denotes the Kronecker delta.)

There are still two degrees of freedom left in the choice of basis, so we can impose

even further conditions.

Definition 2.5.3. A unital basis (ei)i for A with associated structure constants
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2.5 Modest bases

{c(k)
ij }i,j,k is modest if

c
(i)
i,i+1 = 0 for i = 2, . . . , n− 1 and c

(n)
n,2 = 0. (2.5.2)

(Note that c
(i)
i,i+1 is the coefficient of ei in the product eiei+1.)

Remark 2.5.4. For a free R-algebra A of rank n = 2, the criterion (2.5.2) is vacuous.

For n = 3, (2.5.2) implies c
(2)
23 = c

(3)
32 = 0, meaning that

e2e3 = r + se3 and e3e2 = t+ ue2

for some r, s, t, u ∈ R.

Remark 2.5.5. Our definition of modest basis is similar, but slightly different from,

the notion of a normal basis introduced in [Delone and Faddeev, 1940, §15] and that

of a good basis given in [Gross and Lucianovic, 2009].

We now show that any unital basis can be transformed into a modest basis.

Lemma 2.5.6. Let A be a framed R-algebra of rank n with unital basis (ei)i. Then

A has a modest basis.

Proof. Define the basis (e′i)i by e′1 = 1, e′2 = e2 − c
(n)
n,2, and e′i+1 = ei+1 − c

(i)
i,i+1 for

i = 2, . . . n− 1. Then for i 6= n we have

e′ie
′
i+1 = (ei − c(i−1)

i−1,i )(ei+1 − c(i)
i,i+1) = c

(i−1)
i−1,i c

(i)
i,i+1 − c

(i−1)
i−1,i ei+1 − c(i)

i,i+1ei +
n∑
k=1

c
(k)
i,i+1ek .
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2.6 Sheaves and gluing

Thus the ei term in the last sum cancels out, yielding

e′ie
′
i+1 = c

(i−1)
i−1,i c

(i)
i,i+1 + (c

(i+1)
i,i+1 − c

(i−1)
i−1,i )ei+1 +

n∑
k=1

k 6=i,i+1

c
(k)
i,i+1ek .

Using the identity ek = e′k + c
(k−1)
k−1,k to rewrite this expression in terms of (e′i)i, we find

e′ie
′
i+1 = c

(i−1)
i−1,i c

(i)
i,i+1 + (c

(i+1)
i,i+1 − c

(i−1)
i−1,i )(e

′
i+1 + c

(i)
i,i+1) +

n∑
k=1

k 6=i,i+1

c
(k)
i,i+1(e′k + c

(k−1)
k−1,k)

= c
(i−1)
i−1,i c

(i)
i,i+1 − c

(i−1)
i−1,i c

(i)
i,i+1 +

 n∑
k=1
k 6=i

c
(k)
i,i+1c

(k−1)
k−1,k


+ (c

(i+1)
i,i+1 − c

(i−1)
i−1,i )e

′
i+1 +

n∑
k=1

k 6=i,i+1

c
(k)
i,i+1e

′
k .

Thus there is no e′i appearing in this expression, as desired. A similar computation

for i = n shows that the coefficient of e′n in e′ne2 is also 0. Thus (e′i)i is a modest

basis.

Section 2.6

Sheaves and gluing

Our strategy for proving classification results for sheaves of algebras over a scheme is

to first prove the corresponding results for algebras over a ring, and then show that

we can glue these algebras together in order to get a sheaf. Thus we will need the

following definitions and results on extending sheaves on a base. We refer the reader

to [Stacks Project Authors, 2019, §6.30] for further details.
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2.6 Sheaves and gluing

Definition 2.6.1. Let X be a topological space and let B be a basis for the topology

on X.

(1) A presheaf F of sets on B is a rule which assigns to each U ∈ B a set F (U)

and to each inclusion V ⊆ U of elements of B a map resUV : F (U) → F (V )

such that resUU = idF (U) for all U ∈ B and whenever W ⊆ V ⊆ U in B we have

resUW = resVW ◦ resUV .

(2) A morphism ϕ : F → G of presheaves of sets on B is a rule which assigns

to each element U ∈ B a map of sets ϕ : F (U) → G (U) compatible with

restriction maps.

(3) A sheaf F of sets on B is a presheaf of sets on B which satisfies the following

additional property: given any U ∈ B, and any covering {Ui}i of U with Ui ∈ B

for all i, and any coverings {Uijk}k∈Iij of Ui ∩Uj with Uijk ∈ B for all i, j, k, the

following condition holds. Given a collection of sections {si}i with si ∈ F (Ui)

for all i such that for all i, j ∈ I and all k ∈ Ijk

si|Uijk = sj|Uijk

there exists a unique section s ∈ F (U) such that si = s|Ui for all i ∈ I.

We can make a similar definition for sheaves on a base taking values in other

categories. We first give a general definition of an algebraic structure following [Stacks

Project Authors, 2019, §6.15].

Definition 2.6.2. A type of algebraic structure is given by a category C and functor

F : C → (sets) with the following properties:
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2.6 Sheaves and gluing

(1) F is faithful;

(2) C has limits and F commutes with limits;

(3) C has filtered colimits and F commutes with them; and

(4) F reflects isomorphisms.

The main algebraic structures we consider are the categories of abelian groups,

rings, and R-modules for a fixed ring R, each equipped with the appropriate forgetful

functor.

Definition 2.6.3. Let X be a topological space and let B be a basis for the topology

on X. Let (C , F ) be a type of algebraic structure.

(1) A presheaf F with values in C on B is a rule which assigns to each U ∈ B an

object F (U) of C and to each inclusion V ⊆ U of elements of B a morphism

resUV such that resUU = idF (U) for all U ∈ B and whenever W ⊆ V ⊆ U in B we

have resUW = resVW ◦ resUV .

(2) A morphism ϕ : F → G of presheaves with values in C on B is a rule which

assigns to each element U ∈ B a map of sets ϕ : F (U) → G (U) compatible

with restriction maps.

(3) A sheaf F with values in C on B is a presheaf with values in C on B whose

underlying presheaf of sets is a sheaf.

The next result shows that a sheaf on a basis uniquely extends to a sheaf.

Lemma 2.6.4 ([Stacks Project Authors, 2019, Lemma 6.30.9]). Let X be a topological

space. Let (C , F ) be a type of algebraic structure. Let B be a basis for the topology
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2.7 Results from algebraic geometry

on X. Let F be a sheaf on B with values in C . Then there exists a unique sheaf F̃

on X with values in C such that F̃ (U) = F (U) for all U ∈ B compatibly with the

restriction maps.

Section 2.7

Results from algebraic geometry

We collect here some results from algebraic geometry which we will use to study the

moduli of the framed cubic algebras in the next chapter.

We use the following results to characterize when a property is affine local.

Proposition 2.7.1 (Nike’s Trick, [Vakil, 2015, Proposition 5.3.1]). Suppose Spec(A)

and Spec(B) are affine open subschemes of a scheme X. Then Spec(A) ∩ Spec(B)

is the union of open sets that are simultaneously distinguished open subschemes of

Spec(A) and Spec(B).

Lemma 2.7.2 (Affine Communication Lemma, [Vakil, 2015, Lemma 5.3.2]). Let P

be some property enjoyed by some affine open subsets of a scheme X, such that

(i) if an affine open subset Spec(R) ↪→ X has property P then for any f ∈ R,

Spec(Rf ) ↪→ X does, too; and

(ii) if (f1, . . . , fm) = R, and Spec(Rfi) ↪→ X has P for all i, then so does Spec(R) ↪→

X.

Suppose that X =
⋃
i∈I

Spec(Ri), where Spec(Ri) has property P . Then every affine

open subset of X has P , too.

Definition 2.7.3. A property P satisfying (i) and (ii) above is called affine-local.
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2.7 Results from algebraic geometry

We will also need the following result on sheaves of modules on an affine scheme.

Proposition 2.7.4 (Corollary II.5.5, [Hartshorne, 2013]). Let R be a commutative

ring and let X = Spec(R). The functor M 7→ M̃ gives an equivalence of categories

between the category of R-modules and the category of quasicoherent OX-modules. Its

inverse is the functor F 7→ Γ(X,F ). If R is noetherian, the same functor also gives

an equivalence of categories between the category of finitely generated R-modules and

the category of coherent OX-modules.

The following definition and result show that quasicoherent sheaves of ideals and

closed subschemes are in bijective correspondence.

Definition 2.7.5. Let X be a scheme, Y a closed subscheme of X, and i : Y ↪→ X the

inclusion morphism. The ideal sheaf of Y , denoted IY , is the kernel of the morphism

of sheaves i# : OX → i∗OY .

Proposition 2.7.6 ([Hartshorne, 2013, Proposition II.5.9], [Liu, 2002, Ch. 5, Propo-

sition 1.15]). Let X be a scheme. For any closed subscheme Y of X, the corresponding

ideal sheaf IY is a quasicoherent sheaf of ideals on X. If X is noetherian it is co-

herent. Conversely, any quasicoherent sheaf of ideals on X is the ideal sheaf of a

uniquely determined closed subscheme of X.

We collect below some useful results on quasicoherent sheaves.

Proposition 2.7.7 ([Liu, 2002, Ch. 5, Proposition 1.8]). Let X be an affine scheme.

Let 0→ F → G →H → 0 be an exact sequence of OX-modules with F quasicoher-

ent. Then the sequence of global sections

0→ F (X)→ G (X)→H (X)→ 0
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2.7 Results from algebraic geometry

is exact.

Proposition 2.7.8 ([Liu, 2002, Ch. 5, Proposition 1.12]). Let X be a scheme.

(a) If F ,G are quasicoerent (resp., finitely generated quasicoherent) OX-modules,

then so is F ⊗OX G . Moreover, for any affine open subset U of X, we have

(F ⊗OX G )(U) ∼= F (U)⊗OX(U) G (U).

(b) Let u : F → G be a morphism of quasicoherent sheaves. Then ker(u), img(u),

and coker(u) are quasicoherent.

Proposition 2.7.9 ([Liu, 2002, Ch. 5, Proposition 1.14]). Let f : X → Y be a

morphism of schemes and let G be an OY -module.

(a) For any x ∈ X, we have a canonical isomorphism

(f ∗G )x ∼= Gf(x) ⊗OY,f(x) OX,x .

(b) Suppose G is quasicoherent. Let U be an affine open subset of X such that f(U)

is contained in an affine open subset V of Y . Then

f ∗G |U ∼= (G (V )⊗OY (V ) OX(U))̃

In particular, f ∗G is quasicoherent.

Finally, we will use the projection formula (also known as the push-pull formula)

below, which describes the result of first pulling back and then pushing forward a

sheaf by a morphism.
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2.7 Results from algebraic geometry

Proposition 2.7.10 ([Hartshorne, 2013, Exercise II.5.1]). Let f : X → Y be a

morphism of ringed spaces, F be an OX-module and E be a locally free OY -module

of finite rank. Then there is a natural isomorphism f∗(F ⊗OX f
∗E ) ∼= f∗(F )⊗OY E .
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Chapter 3

Moduli of cubic algebras

Section 3.1

Results in the literature

The main results of this part are generalizations of the following theorem.

Theorem 3.1.1 (Theorem 5.1, [Levin, 2013]). Let R be a domain. A free R-algebra

of rank 3 is either commutative or possesses a standard involution.

In [Voight, 2011c], Voight shows that having a standard involution and being

exceptional are equivalent properties for rank 3 algebras.

Theorem 3.1.2 (Theorem B, [Voight, 2011c]). An R-algebra A of rank 3 has a

standard involution if and only if it is exceptional.

We will generalize Theorem 3.1.1, first to the case of arbitrary commutative base

rings, then to sheaves of locally free rank 3 algebras over an arbitrary base scheme. We

approach the problem from an algebro-geometric and moduli theoretic perspective.

Our results bear similarities to the following proposition.
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Proposition 3.1.3 (Proposition 4.4, [Voight, 2011b]). Let A be an R-algebra of rank

4 with a standard involution. The set of primes p such that A ⊗R R/p ∼= A/pA is

a quaternion (resp. exceptional) ring is Zariski-closed in Spec(R). Given an algebra

of rank 4 over R with standard involution, there exists a decomposition Spec(RQ) ∪

Spec(RE) ↪→ Spec(R) such that ARQ := A ⊗R RQ is a quaternion ring, ARE is an

exceptional ring, and Spec(RQ) and Spec(RE) are the largest (closed) subschemes

with these properties.

Section 3.2

The universal case

Define the functor M�
n : (commutative rings)→ (sets) by

M�
n (R) = {isomorphism classes of modestly framed rank n R-algebras} .

We complete the definition by specifying the action on morphisms: given a ring

homomorphism ϕ : R→ R′, define

M�
n (ϕ) : M�

n (R)→M�
n (R′)

(A, (ei)i) 7→ (A⊗R R′, (ei ⊗ 1)i)

where we consider R′ as an R-module via the homomorphism ϕ.

Proposition 3.2.1. The functor M�
n is representable by an affine scheme of finite

type over Z.

Proof. Define Runiv = Z[γ
(k)
ij ]/I where I is the ideal of all the relations listed in (2.4.2),
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(2.5.1), and (2.5.2):

I =

(∑
`

γ
(`)
ij γ

(m)
`k −

∑
`

γ
(`)
jk γ

(m)
i` : i, j, k,m ∈ {1, . . . , n}

)

+
(
γ

(k)
i1 − δik : i, k ∈ {1, . . . , n}

)
+
(
γ

(k)
1j − δjk : j, k ∈ {1, . . . , n}

)
+ (γ

(i)
ii+1 : i ∈ {2, . . . , n− 1}) + (γ

(n)
n2 )

(3.2.1)

where δik and δjk are Kronecker deltas. Define the Auniv to be the free Runiv-algebra

of rank n with basis 1 = ε1, ε2, . . . , εn, and with multiplication defined by (2.4.1), i.e.,

εiεj =
n∑
k=1

γ
(k)
ij εk (3.2.2)

for i, j ∈ {1, . . . , n}.

Suppose R is a commutative ring and (A, (ei)i) is a modestly framed R-algebra

with associated structure constants c
(k)
ij . Define the ring homomorphism

ϕ : Z[γ
(k)
ij ]→ R

γ
(k)
ij 7→ c

(k)
ij .

Since the structure constants {c(k)
ij }i,j,k satisfy the relations given in (2.4.2), (2.5.1),

and (2.5.2), then ϕ descends to a homomorphism ϕ : Runiv = Z[γ
(k)
ij ]/I → R. Giving

R the structure of an Runiv-module via ϕ, then A ∼= Auniv ⊗Runiv
R as R-algebras.

It remains to show that ϕ is unique. Suppose ψ : Runiv → R is a homomorphism

such that A ∼= Auniv⊗Runiv
R where R is given the Runiv-module structure induced by

ψ. Denote the isomorphism A
∼→ Auniv⊗Runiv

by Ψ. Given i, j ∈ {1, . . . , n}, on one
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3.2 The universal case

hand we have

(εi ⊗ 1)(εj ⊗ 1) = εiεj ⊗ 1 =
∑
k

γ
(k)
ij εk ⊗ 1 =

∑
k

εk ⊗ ψ(γ
(k)
ij ) =

∑
k

ψ(γ
(k)
ij )(εk ⊗ 1) .

On the other, since Ψ is a framed R-algebra homomorphism, then

(εi ⊗ 1)(εj ⊗ 1) = Ψ(ei)Ψ(ej) = Ψ(eiej) = Ψ

(∑
k

c
(k)
ij ek

)
=
∑
k

c
(k)
ij Ψ(ek)

=
∑
k

c
(k)
ij (εk ⊗ 1) .

Since {εk⊗1}k is a basis for Auniv⊗Runiv
, then ψ(γ

(k)
ij ) = c

(k)
ij = ϕ(γ

(k)
ij ) for all k. Since

Runiv is generated by {γ(k)
ij }i,j,k as a ring (i.e., as a Z-algebra), then ψ = ϕ. Thus

Runiv represents M�
n with universal object Auniv.

Remark 3.2.2. Let R be a commutative ring and (A, (ei)i) a framed R-algebra of rank

n with associated structure constants c
(k)
ij . Applying the proof of Yoneda’s lemma to

the representability proved in Proposition 3.2.1, this means that there exists a unique

ring homomorphism ϕ : Runiv → R, γ
(k)
ij 7→ c

(k)
ij such that Auniv ⊗Runiv

R ∼= A as

R-modules via the map εi ⊗ 1 7→ ei. This is shown in the diagram below.
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3.2 The universal case

idRuniv
ϕ#(idRuniv

) = ϕ ◦ idRuniv
= ϕ

hRuniv
(Runiv) hRuniv

(R)

M�
n (Runiv) M�

n (R)

τRuniv
(idRuniv

) = Auniv τR(ϕ) = A

= M�
n (ϕ)(Auniv)

= Auniv ⊗Runiv
R

ϕ#

τRuniv τR

M�
n (ϕ)

The relations found above—those stemming from e1 = 1, associativity, and modest

basis—give explicit equations for the moduli space of rank n framed algebras. Let

n = 3. Computing with Magma [Cannon et al., 2006], we form the ideal I in Z[c
(k)
ij ],

a polynomial ring with 33 = 27 variables, generated by these relations.

Lemma 3.2.3. Let I be the ideal of relations in Z[γ
(k)
ij ] as in (3.2.1). Then I has the

following set of generators.

{γ(1)
11 − 1, γ

(2)
11 , γ

(3)
11 , γ

(1)
12 , γ

(2)
12 − 1, γ

(3)
12 , γ

(1)
13 , γ

(2)
13 , γ

(3)
13 − 1,

γ
(1)
21 , γ

(2)
21 − 1, γ

(3)
21 , γ

(1)
22 + γ

(3)
22 γ

(3)
33 , γ

(2)
22 γ

(3)
23 − γ

(3)
23

2
, γ

(2)
22 γ

(1)
32 + γ

(3)
22 γ

(1)
33 ,

γ
(2)
22 γ

(2)
32 − γ

(3)
23 γ

(3)
33 , γ

(2)
22 γ

(2)
33 + γ

(1)
33 , γ

(3)
22 γ

(3)
23 , γ

(3)
22 γ

(2)
32 , γ

(3)
22 γ

(2)
33 − γ

(1)
32 ,

γ
(1)
23 − γ

(1)
32 , γ

(2)
23 , γ

(3)
23 γ

(1)
32 , γ

(3)
23 γ

(2)
32 − γ

(3)
23 γ

(3)
33 , γ

(3)
23 γ

(1)
33 , γ

(3)
23 γ

(2)
33 ,

γ
(1)
31 , γ

(2)
31 , γ

(3)
31 − 1, γ

(1)
32 γ

(2)
32 , γ

(2)
32

2
− γ(2)

32 γ
(3)
33 , γ

(2)
32 γ

(1)
33 , γ

(2)
32 γ

(2)
33 , γ

(3)
32 }

Proof. This is a straightforward computation in Magma. (Indeed the above set is a
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3.2 The universal case

Gröbner basis for I with respect to the lexicographic monomial ordering.)

Lemma 3.2.4. Let R be a commutative ring and A be a framed R-algebra of rank 3

with modest basis 1 = e1, e2, e3 and associated structure constants c
(k)
ij . Then c

(1)
23 =

c
(1)
32 .

Proof. By 3.2.1 there exists a unique ring homomorphism ϕ : Runiv → R such that

ϕ(γ
(k)
ij ) = c

(k)
ij for all i, j, k. Since γ

(1)
23 − γ

(1)
32 = 0 in Runiv by Lemma 3.2.3, then

c
(1)
23 = ϕ(γ

(1)
23 ) = ϕ(γ

(1)
32 ) = c

(1)
32 .

Theorem 3.2.5. Let Runiv = Z[γ
(k)
ij ]/I be defined as in (3.2.1) and let (Auniv, (ε1, ε2, ε3))

be the framed rank 3 Runiv-algebra defined as in (3.2.2). Let Iuniv,C = (γ
(3)
23 , γ

(2)
32 ) and

Iuniv,E = (γ
(1)
22 , γ

(2)
22 − γ

(3)
23 , γ

(3)
22 , γ

(1)
23 , γ

(1)
32 , γ

(2)
32 − γ

(3)
33 , γ

(1)
33 , γ

(2)
33 )

and let Runiv,C = Runiv/Iuniv,C and Runiv,E = Runiv/Iuniv,E. Then

(a) The zero ideal (0) in Runiv has primary decomposition (0) = Iuniv,C ∩ Iuniv,E.

(b) Iuniv,C and Iuniv,E are prime.

(c) Runiv/Iuniv,C
∼= Z[γ

(2)
22 , γ

(3)
22 , γ

(2)
33 , γ

(3)
33 ] and Runiv/Iuniv,E

∼= Z[γ
(3)
23 , γ

(2)
32 ], polynomial

rings in 4 and 2 variables, respectively.

Proof. Using the built-in Gröbner basis capabilities of Magma [Cannon et al., 2006],

we compute the primary decomposition of (0) in Runiv. In 0.240 seconds, we find that

(0) = IC,univ ∩ IE,univ and that IC,univ and IE,univ are prime.

Observe that

Runiv

Iuniv,C

∼=
Z[γ

(k)
ij ]

I + Iuniv,C
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3.2 The universal case

and similarly for Iuniv,E. Again using Magma, we find that I + Iuniv,C has generators

{γ(1)
11 − 1, γ

(2)
11 , γ

(3)
11 , γ

(1)
12 , γ

(2)
12 − 1, γ

(3)
12 , γ

(1)
13 , γ

(2)
13 , γ

(3)
13 − 1,

γ
(1)
21 , γ

(2)
21 − 1, γ

(3)
21 , γ

(1)
22 + γ

(3)
22 γ

(3)
33 , γ

(2)
22 γ

(1)
32 + γ

(3)
22 γ

(1)
33 , γ

(2)
22 γ

(2)
33 + γ

(1)
33 , γ

(3)
22 γ

(2)
33 − γ

(1)
32 ,

γ
(1)
23 − γ

(1)
32 , γ

(2)
23 , γ

(3)
23 ,

γ
(1)
31 , γ

(2)
31 , γ

(3)
31 − 1, γ

(2)
32 , γ

(3)
32 }

Eliminating superfluous variables, we find

Runiv

Iuniv,C

∼=
Z[γ

(k)
ij ]

I + Iuniv,C

∼=
Z[γ

(1)
22 , γ

(2)
22 , γ

(3)
22 , γ

(1)
23 , γ

(2)
32 , γ

(1)
33 , γ

(2)
33 , γ

(3)
33 ]

(f1, f2, f3, f4, f5)

where

f1 = γ
(1)
22 + γ

(3)
22 γ

(3)
33

f2 = γ
(2)
22 γ

(1)
32 + γ

(3)
22 γ

(1)
33

f3 = γ
(2)
22 γ

(2)
33 + γ

(1)
33

f4 = γ
(3)
22 γ

(2)
33 − γ

(1)
32

f5 = γ
(1)
23 − γ

(1)
32

The relations given by f1, f3, f4, and f5 allow us to rewrite γ
(1)
22 , γ

(1)
23 , γ

(2)
32 , γ

(1)
33 in terms

of γ
(2)
22 , γ

(3)
22 , γ

(2)
33 , and γ

(3)
33 , and thus eliminate them in the quotient. Substituting the

relations γ
(1)
32 = γ

(3)
22 γ

(2)
33 and γ

(1)
33 = −γ(2)

22 γ
(2)
33 given by f4 and f3 into f2, we find

γ
(2)
22 γ

(1)
32 + γ

(3)
22 γ

(1)
33 = γ

(2)
22 (γ

(3)
22 γ

(2)
33 ) + γ

(3)
22 (−γ(2)

22 γ
(2)
33 ) = 0 .

37



3.2 The universal case

Thus

Runiv

Iuniv,C

∼=
Z[γ

(1)
22 , γ

(2)
22 , γ

(3)
22 , γ

(1)
23 , γ

(2)
32 , γ

(1)
33 , γ

(2)
33 , γ

(3)
33 ]

(f1, f2, f3, f4, f5)
∼=

Z[γ
(2)
22 , γ

(3)
22 , γ

(2)
33 , γ

(3)
33 ]

(0)

∼= Z[γ
(2)
22 , γ

(3)
22 , γ

(2)
33 , γ

(3)
33 ] .

Similarly, we find that I + Iuniv,E has generators

{γ(1)
11 − 1, γ

(2)
11 , γ

(3)
11 , γ

(1)
12 , γ

(2)
12 − 1, γ

(3)
12 , γ

(1)
13 , γ

(2)
13 , γ

(3)
13 − 1,

γ
(1)
21 , γ

(2)
21 − 1, γ

(3)
21 , γ

(1)
22 , γ

(2)
22 − γ

(3)
23 , γ

(3)
22 , γ

(1)
23 , γ

(2)
23 ,

γ
(1)
31 , γ

(2)
31 , γ

(3)
31 − 1, γ

(1)
32 , γ

(2)
32 − γ

(3)
33 , γ

(3)
32 , γ

(1)
33 , γ

(2)
33 } .

Eliminating superfluous variables as before yields

Runiv

Iuniv,E

∼=
Z[γ

(k)
ij ]

I + Iuniv,C

∼= Z[γ
(3)
23 , γ

(2)
32 ] ,

as desired.

Corollary 3.2.6. Let Xuniv = Spec(Runiv). Then

(a) The irreducible components of Xuniv are

Xuniv,C = Spec(Runiv/Iuniv,C) and Xuniv,E = Spec(Runiv/Iuniv,E) .

Moreover, Xuniv,C
∼= A4

Runiv
and Xuniv,E

∼= A2
Runiv

(b) Xuniv,C and Xuniv,E intersect in the point (i.e., subscheme of relative dimension

0 over Z) Spec(Runiv/(Iuniv,C + Iuniv,E)).
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3.2 The universal case

Proof. The primary decomposition given in Theorem 3.2.5 shows that Iuniv,C and

Iuniv,E are the minimal primes of Runiv, and thus correspond to maximal irreducible

closed subschemes of Spec(Runiv). Moreover,

XunivC ∩XunivE = Spec(Runiv/Iuniv,C)×Spec(Runiv) Spec(Runiv/Iuniv,E)

∼= Spec(Runiv/Iuniv,C ⊗Runiv
Runiv/Iuniv,E)

∼= Spec(Runiv/(Iuniv,C + Iuniv,E)) ∼= Spec(Z)

by the calculation of Iuniv,C + Iuniv,E given in the proof of Theorem 3.2.5.

Figure 3.2.1: An illustration of the moduli space Xuniv. The blue component rep-
resents the 4-dimensional component corresponding to commutative algebras, the
red component represents the 2-dimensional component corresponding to exceptional
algebras, and these two components intersect in a point, corresponding to the nil-
product algebra. (It should be noted that, despite appearances in the illustration,
this point is not singular.)

The ideals Iuniv,C and Iuniv,E correspond to commutative and exceptional algebras—

just as Runiv represents M�
n , Runiv,C and Runiv,E represent the closed subfunctors of
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3.2 The universal case

M�
n classifying commutative and exceptional algebras, respectively. Define the func-

tors

M�
n,C ,M

�
n,E : (commutative rings)→ (sets)

by

M�
n,C(R) = {isomorphism classes of commutative modestly framed

rank n R-algebras}

M�
n,E(R) = {isomorphism classes of exceptional modestly framed

rank n R-algebras} .

Proposition 3.2.7. The functors M�
3,C ,M

�
3,E are represented by Spec(Runiv,C) =

Spec(Runiv/IC,univ) and Spec(Runiv,E) = Spec(Runiv/IE,univ), respectively.

Proof. Let R be a commutative ring. Given a modestly framed commutative R-

algebra A of rank 3, then by Proposition 3.2.1 there is a unique ring homomorphism

ϕ : Runiv → R such that A ∼= Auniv⊗R as framed R-algebras. Since A is commutative

then e2e3− e3e2 = 0. Expanding this commutator in terms of structure constants, we

find

0 = e2e3 − e3e2 = �
�c

(1)
23 + c

(3)
23 e3 −�

�c
(1)
32 − c

(2)
32 e2 = −c(2)

32 e2 + c
(3)
23 e3 .

Since e1, e2, e3 is a basis, this implies that c
(3)
23 = c

(2)
32 = 0. Thus Iuniv,C ⊆ ker(ϕ) so ϕ :

Runiv → R descends to a homomorphism ϕ : Runiv,C = Runiv/Iuniv,C → R. It remains

to show that ϕ is unique. Let π : Runiv → Runiv/Iuniv,C be the canonical quotient

map. Given another homomorphism ϕ′ : Runiv/Iuniv,C → R, then ϕ′ ◦ π : Runiv → R
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3.2 The universal case

gives R the structure of a Runiv-module such that A ∼= Auniv ⊗R. By the uniqueness

of ϕ, then ϕ′ ◦ π = ϕ. Given y ∈ Runiv/Iuniv,C with π(x) = y, then

ϕ′(y) = ϕ′(π(x)) = ϕ(x) = ϕ(π(x)) = ϕ(y) .

Thus ϕ′ = ϕ.

It remains to show that Auniv,C := Auniv ⊗Runiv
Runiv,C is commutative. It suffices

to show that ε2 ⊗ 1 and ε3 ⊗ 1 commute. Recall that γ
(1)
23 = γ

(1)
32 and γ

(2)
23 = γ

(3)
32 = 0

in Runiv (the latter following from the modest basis condition). Moreover, since

γ
(3)
23 , γ

(2)
32 ∈ Iuniv,C , then γ

(3)
23 = γ

(2)
32 = 0 in Runiv,C . Then

(ε2 ⊗ 1)(ε3 ⊗ 1) = γ
(1)
23 = γ

(1)
32 = (ε3 ⊗ 1)(ε2 ⊗ 1)

so Auniv,C is commutative.

Suppose A is a modestly framed exceptional R-algebra of rank 3. Then there

exists an R-linear map t : M → R such that αβ = t(α)β for all α, β ∈ M . Let

r = t(e2) and s = t(e3). Then

e2
2 = t(e2)e2 = re2

e2
3 = t(e3)e3 = se3

e2e3 = t(e2)e3 = re3

e3e2 = t(e3)e2 = se2 .
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In terms of structure constants, this means that

c
(1)
22 = c

(3)
22 = 0

c
(2)
22 = r = c

(3)
23

c
(1)
23 = c

(2)
23 = 0

c
(1)
33 = c

(2)
33 = 0

c
(3)
33 = s = c

(2)
32

c
(1)
32 = c

(3)
32 = 0

Again by Proposition 3.2.1 there is a unique ring homomorphism ϕ : Runiv → R such

that A ∼= Auniv ⊗ R as framed R-algebras. By the computations above, we see that

Iuniv,E ⊆ ker(ϕ) so ϕ descends to a homomorphism ϕ : Runiv,E = Runiv/Iuniv,E → R.

Uniqueness of ϕ follows analogously to the commutative case.

It remains to show that Auniv,E := Auniv⊗Runiv
Runiv,E is exceptional. Let M be the

submodule of Auniv,E generated by ε2⊗1 and ε3⊗1. Since γ
(2)
22 −γ

(3)
23 , γ

(2)
32 −γ

(3)
33 ∈ Iuniv,E,

then γ
(2)
22 = γ

(3)
23 and γ

(2)
32 = γ

(3)
33 in Runiv,E. Let

r = γ
(2)
22 = γ

(3)
23

s = γ
(2)
32 = γ

(3)
33

and define t : M → Runiv,E by

t(ε2 ⊗ 1) = r and t(ε3 ⊗ 1) = s
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and extending linearly. Then

(ε2 ⊗ 1)2 = rε2 ⊗ 1 = t(ε2 ⊗ 1) ε2 ⊗ 1

(ε3 ⊗ 1)2 = sε3 ⊗ 1 = t(ε3 ⊗ 1) ε3 ⊗ 1

(ε2 ⊗ 1)(ε3 ⊗ 1) = rε3 ⊗ 1 = t(ε2 ⊗ 1) ε3⊗

(ε3 ⊗ 1)(ε2 ⊗ 1) = sε2 ⊗ 1 = t(ε3 ⊗ 1) ε2 ⊗ 1 .

Thus left multiplication factors through t, so Auniv,E is exceptional.

Corollary 3.2.8. Let Runiv,C , Runiv,E, Iuniv,C , Iuniv,E be as in Theorem 3.2.5. Then

Auniv ⊗Runiv
Runiv,C ⊗Runiv

Runiv,E

is the nilproduct algebra.

Proof. We have the following commutative diagram of ring homomorphisms.

Runiv Runiv,C

Runiv,E Runiv,C ⊗Runiv
Runiv,E

Applying Proposition 3.2.7 to each of these morphisms shows thatAuniv⊗Runiv
Runiv,C⊗Runiv

Runiv,E is both commutative and exceptional, hence is nilproduct.

Alternatively, note that

Runiv,C ⊗Runiv
Runiv,E

∼= (Runiv/Iuniv,C)⊗Runiv
(Runiv/Iuniv,E) ∼=

Runiv

Iuniv,C + Iuniv,E

.

Computing a Gröbner basis for Iuniv,C + Iuniv,E, we find that γ
(k)
ij ∈ Iuniv,C + Iuniv,E
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3.3 The framed case

for all i, j ∈ {2, 3} and all k ∈ {1, 2, 3}. This implies that (ei ⊗ 1)(ej ⊗ 1) = 0 for all

i, j ∈ {2, 3}, i.e., A⊗R RC ⊗R RE is the nilproduct algebra.

Section 3.3

The framed case

We begin by showing that commutativity and exceptionality are preserved under base

change.

Lemma 3.3.1. Let (A, (ei)i) be a framed R-algebra, let S be a commutative ring, and

let ϕ : R→ S be a ring homomorphism.

(a) If A is commutative, then A⊗R S is a commutative S-algebra.

(b) If A is exceptional, then A⊗R S is an exceptional S-algebra.

Proof. (a) Since A and S are both commutative rings, then A⊗R S is commutative

as well.

(b) Since A is exceptional, then there exists a left ideal M of A such that A = R⊕M ,

and an R-linear map t : M → HomR(M,A) as in Definition 2.2.13. Then

A⊗R S = (R⊕M)⊗R S ∼= (R⊗R S)⊕ (M ⊗R S) ∼= S ⊕ (M ⊗R S)

and M ⊗R S is a left ideal of A⊗R S. Moreover, the map t⊗ idS : M ⊗R S →

R ⊗R S ∼= S satisfies the necessary property described in Definition 2.2.13, so

A⊗R S is exceptional.
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Theorem 3.3.2. Let R be a commutative ring and (A, (e1, e2, e3)) be a modestly

framed R-algebra of rank 3 and associated structure constants c
(k)
ij , and let ϕ : Runiv →

R be the unique homomorphism such that A ∼= Auniv ⊗Runiv
R. Let

IC := ϕ(Iuniv,C)R = (c
(3)
23 , c

(2)
32 )

and

IE := ϕ(Iuniv,E)R = (c
(1)
22 , c

(2)
22 − c

(3)
23 , c

(3)
22 , c

(1)
23 , c

(1)
32 , c

(2)
32 − c

(3)
33 , c

(1)
33 , c

(2)
33 ) .

Then

(a) IC is the minimal ideal of R (with respect to inclusion) such that A⊗R (R/IC) ∼=

A/ICA is commutative.

(b) IE is the minimal ideal of R (with respect to inclusion) such that A⊗R (R/IE) ∼=

A/IEA is exceptional.

Proof. We prove the statement for IC ; the proof for IE is analogous. Since ϕ induces

the Runiv-module structure on R, then

R

IC
=

R

ϕ(Iuniv,C)R
∼=

Runiv

Iuniv,C

⊗Runiv
R

Since A ∼= Auniv ⊗Runiv
R, then

A⊗R
R

IC
∼= (Auniv ⊗Runiv

R)⊗R
(
Runiv

Iuniv,C

⊗Runiv
R

)
∼= Auniv ⊗Runiv

Runiv

Iuniv,C

⊗Runiv
R .
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Since Auniv⊗Runiv

Runiv

Iuniv,C

is commutative, then Auniv⊗Runiv

Runiv

Iuniv,C

⊗Runiv
R is commu-

tative by Lemma 3.3.1. Thus A⊗R
R

IC
is commutative, so it remains to show that IC

is minimal.

Given an ideal J of R such that A ⊗R R/J is commutative, then by Proposition

3.2.7 there is a unique homomorphism

ϕ : Runiv,C =
Runiv

Iuniv,C

→ R

J

such that A ⊗R R/J ∼= (Auniv ⊗Runiv
Runiv/Iuniv,C) ⊗Runiv

(R/J). The fact that ϕ is

well-defined means that ϕ(Iuniv,C) ⊆ J . Thus IC = ϕ(Iuniv,C)R ⊆ J , hence IC is

minimal.

Corollary 3.3.3. With notation as above, the ideals IC and IE are independent of

choice of modest basis.

Proof. We prove the corollary for IC ; the proof for IE is analogous. Given modest

bases (ei)i and (e′i)i for A, let IC and I ′C be the ideals as in Theorem 3.3.2. Then

A/ICA and A/I ′CA are both commutative, so by minimality we have IC ⊆ I ′C and

I ′C ⊆ IC .

Remark 3.3.4. One can also prove that IC and IE are independent of choice of modest

basis by considering the effect a change of modest basis has on the associated structure

constants. We will examine this action of GL2 on the structure constants in section

3.6.

Corollary 3.3.5. Let R be a commutative ring and A be a framed R-algebra of rank

3 with modest basis 1 = e1, e2, e3 and associated structure constants c
(k)
ij . Then
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3.4 The free case

(a) A is commutative if and only if c
(3)
23 = c

(2)
32 = 0.

(b) A is exceptional if and only if the following equations hold.

c
(1)
22 = c

(3)
22 = c

(1)
23 = c

(1)
32 = c

(1)
33 = c

(2)
33 = 0

c
(2)
22 = c

(3)
23 , c

(2)
32 = c

(3)
33 .

(3.3.1)

Section 3.4

The free case

The preceding corollary allows us to remove the dependence on a choice of modest

basis from Theorem 3.3.2.

Theorem 3.4.1. Let R be a commutative ring, and let A be a free R-algebra of rank

3 thats admits a unital basis. There exist minimal ideals IC and IE of R such that

(a) AC := A/ICA ∼= A⊗R (R/IC) is commutative;

(b) AE := A/IEA ∼= A⊗R (R/IE) is exceptional;

Moreover, for any choice of modest basis (e1, e2, e3) with associated structure constants

c
(k)
ij , we have IC = (c

(3)
23 , c

(2)
32 ) and

IE = (c
(1)
22 , c

(2)
22 − c

(3)
23 , c

(3)
22 , c

(1)
23 , c

(1)
32 , c

(2)
32 − c

(3)
33 , c

(1)
33 , c

(2)
33 ) .

Finally, we also have that

ACE := A/(IC + IE)A ∼= A⊗R (R/IC)⊗R (R/IE)
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3.4 The free case

is the nilproduct algebra.

Proof. The follows immediately from Theorem 3.3.2 and Corollary 3.3.3.

Lemma 3.4.2. Let R and S be commutative rings, let A be a framed R-algebra of

rank 3 with modest basis e1, e2, e3 and let ψ : R→ S be a ring homomorphism. Then

AS := A ⊗R S is free of rank 3 with modest basis e1 ⊗ 1, e2 ⊗ 1, e3 ⊗ 1. Considering

AS as an R-algebra via ψ, then the map A→ AS given by ei 7→ ei⊗ 1 is a morphism

of framed R-algebras. Let ϕR : Runiv → R and ϕS : Runiv → S be the unique ring

homomorphisms so that A ∼= Auniv ⊗Runiv
R and AS ∼= Auniv ⊗Runiv

S as framed R-

and S-algebras, respectively. Then ϕS factors through ϕR, i.e., ϕS = ψ ◦ ϕR.

Runiv

R S

ϕR ϕS

ψ

Proof. Since A ∼= Auniv ⊗Runiv
R, then

AS = A⊗R S ∼= Auniv ⊗Runiv
R⊗R S .

Then both ϕS : Runiv → S and ψ ◦ ϕR : Runiv → S correspond to AS. By the

uniqueness statement in Proposition 3.2.1, then ϕS = ψ ◦ ϕR.

We now show that the construction of IC and IE is functorial under ring homo-

morphisms.

Proposition 3.4.3. Let R and S be commutative rings, let A be a framed R-algebra of

rank 3 with modest basis e1, e2, e3 and let ψ : R→ S be a ring homomorphism. Then
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3.5 The case of a sheaf of algebras over a scheme

AS := A⊗R S is free of rank 3 with modest basis e1 ⊗ 1, e2 ⊗ 1, e3 ⊗ 1. Let IC,R, IE,R

and IC,S, IE,S be the minimal ideals of R and S, respectively such that A/IC,RA and

AS/IC,SAS are commutative and A/IE,RA and AS/IE,SAS are exceptional. Then

ψ(IC,R)S = IC,S and ψ(IE,R)S = IE,S, that is, IC,S and IE,S are the extensions along

ψ of their counterparts over R.

Proof. Let ϕR : Runiv → R and ϕS : Runiv → S be the unique ring homomorphisms

given by representability (Proposition 3.3.2). By Theorem 3.3.2, then

IC,R = ϕR(Iuniv,C) IE,R = ϕR(Iuniv,E)

IC,S = ϕS(Iuniv,C) IE,S = ϕS(Iuniv,E) .

Since ϕS = ψ ◦ ϕR by Lemma 3.4.2, then

ψ(IC,R)S = ψ(ϕR(Iuniv,C))S = ϕS(Iuniv,C)S = IC,S

ψ(IE,R)S = ψ(ϕR(Iuniv,E))S = ϕS(Iuniv,E)S = IE,S

as desired.

Section 3.5

The case of a sheaf of algebras over a scheme

We now pass to the most general version of our main result, treating the case of a

sheaf of locally free algebras over a base scheme. For the remainder of this chapter,

let X be a scheme and A be a sheaf of algebras on X.

We first show that commutativity and exceptionality can be detected locally.
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3.5 The case of a sheaf of algebras over a scheme

Lemma 3.5.1. Let R be a commutative ring and A an R-algebra, and let A = Ã

be the sheaf of algebras on Spec(R) induced by A. Suppose a ∈ A. The following are

equivalent.

(a) a = 0.

(b) res
Spec(R)
U (a) = 0 for all open subsets U ⊆ Spec(R).

(c) There exist f1, . . . , fm ∈ R with (f1, . . . , fm) = R such that a/1 = 0 in R[1/fi]

for all i = 1, . . . ,m.

Proof. This follows immediately from the fact that OSpec(R) is a sheaf, hence two

sections are equal if and only if they are locally equal everywhere.

Lemma 3.5.2. Let R be a commutative ring and A an R-algebra. The following are

equivalent.

(a) A is commutative.

(b) There exist f1, . . . , fm ∈ R with (f1, . . . , fm) = R such that A ⊗R R[1/fi] is

commutative for all i = 1, . . . ,m.

Proof. Suppose a, b ∈ A and apply Lemma 3.5.1 to ab− ba.

Lemma 3.5.3 (Lemma 3.7, [Voight, 2011c]). An R-algebra A of rank > 2 is excep-

tional if and only if Ap is exceptional for all primes p of R.

Remark 3.5.4. The above lemma shows that exceptionality can be detected on the

level of stalks. One can show that this implies that it can also be detected on the

level of distinguished Zariski open sets. This yields the following result.

50



3.5 The case of a sheaf of algebras over a scheme

Lemma 3.5.5. Let R be a commutative ring and A a free R-algebra of rank > 2.

The following are equivalent.

(a) A is exceptional.

(b) There exist f1, . . . , fm ∈ R with (f1, . . . , fm) = R such that A ⊗R R[1/fi] is

exceptional for all i = 1, . . . ,m.

The theorem can be extended to a sheaf of locally free algebras over an arbitrary

base scheme. We first extend our definitions of commutative and exceptional to

sheaves of algebras.

Definition 3.5.6. A sheaf of algebras A is commutative if there exists a cover of X

by affine open subsets {Ui}i such that A (Ui) is a commutative Ri-algebra for each i,

where Ui = Spec(Ri).

Definition 3.5.7. A sheaf of algebras A is exceptional if there exists a cover of X

by affine open subsets {Ui}i such that A (Ui) is an exceptional Ri-algebra for each i,

where Ui = Spec(Ri).

Proposition 3.5.8. The following are equivalent.

(a) A is commutative.

(b) A (U) is a commutative R-algebra, for every affine open subset U = Spec(R) of

X.

(c) Ax is a commutative OX,x-algebra for every x ∈ X.

Proof. (a) =⇒ (b): We use the Affine Communication Lemma (Lemma 2.7.2)

to show that commutativity is an affine-local property. For an affine open subset
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3.5 The case of a sheaf of algebras over a scheme

U = Spec(R) of X, let P be the property that A := A (U) is a commutative R-

algebra. Given an affine open U = Spec(R) such that A := A (U) is commutative,

then certainly A (Uf ) ∼= Af ∼= A ⊗R Rf is commutative for every f ∈ R by Lemma

3.3.1, so (i) holds. By Lemma 3.5.2 (ii) holds as well, so commutativity is an affine

local property. Then (a) =⇒ (b) by the Affine Communication Lemma 2.7.2.

(b) =⇒ (c): Given a|x, b|x ∈ OX,x, choose representatives (a, U), (b, V ) for the

germs a|x, b|x, where U and V are open subsets of X with a ∈ A (U) and b ∈ A (V ).

We may assume U = V by replacing U and V by U ∩ V . Moreover, since affine

open subsets form a basis for the topology on X, there exists an affine open subset

Spec(R) ⊆ U ∩ V with x ∈ Spec(R). Thus we may assume that U = V = Spec(R) is

affine. Then

a|x b|x − b|x a|x = (ab− ba)|x = resUx (ab− ba) = resUx (0) = 0

so OX,x is commutative.

(c) =⇒ (b): Given an open subset U of X, and sections a, b ∈ A(U), then

a|x b|x − b|x a|x = (ab− ba)|x = 0

for each x ∈ U . Choosing representatives (a, Ux) and (b, Ux) for these germs, then

there exists an open set Ux ⊆ U such that resUUx(ab− ba) = 0. Then {Ux}x∈U is open

cover for U such that ab− ba on Ux for each x, so ab− ba = 0 since A is a sheaf.

The implication (b) =⇒ (a) is immediate, so this completes the proof.

An analogous result holds for sheaves of exceptional algebras provided that the

rank is > 2.
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3.5 The case of a sheaf of algebras over a scheme

Proposition 3.5.9. Let A be a sheaf of algebras on X that is locally free of rank

> 2. The following are equivalent.

(a) A is exceptional.

(b) A (U) is an exceptional R-algebra for every affine open subset U = Spec(R) of

X.

Proof. The implication (b) =⇒ (a) is immediate, so it remains to show the converse.

Again we use the Affine Communication Lemma (Lemma 2.7.2) to show that excep-

tionality is an affine-local property. For an affine open subset U = Spec(R) of X, let

P be the property that A := A (U) is a exceptional R-algebra. Given an affine open

U = Spec(R) such that A := A (U) is exceptional, then A (Uf ) ∼= Af ∼= A ⊗R Rf is

exceptional for every f ∈ R by Lemma 3.3.1, so (i) holds. By Lemma 3.5.5, (ii) holds

as well, so exceptionality is an affine local property. Then (a) =⇒ (b) by the Affine

Communication Lemma 2.7.2.

We also extend our definition of the nilproduct algebra.

Definition 3.5.10. Let A be a sheaf of algebras on X that is locally free of rank

n. Then A is nilproduct if there is an affine open cover {Spec(Ri)}i of X such that

Ai ∼=
Ri[x1, . . . , xn−1]

(x1, . . . , xn−1)2
for each i, where Ai = A (Spec(Ri)).

Proposition 3.5.11. Let A be a sheaf of algebras on X that is locally free of rank

3. Then A is nilproduct if and only if it is both commutative and exceptional.

Proof. Let {Spec(Ri)}i be an affine open cover of X as in the definition. Then

Ai ∼=
Ri[x, y]

(x, y)2
for each i, so Ai is both commutative and exceptional for each i. Thus

A is both commutative and exceptional.
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3.5 The case of a sheaf of algebras over a scheme

Conversely, suppose A is both commutative and exceptional. By Propositions

3.5.8 and 3.5.9, then A (U) is commutative and exceptional for every affine open

subset U of X. By 3.4.1, then A (U) is nilproduct.

Theorem 3.5.12. Let A be sheaf of algebras on X that is locally free of rank 3.

Then there exist quasicoherent ideal sheaves IC and IE on X such that

(a) A ⊗OX

OX

IC

is commutative;

(b) A ⊗OX

OX

IE

is exceptional;

and IC and IE are the minimal ideal sheaves with these properties in the following

sense. If J is an ideal sheaf on OX such that A ⊗OX

OX

J
is commutative (resp.,

exceptional), then IC(U) ⊆ J (U) (resp., IE(U) ⊆ J (U)) for every affine open

subset U of X.

Furthermore,

A ⊗OX

OX

IC

⊗OX

OX

IE

is nilproduct.

We first prove some auxiliary lemmas.

Lemma 3.5.13. Let A be a locally free sheaf of rank n algebras on X. Then the set

B of affine open subsets of X over which A is free and has a modest basis, i.e.,

B = {U ⊆ X : U is affine open and A (U) is free and has a modest basis}

is a basis for the topology on X.
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3.5 The case of a sheaf of algebras over a scheme

Proof. Since A is locally free, then there is a cover V of X consisting of affine open

subsets such that A (V ) is free for all V ∈ V . We show that we can cover each V ∈ V

by elements of B. Given V ∈ V , let A = A (V ) so A is a free R-algebra of rank n,

where V = Spec(R). By Lemma 2.5.1, A ∼= R ⊕ A/R and A/R is locally free. Thus

there exists an open cover {D(fi)}i of V by distinguished open subsets such that

(A/R)fi is free for each i. Then

A (D(fi)) ∼= Afi
∼= (R⊕ A/R)fi

∼= Rfi ⊕ (A/R)fi .

Since (A/R)fi is free and 1 is a basis for Rfi , then for each i there is a basis of Afi

containing 1. By Lemma 2.5.6, then Afi has a modest basis, so we have covered V

by elements of B. Thus B covers X.

Given U, V ∈ B with U = Spec(R), suppose x ∈ U ∩ V . Since U ∩ V is an open

subset of the affine scheme Spec(R) and distinguished open subsets form a basis for

the Zariski topology on Spec(R), then there exists f ∈ R such that x ∈ D(f) ⊆ U∩V .

Letting A = A (U), then

A (D(f)) = A⊗R R[1/f ] ∼=

(
n⊕
i=1

R

)
⊗R R[1/f ] ∼=

n⊕
i=1

R[1/f ]

so A is free over D(f). Moreover, denoting the modest basis of A by (ei)i, then

(ei ⊗ 1)i is a modest basis for A ⊗R R[1/f ]. Thus D(f) ∈ B, and this shows that B

is a basis.

Proof of Theorem 3.5.12. We prove the result for XC ; the proof for XE is analogous.

Let B be the basis as in Lemma 3.5.13. For each U = Spec(R) ∈ B, let IC(U) = IC,R

as in Theorem 3.4.1. By the functoriality result of Proposition 3.4.3, given V =
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3.5 The case of a sheaf of algebras over a scheme

Spec(S) ∈ B with V ⊆ U , we have

resUV (IC(U)) = resUV (IC,R) = IC,S = IC(V ) ,

so IC is a presheaf on B.

We now show IC is a sheaf on B. Since IC is a sub-presheaf of OX , the local

determination property is immediate, so it remains to show that compatible sections

glue. Rather than showing this directly, we instead show that IC |U = ĨC,R, the

sheaf of ideals induced by IC,R. To do so, it suffices to show they coincide on the

distinguished basis of U = Spec(R). Let D(f) = Spec(R[1/f ]) be a distinguished

open set of U and let ϕ : R→ R[1/f ] be the localization map. By definition, then

IC |U(D(f)) = IC(D(f)) = IC,R[1/f ] .

On the other hand, by the definition of ĨC,R we have

ĨC,R(D(f)) = ϕ(IC,R)R[1/f ] = IC,R[1/f ]

where the last equality follows from the functoriality result given in Proposition 3.4.3.

Thus IC |U and ĨC,R agree on a basis for the topology, so IC |U = ĨC,R.

Thus IC is a sheaf on B. By Lemma 2.6.4, then there exists a unique sheaf of

ideals on X extending IC ; abusing notation, we denote this sheaf again by IC .

We now show that I has the desired properties. Since I |U = ĨC,R for each

U = Spec(R) ∈ B, then IC is quasicoherent. Since OX is quasicoherent, then the

quotient OX/IC (which is the cokernel of the inclusion I ↪→ OX) is quasicoherent by
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3.5 The case of a sheaf of algebras over a scheme

Proposition 2.7.8. Since A is locally free, then it is a fortiori quasicoherent. Given

an affine open set U = Spec(R) ∈ B, then

(
A ⊗OX

OX

IC

)
(U) = A (U)⊗OX(U)

OX

IC

(U)

by Proposition 2.7.8. We have

OX

IC

(U) ∼=
OX(U)

IC(U)

by Proposition 2.7.7, so

(
A ⊗OX

OX

IC

)
(U) ∼= A (U)⊗OX(U)

OX(U)

IC(U)
= A⊗R

R

IC,R

where A = A (U). By Theorem 3.4.1 A ⊗R
R

IC,R
is commutative, so this shows that

A ⊗OX

OX

IC

is commutative.

Applying Propositions 2.7.8 and 2.7.7 as above, the last two assertions follow

from the corresponding statements for an algebra over a ring given in Theorem 3.4.1:

minimality of IC follows from the minimality of IC,R, and

(
A ⊗OX

OX

IC

⊗OX

OX

IE

)
(U)

is nilproduct for every affine open U ∈ B, hence is nilproduct.

Corollary 3.5.14. Let A be sheaf of algebras on X that is locally free of rank 3.

Then there exist closed subschemes ιC : XC ↪→ X and ιE : XE ↪→ X of X such that

(a) ι∗C(A ) is commutative;
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3.5 The case of a sheaf of algebras over a scheme

(b) ι∗E(A ) is exceptional

and XC and XE are the largest closed subschemes with these properties.

Let XCE = XC ∩XE = XC ×X XE with closed embedding ιCE : XCE ↪→ X. Then

ι∗CE(A ) is the nilproduct algebra.

Proof. Let IC and IE be as in the previous theorem. As before, we prove the result

only for IC . Since IC is quasicoherent, then by Proposition 2.7.6 there is a unique

closed subscheme XC of X corresponding to IC , namely

XC := {x ∈ X : (IC)x 6= OX,x} ,

equipped with the sheaf of rings OXC := ι−1
C

(
OX

IC

)
, where ιC : XC ↪→ X is the

inclusion map.

We claim that

ιC∗ι
∗
CA = A ⊗OX

OX

IC

.

Consider the associated map of sheaves ι#C : OX → ιC∗(OXC ). Since pushforward and

inverse image are adjoint, the identity morphism

id ∈ Hom(OXC ,OXC ) = Hom

(
ι−1
C

(
OX

IC

)
,OXC

)
∼= Hom

(
OX

IC

, ιC∗OXC

)

corresponds to a natural map

OX

IC

→ ιC∗ ι
−1

(
OX

IC

)
= ιC∗(OXC )

Moreover, since ιC is a closed embedding then this map is an isomorphism. By the
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3.6 Change of modest basis

projection formula given in Proposition 2.7.10, then

ιC∗ι
∗
CA = ιC∗(OXC ⊗OXC

ι∗C(A )) ∼=
(
ιC∗ι

−1
C

OX

IC

)
⊗OX A ∼=

OX

IC

⊗OX A

as claimed. Since A ⊗OX

OX

IC

is commutative, then ιC∗ι
∗
CA and hence ι∗CA are

commutative. Moreover, since the bijection between quasicoherent ideal sheaves and

closed subschemes is inclusion-reversing, the fact that IC is minimal implies that XC

is maximal.

Corollary 3.5.15. Let R be a commutative ring, and let A be an R-algebra that

is locally free of rank 3. There exist closed subschemes Spec(RC) and Spec(RE) of

Spec(R) such that

(a) A⊗R RC is commutative;

(b) A⊗R RE is exceptional;

(c) A⊗R RC ⊗R RE is nilproduct.

and Spec(RC) and Spec(RE) are the largest closed subschemes with these properties.

Proof. This follows from applying Corollary 3.5.14 to X = Spec(R) and A = Ã, the

sheaf of algebras induced by A.

Section 3.6

Change of modest basis

Let A be a free, rank 3 R-algebra. If we consider the collection of all bases of A, then

the possible change of basis transformations are given by the group GL3(R). However,
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3.6 Change of modest basis

if we restrict ourselves to the collection of all modest bases of A, the restrictions e1 = 1,

c
(2)
23 = c

(3)
32 = 0 placed on a modest basis mean that we instead get an action of GL2(R).

Given a modest basis e1, e2, e3 with associated structure constants c
(k)
ij , GL2(R) acts

on e1, e2, e3 as follows. Given P =

(
α β

γ δ

)
∈ GL2(R), define

e
′
1

e′2
e′3

 =

1 0 0

f α β

g γ δ


e1

e2

e3

 (3.6.1)

where f, g ∈ Z[c
(k)
ij ]

[
α, β, γ, δ,

1

αδ − βγ

]
are given by

f =
1

αδ − βγ

(
αγδ(c

(3)
23 − c

(2)
22 ) + βγδ(c

(3)
33 − c

(2)
32 ) + αγ2c

(3)
22 − βδ2c

(2)
33

)
g =

1

αδ − βγ

(
αβγ(c

(2)
22 − c

(3)
23 ) + αβδ(c

(2)
32 − c

(3)
33 )− α2γc

(3)
22 + β2δc

(2)
33

)
.

The definitions of f and g follow from the fact that c
(2)
23

′
= c

(3)
32

′
= 0, where (c

(k)
ij

′
)i,j,k

are the structure constants associated to (e′i)i.

In this way, GL2(R) also acts on the structure constants: given P ∈ GL2(R), and

a modest basis (ei)i with associated structure constants (c
(k)
ij )i,j,k, let (e′i)i = P (ei)i,

that is, as in equation (3.6.1). Letting (c
(k)
ij

′
)i,j,k be the structure constants associated

to (e′i)i, define P · (c(k)
ij )i,j,k = (c

(k)
ij

′
)i,j,k.

Changing basis does not change the properties of commutativity or exceptionality.

Thus the action of GL2 preserves setwise the irreducible components XC and XE, or

in algebraic terms, the corresponding ideals IC and IE.

In [Gross and Lucianovic, 2009, §2], the authors study the action of GL2(R) on

commutative, free, rank 3 R-algebras in the case where R is a PID or a local ring.
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3.6 Change of modest basis

Proposition 3.6.1 ([Gross and Lucianovic, 2009, Proposition 2.1]). Let R be a PID

or a local ring and let N be free R-module of rank 2. There is a bijection between the

set of orbits of the action of GL(N) ∼= GL2(R) on the R-module M = Sym3(N) ⊗(∧2
N
)−1

and the set of isomorphism classes of commutative cubic algebras A over

R.

We extend this result to exceptional algebras. Recall that Runiv,E
∼= Z[γ

(3)
23 , γ

(2)
32 ].

Lemma 3.6.2. Let N = Zγ(3)
23 ⊕Zγ(2)

32 and let GL2(Z) act on N by the action induced

by change of modest basis. The action of GL2(Z) on N is isomorphic to the standard

representation. That is,

(
α β

γ δ

)
γ

(3)
23 = αγ

(3)
23 + βγ

(2)
32 and

(
α β

γ δ

)
γ

(2)
32 = γγ

(3)
23 + δγ

(2)
32

for all

(
α β

γ δ

)
∈ GL2(Z).

This allows us to complete the description of the change of modest basis action

on the moduli space, recovering a result of Voight.

Proposition 3.6.3 ([Voight, 2011c, Proposition 4.3]). Let N be a free R-module of

rank 2. Then there is a bijection between the set of orbits of GL(N) acting on N and

the set of isomorphism classes of free R-algebras of rank 3 with a standard involution.

These results constitute the first steps toward understanding the moduli space of

rank 3 algebras without a choice of basis.

61



3.7 Degenerations

Section 3.7

Degenerations

As the moduli space M�
n sits inside An3

, it is natural to wonder what its closure

inside Pn3

is, and what, if any, algebraic meaning we can give to the points on the

hyperplane at infinity. In this section, we study the projective closure of M�
3 and the

algebraic objects corresponding to the points on the hyperplane at infinity, which we

call degenerations of cubic algebras.

Using Magma, we compute Gröbner bases for Iuniv,C and Iuniv,E. We then homog-

enize them, obtaining

{γ(1)
11 − Z, γ

(2)
11 , γ

(3)
11 ,

γ
(1)
12 , γ

(2)
12 − Z, γ

(3)
12 ,

γ
(1)
13 , γ

(2)
13 , γ

(3)
13 − Z,

γ
(1)
21 , γ

(2)
21 − Z, γ

(3)
21 ,

γ
(1)
23 − γ

(1)
32 , γ

(2)
23 , γ

(3)
23 ,

γ
(1)
31 , γ

(2)
31 , γ

(3)
31 − Z,

γ
(2)
32 , γ

(3)
32

γ
(2)
22 γ

(1)
32 + γ

(3)
22 γ

(1)
33 , γ

(1)
22 γ

(2)
33 + γ

(1)
32 γ

(3)
33 ,

γ
(2)
22 γ

(2)
33 + γ

(1)
33 Z, γ

(3)
22 γ

(2)
33 − γ

(1)
32 Z, γ

(3)
22 γ

(3)
33 + γ

(1)
22 Z}
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and

{γ(1)
11 − Z, γ

(2)
11 , γ

(3)
11 ,

γ
(1)
12 , γ

(2)
12 − Z, γ

(3)
12 ,

γ
(1)
13 , γ

(2)
13 , γ

(3)
13 − Z,

γ
(1)
21 , γ

(2)
21 − Z, γ

(3)
21 ,

γ
(1)
22 , γ

(2)
22 − γ

(3)
23 , γ

(3)
22 ,

γ
(1)
23 , γ

(2)
23 ,

γ
(1)
31 , γ

(2)
31 , γ

(3)
31 − Z,

γ
(1)
32 , γ

(2)
32 − γ

(3)
33 , γ

(3)
32 ,

γ
(1)
33 , γ

(2)
33 }

as Gröbner bases for the homogenized ideals Ihuniv,C and Ihuniv,E, respectively. To
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examine the hyperplane at infinity we set Z = 0, which yields

{γ(1)
11 , γ

(2)
11 , γ

(3)
11 ,

γ
(1)
12 , γ

(2)
12 , γ

(3)
12 ,

γ
(1)
13 , γ

(2)
13 , γ

(3)
13 ,

γ
(1)
21 , γ

(2)
21 , γ

(3)
21 ,

γ
(1)
23 − γ

(1)
32 , γ

(2)
23 , γ

(3)
23 ,

γ
(1)
31 , γ

(2)
31 , γ

(3)
31 ,

γ
(2)
32 , γ

(3)
32

γ
(2)
22 γ

(1)
32 + γ

(3)
22 γ

(1)
33 , γ

(1)
22 γ

(2)
33 + γ

(1)
32 γ

(3)
33 ,

γ
(2)
22 γ

(2)
33 , γ

(3)
22 γ

(2)
33 , γ

(3)
22 γ

(3)
33 }

and

{γ(1)
11 , γ

(2)
11 , γ

(3)
11 ,

γ
(1)
12 , γ

(2)
12 , γ

(3)
12 ,

γ
(1)
13 , γ

(2)
13 , γ

(3)
13 ,

γ
(1)
21 , γ

(2)
21 , γ

(3)
21 ,

γ
(1)
22 , γ

(2)
22 − γ

(3)
23 , γ

(3)
22 ,

γ
(1)
23 , γ

(2)
23 ,

γ
(1)
31 , γ

(2)
31 , γ

(3)
31 ,

γ
(1)
32 , γ

(2)
32 − γ

(3)
33 , γ

(3)
32 ,

γ
(1)
33 , γ

(2)
33 } .
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Let I∞univ,C and I∞univ,E be the ideals generated by these sets. Then I∞univ,E is prime and

the corresponding closed subscheme is isomorphic to Spec(Z[γ
(2)
23 , γ

(2)
32 ]). While this

is the same closed subscheme corresponding to Iuniv,E, the structure of the algebra

over Runiv,E
∞ := Runiv/I

∞
univ,E is quite different. Since γk1j, γ

k
i1 ∈ I∞univ,E for all i, j, k ∈

{1, 2, 3}, then e1 acts as 0 in Auniv ⊗Runiv
Runiv,E

∞, i.e., e1α = 0 for all α. Thus it is

no longer clear that Auniv⊗Runiv
Runiv,E

∞ has a multiplicative identity at all, hence is

not an algebra, but rather a nonunital algebra. On the other hand e2 and e3 behave

as they did in Auniv ⊗Runiv
Runiv,E:

e2
2 = re2 e2e3 = re3

e3e2 = se2 e2
3 = se3

where r = γ
(2)
22 = γ

(3)
23 and s = γ

(2)
32 = γ

(3)
33 .

Recall that Auniv⊗Runiv
Runiv,E

∼= Runiv⊕M , where M is the ideal Runive2⊕Runive3

of Runiv. Thus in passing from Auniv⊗Runiv
Runiv,E to Auniv⊗Runiv

Runiv,E
∞ we in some

sense “forget” about the copy of Runiv in this decomposition, and are simply left with

M = Runive2 ⊕Runive3.

The situation for I∞univ,C is more complicated: I∞univ,C is no longer prime, or even

primary. However, it is still radical and, computing its primary decomposition using

Magma, we find that I∞univ,C = P∞1 ∩ P∞2 ∩ P∞3 where P∞i is a prime of dimension 4
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for each i = 1, 2, 3. Their corresponding closed subschemes are isomorphic to

Spec(R∞C,1) = Spec

(
Z[γ

(1)
22 , γ

(2)
22 , γ

(3)
22 , γ

(1)
23 , γ

(1)
33 ]

(γ
(1)
33 γ

(3)
22 + γ

(1)
23 γ

(2)
22 )

)
,

Spec(R∞C,2) = Spec

(
Z[γ

(1)
22 , γ

(1)
23 , γ

(1)
33 , γ

(2)
33 , γ

(3)
33 ]

(γ
(1)
22 γ

(2)
33 + γ

(1)
23 γ

(3)
33 )

)
, and

Spec(R∞C,3) = Spec(Z[γ
(1)
22 , γ

(2)
22 , γ

(1)
33 , γ

(3)
33 ]) .

Again, the base change of Auniv to each of these subschemes results in a nonunital

algebra where e1 acts as 0. Thus the multiplication in Auniv⊗Runiv
R∞C,1 is determined

by

e2
2 = γ

(1)
22 e1 + γ

(2)
22 e2 + γ

(3)
22 e3 e2e3 = γ

(1)
23 e1

e3e2 = γ
(1)
23 e1 e2

3 = γ
(1)
33 e1 .

The multiplication in Auniv⊗Runiv
R∞C,2 is given analogously, but interchanging e2 and

e3. Finally multiplication in Auniv ⊗Runiv
R∞C,3 is simply given by

e2
2 = γ

(1)
22 e1 + γ

(2)
22 e2 e2e3 = 0

e2
3 = γ

(1)
33 e1 + γ

(3)
33 e3 e3e2 = 0 .

We hope that these degenerations may help us to better understand the moduli of

framed algebras, and may allow us to define a compactified moduli functor.
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3.8 Future Work

Section 3.8

Future Work

In this section we mention some directions of investigation for future work.

3.8.1. Moduli of algebras

As mentioned in subsection 3.6, our true interest lies in understanding the moduli

space of algebras, rather than modestly framed algebras. We can attempt to form the

moduli stack of cubic algebras M3 by taking the stack quotient of the moduli space

of modestly framed algebras M�
3 by the action of GL2 on modest bases.

3.8.2. Stratification by geometric degree

Our classification results fit into a larger classification problem that seeks to answer

the following question: for which positive integers n and d are there algebras of rank

n and geometric degree d? For these values of n and d, what does the moduli space

of such algebras look like? As shown in Proposition 2.2.9, we must have d ≤ n.

One can easily resolve the question for special values of n and d (for instance, when

n = d), but we have thus far been unable to extend our results to higher rank. The

main obstacle has been that, in a polynomial ring of n3 variables, computing Gröbner

bases quickly becomes very expensive for increasing values of n. This prevents us from

simply computing the primary decomposition of an ideal as before, as this requires

the computation of a Gröbner basis.
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Chapter 4

Computing Elliptic and

Hyperelliptic Belyi Maps

Section 4.1

Introduction

In this chapter we present a numerical method for computing Belyi maps. We have

used this method to compute an exhaustive database of Belyi maps of low degree.

Our main results are observations on the features of the data, given in Theorems 4.4.8

and 4.5.8.
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Section 4.2

Background

4.2.1. Conventions

Throughout this chapter we follow the algebro-geometric conventions and terminol-

ogy laid out in [Silverman, 2009, Chapter 1]. In particular we adopt the following

definition of a curve.

Definition 4.2.1. An (algebraic) curve is an (irreducible) projective variety of di-

mension 1 over a field.

Given a curve X over a field K, we denote by Ω(X) its space of holomorphic (or

regular) differentials, as defined in [Shafarevich, 2013, Ch. 3, §5]. As a vector space

over K, dimK(Ω(X)) = g, where g is the genus of X, as discussed in [Shafarevich,

2013, Ch. 3, §6.3].

Given a discrete subgroup Γ of PSL2(R) (called a Fuchsian group), we define

a modular form for Γ as in [Voight and Zureick-Brown, 2015, §6.2]. Since all the

Fuchsian groups we consider herein are cocompact, hence have no cusps, this means

that a modular form for Γ of weight k ∈ Z≥0 is a holomorphic function f : H → C

such that

f(γz) = (cz + d)kf(z) for all γ = ±

(
a b

c d

)
∈ Γ .

We denote the vector space of modular forms for Γ of a given weight k by Mk(Γ) or

Sk(Γ). (The notation Sk(Γ) is usually reserved for cusp forms, but as our Fuchsian

groups have no cusps, then trivially Mk(Γ) = Sk(Γ).) As described in [Voight and
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Zureick-Brown, 2015, §6.2], there is an isomorphism

M2(Γ)
∼−→ Ω(X) (4.2.1)

f(z) 7→ f(z) dz . (4.2.2)

Most of the curves we will consider arise as quotients of hyperbolic 2-space. We

denote by H the complex upper half-plane {z ∈ C : Im(z) > 0}, equipped with the

hyperbolic metric

|dz|2

|Im(z)|2
=

(dx)2 + (dy)2

y2

where z = x + iy. We denote by D the complex open unit disc {w ∈ C : |w| < 1}

and equip it with the hyperbolic metric

4
|dw|2

(1− |w|2)2
= 4

(dx)2 + (dy)2

(1− x2 − y2)2

where w = x + iy. (We will systematically use the variable z to denote the coordi-

nate in H and w to denote the coordinate in D.) Then H and D are isometrically

isomorphic as Riemann surfaces via the map

H → D

z 7→ z − i
z + i
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with inverse

D → H

w 7→ i
1 + w

1− w
.

Under this map, the differential dz on H is mapped to the differential

d

(
i
1 + w

1− w

)
= i

1− w + 1 + w

(1− w)2
dw =

2i

(1− w)2
dw (4.2.3)

on D. It is often convenient to pass between these two models for hyperbolic 2-space.

Thus we identify H and D via the isomorphisms above and henceforth freely pass

between them without further comment.

4.2.2. Motivation and history

The absolute Galois group Gal(Q/Q) is arguably the most important group in alge-

braic number theory. In some sense it encodes all possible symmetries of algebraic

numbers: for every number field K, the Galois group Gal(K/Q) can be realized as

a quotient of Gal(Q/Q). In his seminal work [Grothendieck, 1997], Grothendieck

defined an action of Gal(Q/Q) on a special class of topological graphs, which he

compared to dessins d’enfants—children’s drawings. His ambitious aim was to un-

derstand this mysterious and important group in terms of its action on these simple

drawings.

Grothendieck’s program springs from a theorem of Belyi, about which he marveled,

“...never has a deep and disconcerting result been proven in so few lines!”

Theorem 4.2.2 ([Belyi, 1980, Theorem 4]). A smooth projective curve X over C
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can be defined over Q if and only if there exists a nonconstant morphism of algebraic

curves ϕ : X → P1
C unramified outside {0, 1,∞}.

Such a map is called a Belyi map.

Definition 4.2.3. A Belyi map over C is a nonconstant morphism of algebraic curves

ϕ : X → P1
C that is unramified outside {0, 1,∞}. The genus of ϕ is the genus of the

curve X, its domain.

Example 4.2.4. Consider the map ϕ : P1 → P1 given by ϕ(x) = 2x3 + 3x2.

Since ϕ′(x) = 6x2 + 6x = 6x(x + 1), ϕ is only ramified above 0, 1,∞. The

factorizations

ϕ(x) = 2x3 + 3x2 = x2(2x+ 3)

ϕ(x)− 1 = 2x3 + 3x2 − 1 = (2x− 1)(x+ 1)2

show that ϕ−1(0) = {0,−3/2} and these points have ramification indices 2 and 1,

respectively, and ϕ−1(1) = {1/2,−1} and these points have ramification indices 1

and 2, respectively.

We can visualize the map ϕ as a ramified cover of P1 as depicted in the following

illustration.
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0 1

x = 1/2x = 0

x = −3/2

x = −1

∞

1

2

3

X

P1

ϕ(x) = 2x3 + 3x2

Remark 4.2.5. Due to their ramification structure, Belyi maps are sometimes referred

to as three-point branched covers.

Definition 4.2.6. Given Belyi maps ϕ1 : X1 → P1 and ϕ2 : X2 → P1, a morphism

ι : ϕ1 → ϕ2 of Belyi maps is a morphism ι : X1 → X2 of algebraic curves such that

ϕ1 = ϕ2 ◦ ι, i.e., such that the following diagram commutes.

X1 X2

P1

ι

ϕ1 ϕ2

Belyi maps ϕ1 and ϕ2 are isomorphic if there exists a map ι as above that is an

isomorphism of algebraic curves.

While we are primarily interested in Belyi maps due to the Galois action on their

isomorphism clases (described in subsection 4.2.3 below), they also have a number of

other applications. We briefly describe some of these applications below.
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Belyi maps can be used to solve instances of the inverse Galois problem which,

given a finite group G, aims to find a finite Galois extension K/Q with Gal(K/Q) ∼=

G. Indeed, in his original paper [Belyi, 1980], Belyi uses Belyi maps to construct

extensions of Q with Galois groups isomorphic to specific families of Chevalley groups

over finite fields. The basic idea is to use the notion of rigidity to produce an extension

of the rational function field Q(t) with a given Galois group, and then specialize and

apply Hilbert’s irreducibility theorem to obtain an extension of Q with the same

Galois group. For comprehensive treatments, see [Malle and Matzat, 1999], [Serre,

2016], and [Volklein, 1996].

Belyi maps have also been used to construct number fields with interesting rami-

fication properties. In [Malle, 1994], Malle computes tables containing fields of defi-

nition of Belyi maps of degree at most 13. He notes that the number fields obtained

in this way are remarkable in that they are ramified over only a few small primes.

Specializing Belyi maps also yields interesting number fields. A Belyi map ϕ : X → P1

defined over Q induces an extension Q(t) ↪→ Q(X) of function fields. By specializing

the value of the parameter t, one can obtain number fields with small ramification set

or root discriminant, an approach investigated in [Jones and Roberts, 2007], [Roberts,

2004], and [Roberts, 2016].

Belyi maps also have interesting dynamical properties. A Belyi map ϕ : P1 → P1 is

dynamical if it preserves the set {0, 1,∞}, i.e., ϕ({0, 1,∞}) ⊆ {0, 1,∞}. As described

in [Zvonkin, 2008], dynamical Belyi maps give examples of rigid, postcritically finite

dynamical systems. The properties of dynamical Belyi maps are further explored in

[Anderson et al., 2018].

In [Elkies, 1991] Elkies shows that, given an effective version of the ABC conjec-
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ture, one can use Belyi maps to give an effective proof of the Mordell conjecture. (The

Mordell conjecture is now perhaps better known as Faltings’s theorem; cf., [Faltings,

1983] or its translation [Faltings, 1986].)

For an introduction to the theory of Belyi maps and dessins d’enfants, we refer

the reader to [Jones and Wolfart, 2016], [Girondo and González-Diez, 2012], and

[Schneps, 1994].

4.2.3. The Galois action on Belyi maps

We now consider the arithmetic of Belyi maps and the action of Gal(Q/Q). Given a

Belyi map ϕ : X → P1, then by Theorem 4.2.2 we can find a model for X with defining

equations having coefficients in Q. Moreover, the proof of Belyi’s theorem presented

in [Belyi, 1980, Theorem 4] shows that the Belyi map itself can also be defined over Q.

(For more on this, see [Girondo and González-Diez, 2012, Proposition 3.34]). Then

the absolute Galois group Gal(Q/Q) acts on a Belyi map ϕ and its domain X simply

by acting on the coefficients of their defining equations. We denote the action of

σ ∈ Gal(Q/Q) on the curve and Belyi map by Xσ and ϕσ, respectively. Note as well

that the action of Gal(Q/Q) preserves the genus, monodromy group, and ramification

type of a Belyi map (cf., [Girondo and González-Diez, 2012, Theorem 3.28]).

The equations for a Belyi map—those for the curve X and those for the map ϕ

itself—involve only finitely many coefficients. Thus, once we find equations for the

map over Q, they will in fact belong to some finite extension K of Q. Thus we seek to

find equations for the Belyi map that belong to the number field of minimal degree,

if such a field exists.

Definition 4.2.7. Let ϕ : X → P1 be a Belyi map. The field of moduli M(X,ϕ) ⊆ Q
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of ϕ is the subfield of Q fixed by the group

{
τ ∈ Gal(Q/Q) : ϕτ ∼= ϕ

}
.

The field of moduli is the intersection of all fields over which ϕ can be defined.

However, it is not always the case that ϕ can be defined over M(X,ϕ). The issue

of descent of a Belyi map is subtle, as discussed in [Musty et al., 2019, §4]. In order

to rigidify the situation and avoid these subtleties, we define a pointed variant of a

Belyi map.

Definition 4.2.8. A pointed Belyi map (X,ϕ;P ) is a Belyi map ϕ : X → P1 together

with a point P ∈ ϕ−1({0, 1,∞}) ⊆ X(Q). A morphism of pointed Belyi maps

(X1, ϕ1;P1)→ (X2, ϕ2;P2) is an morphism of Belyi maps ι such that ι(P1) = P2. The

pointed Belyi maps (X1, ϕ1;P1) and (X2, ϕ2;P2) are isomorphic if there exists a map

ι as above that is an isomorphism of algebraic curves.

Definition 4.2.9. The field of moduli M(X,ϕ;P ) ⊆ Q of the pointed Belyi map(X,ϕ;P )

is the fixed field of

{
τ ∈ Gal(Q/Q) : ϕτ ∼= ϕ and τ(P ) = P

}
.

Theorem 4.2.10 ([Sijsling and Voight, 2016, Theorem 1.10], [Birch, 1994, Theorem

2]). A pointed Belyi map (X,ϕ;P ) descends to M(X,ϕ;P ): the curve X, the map ϕ,

and the point P can all be defined over M(X,ϕ;P ).

In the next subsection we will bound the degree of M(X,ϕ;P ) over Q in terms of

combinatorial data. This will prove to be useful for computing equations for X and

ϕ.
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4.2.4. Background: the big bijective picture

Our method makes use of a web of bijections that relate various collections of alge-

braic, combinatorial, topological, geometric, and algebro-geometric objects. We give

only an overview here—see [Klug et al., 2014, §1] for more details.

We first introduce the classes of objects in this “big bijective picture.”

Definition 4.2.11. A permutation triple of degree d is a triple σ = (σ0, σ1, σ∞) ∈ S3
d

such that σ∞σ1σ0 = 1. The permutation triple σ is transitive if 〈σ0, σ1, σ∞〉 ≤ Sd is

a transitive subgroup. Two permutation triples σ, σ′ are simultaneously conjugate if

there exists ρ ∈ Sd such that

(σ′0, σ
′
1, σ

′
∞) = (ρσ0ρ

−1, ρσ1ρ
−1, ρσ∞ρ

−1) .

Remark 4.2.12. We choose the ordering σ∞σ1σ0 in the definition of permutation triples

(while others might require σ0σ1σ∞ = 1) to agree with our conventions on the action

of an element of a triangle group; cf., Remark 4.2.25 below.

The notion of a passport allows us to organize permutation triples by their com-

binatorial data.

Definition 4.2.13. A passport consists of the data (g,G, λ) where

• g ≥ 0 is an integer,

• G ≤ Sd is a transitive subgroup; and

• λ = (λ0, λ1, λ∞) is a triple of partitions of d.

The passport of a permutation triple σ ∈ S3
d is (g,G, λ) where
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(i) 〈σ0, σ1, σ∞〉 = G; and

(ii) σ0, σ1, σ∞ have the cycle types specified by λ0, λ1, λ∞

(iii) 2g − 2 = −2d+
∑

s∈{0,1,∞}

∑
τ a cycle in σs

(len(τ)− 1)

where len(τ) is the length of the cycle τ . In this case we say that σ belongs to

the passport (g,G, λ). The size of a passport is the number of permutation triples

belonging to it, up to simultaneous conjugacy.

Remark 4.2.14. The formula in criterion (c) of belonging is essentially a combinatorial

avatar of the Riemann-Hurwitz formula. We will see that this means that for each σ

belonging to the passport (g,G, λ) the Belyi map corresponding to σ has genus g.

Example 4.2.15. Consider the permutation triple σ = (σ0, σ1, σ∞) where

σ0 = (1 3 7)(2)(4 5 6) , σ1 = (1 4 5 3)(2 7)(6) , σ∞ = (1 2 7 5)(3)(4 6) .

Then σ belongs to the passport

(0, G, ((3, 3, 1), (4, 2, 1), (4, 2, 1)))

where G = 〈(1 2 3 4 5 6 7), (1 2)(3 6)〉 has transitive group label 7T5 and is isomorphic

to GL3(F2).

One can use a double coset computation show that this passport has size 2. (See

[Musty et al., 2019, Lemma 2.2.1].) The other triple is σ′ = (σ′0, σ
′
1, σ

′
∞) with

σ′0 = (1 3 7)(2)(4 5 6) , σ′1 = (1 6 3 2)(4 5)(7) , σ′∞ = (1 7 6 4)(2 3)(5) .
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Remark 4.2.16. As the conjugacy class of a permutation in Sd is uniquely determined

by its cycle type, the triple λ of partitions of d is equivalent to a triple of conjugacy

classes of Sd.

We now introduce the combinatorial analogue of a pointed Belyi map.

Definition 4.2.17. A pointed permutation triple (σ; c) is a permutation triple σ ∈ S3
d

together with a distinguished cycle c in one of the permutations σs with s = 0, 1,∞;

we call s its base point and the length of the cycle c its length. We call (σ; c) a pointed

refinement of the permutation triple σ.

Two pointed permutation triples (σ; c) and (σ′; c′) are simultaneously conjugate if

the permutation triples σ, σ′ are simultaneously conjugate by an element ρ ∈ Sd such

that ρcρ−1 = c′.

Remark 4.2.18. In our computations we always choose the distinguished cycle c of σ

to be the cycle in σ0 containing 1.

Definition 4.2.19. A pointed passport consists of the data (g,G, λ; c) where (g,G, λ)

is a passport and c = (s, e, a) consists of the data:

(a) s ∈ {0, 1,∞};

(b) e ∈ Z≥1 a part in the partition λs; and

(c) a ∈ Z≥1.

The pointed passport of a pointed permutation triple (σ; c) is the pointed passport

(g,G, λ; (s, e, a)) where (g,G, λ) is the passport of σ, s ∈ {0, 1,∞} indicates which of

σ0, σ1, σ∞ contains c, e is the length of c, and

a = #{ρ ∈ Sd : ρσsρ
−1 = σs ∀s ∈ {0, 1,∞} and ρcρ−1 = c} .
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In this case we say that (σ; c) belongs to the pointed passport (g,G, λ; c). The size of

a pointed passport is the number of pointed permutation triples belonging to it, up

to simultaneous conjugacy.

Proposition 4.2.20 ([Musty et al., 2019, Corollary 4.3.2]). A pointed Belyi map is

defined over a field whose degree is at most the size of its pointed passport.

Remark 4.2.21. This proposition allows us to bound the degree of the number field

over which a (pointed) Belyi map is defined purely in terms of group theoretic and

combinatorial data.

The next class of objects involved in this web of bijections are triangle subgroups.

Definition 4.2.22. A triple of integers a, b, c ∈ Z≥2 is spherical, Euclidean, or hyper-

bolic according to whether the value

χ(a, b, c) := 1− 1

a
− 1

b
− 1

c

is respectively negative, zero, or positive. We associate the geometry

H =


sphere P1

C, if χ(a, b, c) < 0;

plane C, if χ(a, b, c) = 0;

upper half-plane H, if χ(a, b, c) > 0.

Remark 4.2.23. In other words, H is the unique (classical) geometry permitting a

triangle T with angles π/a, π/b, and π/c.
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Definition 4.2.24. For a, b, c ∈ Z≥2 we define the triangle group by the presentation

∆(a, b, c) = 〈δa, δb, δc | δaa = δbb = δcc = δcδbδa = 1〉 .

The generators δa, δb, δc of ∆(a, b, c) can be interpreted as the isometries of H

given by rotation about the vertices za, zb, zc of T by the angles 2π/a, 2π/b, 2π/c,

respectively, as shown in Figure 4.2.1.

za
zc

zb

−zc

b

b

bb za zc

zb

−zc

δa

δb

b

b

bb

b

b

b b

Figure 4.2.1: A fundamental domain for the action of ∆(a, b, c) on H. The action of
δa and δb on the fundamental domain.

Remark 4.2.25. We choose the ordering δcδbδa in the definition of permutation triples

(while others might require δaδbδc = 1) so that δa, δb, and δc act by counterclockwise

rotations of the appropriate angle. The opposite convention would require them to

act as clockwise rotations.

Remark 4.2.26. Some authors allow a, b, c ∈ Z≥2∪{∞}. With this convention, the full

modular group PSL2(Z) can be interpreted as the triangle group ∆(2, 3,∞), as the

usual fundamental domain for PSL2(Z) consists of a triangle with angles π/2, π/3, 0

and with one vertex at infinity, together with its reflection across the imaginary axis.

However, the triangle groups that arising from our method always have a, b, and c

finite; henceforth we restrict to the case of triangle groups ∆(a, b, c) with a, b, and c
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finite.

The objects in this bijective picture that most enchanted Grothendieck are graphs

called dessins d’enfants (children’s drawings). In contrast with the other classes of

objects in consideration, these dessins are strikingly simple, just consisting of black

and white dots connected by lines. In [Grothendieck, 1997], Grothendieck marveled

at the fact that these seemingly simple drawings nonetheless capture all the structure

of maps of complex algebraic curves:

“I don’t think that a mathematical fact has ever struck me as much as this, nor

had a comparable psychological impact. This surely stems from the very familiar,

non-technical nature of the objects considered, of which any drawing scrawled on a

scrap of paper...gives a perfectly explicit example.”

Definition 4.2.27. A dessin (d’enfant) is a finite graph D embedded in an oriented

compact connected topological surface X with the following properties:

(i) D is connected;

(ii) D is bicolored : each vertex is assigned the color black or white, and adjacent

vertices have different colors; and

(iii) X \D has finitely many connected components, each of which is homeomorphic

to a disc. (These are called the faces of D.)

Dessins D1 and D2 embedded in X1 and X2, respectively, are equivalent if there

exists an orientation-preserving homeomorphism ψ : X1 → X2 whose restriction to

D1 induces an isomorphism between the bicolored graphs D1 and D2.

Remark 4.2.28. The notion of equivalence of dessins can also be given in more combi-

natorial terms, without reference to the ambient topological surfaces. Given a dessin
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D, we label the edges of D with the labels 1, 2, . . . , d. For each white (resp., black)

vertex v, we give a cyclic ordering of the edges incident to v, which we then record

as a cycle of a permutation O0 (resp., O1). The pair (O0, O1) is called an orientation

of the dessin D.

We then define dessins D1 and D2 to be equivalent if there exists an isomorphism

of graphs ψ : D1 → D2 that preserves both the bicoloring and orientation of D1. For

more details, cf., [Sijsling and Voight, 2014, §1].

Lemma 4.2.29. There are bijections between the following classes of objects.

(a) Belyi maps of degree d, up to isomorphism

(b) Transitive permutation triples in Sd, up to simultaneous conjugacy

(c) Subgroups of triangle groups of index d, up to conjugacy

(d) Dessins d’enfants with d edges, up to equivalence

We will not give a full proof here, but will rather outline the correspondences that

are important for our method. See [Klug et al., 2014, Lemma 1.1] for more details.

4.2.5. Belyi maps to permutation triples

Let ϕ : X → P1 be a Belyi map of degree d, let U = P1 \ {0, 1,∞}, and let

Y = ϕ−1(U) = X \ ϕ−1({0, 1,∞}). Then the restriction ϕ|Y : Y → U is an (un-

ramified) covering map of topological surfaces. Choosing a basepoint ∗ ∈ U , we have

a presentation of the fundamental group as

π1(U, ∗) = 〈γ0, γ1, γ∞ | γ∞γ1γ0 = 1〉
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where γ0, γ1, γ∞ are homotopy classes represented by loops based at ∗ around 0, 1,

and ∞, respectively. Since ϕ is a covering map, then for each x ∈ ϕ−1(∗), a path

γ in U with initial point ∗ can be lifted to a unique path γ̃ in Y with initial point

x such that f ◦ γ̃ = γ. Thus the terminal point of γ̃ will be a unique x′ ∈ ϕ−1(∗),

and this induces a right action of π1(U, ∗) on ϕ−1(∗) by xγ = γ̃(1). Labelling the

d points in ϕ−1(∗) with {1, . . . , d}, this action yields a permutation representation

σ : π1(U, ∗)→ Sd, called the monodromy action of ϕ. Letting σ0 = σ(γ0), σ1 = σ(γ1),

and σ∞ = σ(γ∞) produces a permutation triple; moreover, since Y is path-connected,

the group 〈σ0, σ1, σ∞〉 ≤ Sd is transitive.

The triple (σ0, σ1, σ∞) obtained in this way encodes several pieces of information

about the associated Belyi map. The number of disjoint cycles in σ0 (resp., σ1, σ∞)

is the number of distinct points in the fiber above 0 (resp., 1, ∞), while ramification

indices of the points in the fiber are given by the lengths of these cycles.

Remark 4.2.30. The basic idea of our method is to reverse this correspondence: given

a permutation triple, we wish to compute the Belyi map associated to it. To do so,

we pass first from permutation triples to triangle subgroups, and then from triangle

subgroups to Belyi maps.

4.2.6. Permutation triples to triangle subgroups

Given a transitive permutation triple σ = (σ0, σ1, σ∞) ∈ S3
d with orders a, b, c ∈

Z≥2, let ∆ = ∆(a, b, c) be its associated triangle subgroup. Since the permutations
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σ0, σ1, σ∞ satisfy the relations defining ∆, then there is a group homomorphism

π : ∆→ Sd

δa, δb, δc 7→ σ0, σ1, σ∞ .

This homomorphism allows us to define an action of ∆ on the labels {1, 2, . . . , d}: an

element δ ∈ ∆ acts as π(δ) ∈ Sd. Let

Γ = Stab∆(1) = {δ ∈ ∆ : 1π(δ) = 1}

where G = 〈σ〉 ≤ Sd. Since G acts transitively on {1, 2, . . . , d}, then the orbit of 1

has size d. Thus [∆ : Γ] = d by the orbit-stabilizer theorem.

4.2.7. Triangle subgroups to Belyi maps

Let Γ be a subgroup of a triangle group ∆ = ∆(a, b, c). Then ∆ (and Γ) acts on

its associated geometric space H (the sphere, Euclidean space, or hyperbolic space).

The quotient space X(∆) := ∆\H is homemorphic to a sphere and, after resolving

quotient singularities, even isomorphic to P1
C. Similarly, X(Γ) = Γ\H can be given

the structure of a smooth projective curve. Moreover, since Γ ≤ ∆, there is a natural

map Γ\H → ∆\H taking equivalence classes mod Γ to equivalence classes mod ∆.

Identifying X(∆) with P1(C), then this map is the Belyi map ϕ : X(Γ)→ P1(C).

Remark 4.2.31. To pass from Belyi maps to dessins, consider the closed unit interval

[0, 1] ⊆ P1, with 0 and 1 labelled with white and black dots, respectively. One can

show that ϕ−1([0, 1]), the graph embedded in X by pulling back along ϕ, is a dessin.
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Section 4.3

Computing equations: generalities

There are a variety of methods for computing Belyi maps, using tools such as Gröbner

bases, complex analytic techniques, and p-adic techniques. For a survey of these

methods, see [Sijsling and Voight, 2014].

This section is based strongly on joint work with Klug, Musty, and Voight [Klug

et al., 2014]. We employ a numerical method that uses power series expansions of

modular forms for subgroups of triangle groups. In subsection 4.4.4 we augment

this procedure with Newton’s method, extending the approach in [Klug et al., 2014,

Example 5.28] for genus 0 Belyi maps.

Below is an overview of our method for computing equations for Belyi maps. Our

method takes as input a permutation triple σ = (σ0, σ1, σ∞) ∈ Sd and produces as

output equations for the curve X and the Belyi map ϕ : X → P1 corresponding to σ.

It is comprised of the following steps.
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(1) Form the triangle subgroup Γ ≤ ∆(a, b, c) associated to σ and compute its coset

graph.

(2) Use a reduction algorithm for Γ and numerical linear algebra to compute nu-

merical power series expansions of modular forms fi ∈ Sk(Γ) for an appropriate

weight k.

(3) Embed the curve X(Γ) = Γ\D in projective space using the modular forms fi.

Use numerical linear algebra and Riemann–Roch to find polynomial relations

among the series fi, yielding equations for the curve X and ϕ.

(4) Normalize the equations of X and ϕ so that the coefficients are algebraic and

recognize these coefficients as elements of a number field K ⊆ C.

(5) Verify that ϕ has the correct ramification and monodromy representation.

We will focus on steps 3 and 4 of the above method in the cases where X(Γ) is

an elliptic curve or a hyperelliptic curve. Below we provide brief summaries of the

content of the other steps, along with references to more complete treatments.

In step 1, we examine the action of ∆ on the coset space Γ\∆. We record this

action in a coset graph, which is defined similarly to the Cayley graph of a group. This

allows us to construct a fundamental domain for Γ that is connected, and comprised

of translates of the fundamental domain for ∆. This in turn leads to an efficient

reduction algorithm for the group Γ. For more details on this step, we refer the

reader to [Klug et al., 2014, §3].

In step 2, we use the reduction algorithm obtained in step 1, along with numerical

linear algebra computations, to obtain numerical power series expansions for modular
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4.4 Elliptic Belyi Maps

forms for the group Γ. For more details on this step, we refer the reader to [Klug,

2013], [Voight and Willis, 2014], and [Klug et al., 2014, §4].

In step 5, we can verify using Magma that our putative Belyi map ϕ has the desired

ramification by computing its divisor. To verify that ϕ has the correct monodromy

representation, we use the method described in [Bruin et al., 2019, subsection 2C].

Thus at the beginning of step 3 we have the following data:

(i) power series expansions for a basis of modular forms of the appropriate weight;

(ii) a power series expansion for the Belyi map ϕ as a function on Γ\D;

(iii) a fundamental domain in D for Γ with coordinates of the ramification points of

ϕ; and

(iv) a list of side pairing elements of ∆ that identify the sides of the fundamental

domain that are equivalent under the action of Γ.

Section 4.4

Elliptic Belyi Maps

This section is based on joint work with Musty, Sijsling, and Voight, specifically

[Musty et al., 2019, §5]. Our main result is a numerical method for computing elliptic

Belyi maps, which we then use to compute an exhaustive database of Belyi maps of

low degree. Throughout this section we assume that X(Γ) has genus 1. We call a

Belyi map whose domain is an elliptic curve an elliptic Belyi map.

Remark 4.4.1. Technically an elliptic curve over a field K is more than just a genus

1 curve over K; it comes equipped with a distinguished K-rational point. However,
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as discussed in subsection 4.2.3 we always compute pointed Belyi maps, which come

with a distinguished point. Thus the genus 1 curves we encounter will always come

equipped with a K-rational point, and hence are elliptic curves over K.

4.4.1. Setup

Recall from (4.2.1) that Ω(X(Γ)) and S2(Γ) are isomorphic via the map f(z) 7→

f(z) dz. Since X(Γ) has genus 1, then S2(Γ) has dimension 1, hence it is spanned by

a form

f(z(w)) = (1− w)2

∞∑
n=0

bnw
n ∈ C[[w]], (4.4.1)

which is unique up to rescaling by C×. Then ω := f(w) dw is the unique (nonzero)

holomorphic differential 1-form on the Riemann surface X(Γ), up to rescaling by C×.

In order to obtain a Weierstrass model for X(Γ), we first compute the Abel-

Jacobi map X(Γ) → C/Λ, where Λ is the period lattice of X(Γ). Using our explicit

description of a fundamental domain for Γ, we find a set of paths γ1, . . . , γt generating

the homology H1(X(Γ),Z) and then compute the period integrals

∫
γi

ω. To do so, we

compute an antiderivative F for f by integrating the series representations for f term-

by-term. Applying the fundamental theorem of calculus, we compute F (qi) − F (pi)

for i = 1, . . . , t, where pi and qi are the initial and terminal points, respectively, of the

path γi. Given a fundamental domain for Γ constructed using the “petalling” variant

of the coset graph method (cf., the paragraph preceding Algorithm 3.8 in [Klug et al.,

2014]), we can simply take pi and qi ranging over all black dots (preimages of 1) in

the fundamental domain that are incident to an edge involved in a side pairing. The

numerical values computed form a spanning set for the period lattice Λ, which we then

reduce to a basis ω1, ω2 using the LLL lattice reduction algorithm, as implemented
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in Magma’s LinearRelation. Interchanging ω1, ω2 if necessary, we may assume that

τ := ω1/ω2 ∈ H.

In computing power series expansions for modular forms we employ a “federalist

approach,” as described in [Klug et al., 2014, §4]. This entails, for each modular form

f , computing a power series expansion for f centered at each white dot (preimage

of 0) in the fundamental domain. This approach provides better numerical accuracy

when evaluating a modular form f at a point in the fundamental domain, as we can

choose the series expansion for f that minimizes the distance between the point and

the center of the expansion.

Despite these benefits, the federalist approach leads to a more involved procedure

for computing period integrals as above, as we must keep track of the various neigh-

borhoods while using different power series expansions for a given modular form. We

illustrate this with the following example.

Example 4.4.2. Consider the permutation triple σ = (σ0, σ1, σ∞) where

σ0 = (1 7 8 6)(2 4)(3 5), σ1 = (1 5)(2 7)(3 4 8 6), σ∞ = (1 8 2 3)(4 7 5 6) ,

which belongs to the passport (1, G, ((4, 2, 2), (4, 2, 2), (4, 4)), where G is the transitive

subgroup of S8 with label 8T46. Let Γ be the corresponding triangle subgroup. As

shown below in figure 4.4.1, the fundamental domain for Γ contains the 3 preimages

of 0 (indicated by white dots)

v1 = 0, v2 ≈ 0.32180 + 0.77689i, v3 ≈ 0.77689− 0.32180i ,

one for each cycle in σ0. Let f be the unique (up to rescaling) weight 2 modular form
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for Γ. We compute a power series expansion for f centered at each preimage of 0,

obtaining the series

f1(w1)

(1− w1)2
≈ 1.00000− (0.61087− 0.61087i)w1 − 0.20488i w2

1 − (1.41241 + 1.41241i)w3
1 + · · ·

f2(w2)

(1− w2)2
≈ (5.19539− 2.81603i)w2 − (5.65951 + 7.29719i)w3

2 + · · ·

f3(w3)

(1− w3)2
≈ −(0.68929− 0.50080i)w3 − (0.02607 + 1.33116i)w3

3 + · · · .

In representing the series, we have applied an automorphism of the disc translating

the center uj of each expansion to the origin. We denote this translated coordinate

by wj. Let Fj be the antiderivative of fj for j = 1, 2, 3.

To compute the period corresponding to the side pairing s8, we compute the path

integral from b1 to b4 as

∫ b2

b1

f2(w2)
2i dw2

(1− w2)2
+

∫ b3

b2

f1(w1)
2i dw1

(1− w1)2
+

∫ b4

b3

f3(w3)
2i dw3

(1− w3)2

= (F2(b2)− F2(b1)) + (F1(b3)− F1(b2)) + (F3(b4)− F2(b3))

≈ 1.23941− 0.20035i+ 0.75370 + 0.75370i+ (−0.20035 + 1.23941i)

= 1.79276 + 1.79276i

where b1, b2, b3, b4 are as depicted in figure 4.4.1. Computing similarly for the other

side pairings, we obtain the nonzero periods

−1.95468 + 1.95468i, −1.79276− 1.79276i .

(In this example we find only two distinct periods up to numerical precision, so it is
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Figure 4.4.1: A fundamental domain for the triangle subgroup corresponding to the
permutation triple (1 7 8 6)(2 4)(3 5), (1 5)(2 7)(3 4 8 6), (1 8 2 3)(4 7 5 6).

not necessary to reduce the list of periods to a basis.)

With the period lattice Λ = Zω1 ⊕ Zω2 in hand, we can now compute the Abel-

Jacobi map.

α : X(Γ)→ C/Λ

w 7→
∫ w

0

f(t)
2i dt

(1− t)2
mod Λ
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(The factor of 2i/(1− t)2 appears because the differentials in H and D are related by

dz =
2i

(1− w)2
dw ;

cf., (4.2.3).) We then apply Weierstrass uniformization to obtain a model

E(Γ) : y2 = x3 − 27c4x− 54c6 (4.4.2)

for the elliptic curve, along with an isomorphism

C/Λ ∼→ E(Γ)

z 7→
(
℘(z),

℘′(z)

2

)

where ℘ is the Weierstrass ℘-function,

E2k(τ) = 1 + (−1)k
4k

B2k

∞∑
n=0

σ2k−1(n)qn

is the normalized Eisenstein series with B2k the Bernoulli numbers, so that

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn = 1 + 240q + 2160q2 + 6720q3 + . . .

E6(τ) = 1− 504
∞∑
n=1

σ5(n)qn = 1− 504q − 16632q2 − 122976q3 + . . . ,

and finally

c2k(Λ) =

(
2π

6ω2

)2k

E2k(τ). (4.4.3)

We now describe how we efficiently compute the composition X(Γ)→ C/Λ→ E(Γ)
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of the above maps.

4.4.2. Recursion for power series

Once we have computed the periods ω1, ω2, the formulas for c4 and c6 in terms of

Eisenstein series immediately give us a (numerical) equation for the curve E(Γ) .

However, we also require an explicit map X(Γ) → E(Γ) in order to determine the

images of the ramification points of ϕ. To achieve this, we compose the two isomor-

phisms discussed above and compute explicit Laurent series.

We compute series expansions for the coordinate functions x, y : X(Γ)→ E(Γ) on

the Weierstrass model as the composition of the maps mentioned above, i.e.,

x(w) = ℘(α(w)), y(w) =
℘′(α(w))

2
=
x′(w)

2
.

Thus it remains to compute Laurent series expansions for ℘ and ℘′. In terms of ℘

and ℘′, equation (4.4.2) becomes the differential equation

(
℘′(u)

2

)2

= ℘(u)3 − 27c4℘(u)− 54c6 (4.4.4)

where u is the coordinate in C. Writing

℘(w) =
1

u2
+
a−1

u
+
∞∑
n=0

anu
n (4.4.5)

for the Laurent series of ℘, given c4, c6, then equation (4.4.4) yields a recurrence

for the coefficients an. We have the initial condition a−2 = 1 and a laborious but
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straightforward calculation shows that

an =
1

n+ 3

(
1

4

n+1∑
k=1

(n− k)(k − 2)an−kak−2

−

 ∑
i+j+k=n+2
0≤i,j,k≤n+1

ai−2aj−2ak−2

+ 27c4an−4 + 54c6χ[n = 4]

) (4.4.6)

for n ≥ −1, where

χ[n = 4] =


1, if n = 4;

0, otherwise.

Thus, given the values for c4 and c6, equation 4.4.6 allows us to compute as many

terms of x(w) and y(w) as desired, and hence allows us to compute the isomorphism

X(Γ)→ E(Γ) to arbitrary w-adic precision.

4.4.3. Computing the Belyi map

We compute the expression of the Belyi map ϕ as a rational function in x and y as

follows.

(1) Determine an appropriate Riemann–Roch space L (D).

(2) Compute a basis of L (D) in terms of x and y.

(3) Using numerical linear algebra, express ϕ as a linear combination of functions

in this basis.

We make this precise as follows, proceeding similarly to [Javanpeykar and Voight,

2019, Lemma 3.2]. Let σ = (σ0, σ1, σ∞) be a transitive permutation triple of degree

d with corresponding elliptic Belyi map ϕ : X → P1. Let s be the length of the cycle
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containing 1 in σ0 and let k1, . . . kr be the lengths of the remaining cycles in σ0. Then

the divisor of zeroes of ϕ (which is also the divisor of poles of 1/ϕ) is

div0(ϕ) = div∞(1/ϕ) = s∞+
∑r

i=1kiPi

for some points P1, . . . , Pr ∈ X(C).

Since we do not have control over the points P1, . . . , Pr, we “cancel” these poles

by multiplying ϕ by a suitable function ϕ0 that has zeroes at P1, . . . , Pr and has poles

only at ∞. Such a ϕ0 will belong to the space L (D) ⊆ L (t∞) where

D := −
∑r

i=1kiPi + t∞ (4.4.7)

for some (as of yet undetermined) t ∈ Z≥0. Once we have obtained ϕ0, then ϕ0/ϕ ∈

L ((s + t)∞). As we will describe in the next step, we can write down a basis for

Riemann–Roch spaces for divisors of the form m∞, which allows us to compute ϕ0

and ϕ∞ := ϕ0/ϕ ∈ L ((s+ t)∞) with respect to this basis. Thus we have ϕ = ϕ0/ϕ∞

for some ϕ0 ∈ L (t∞) and ϕ∞ ∈ L ((s+ t)∞).

It remains to determine a value of t so that such a ϕ0 exists. Let t = d − s + 1.

Since
r∑
i=1

ki = d− s, then

deg(D) = −(d− s) + t = s− d+ d− s+ 1 = 1 .

Since X has genus 1, then every canonical divisor KX of X has degree 2 · 1− 2 = 0.

Since we may take KX to be effective, then KX = 0 is a canonical divisor for X (cf.,
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[Silverman, 2009, Example 5.7]). Applying Riemann–Roch to the divisor D, we find

`(D)− `(KX −D) = 1− g + deg(D) = 1− 1 + 1 = 1 . (4.4.8)

Since KX −D = 0−D = −D has degree deg(−D) = −1 < 0, then `(KX −D) = 0.

Then (4.4.8) simply becomes `(D) = 1, so there is a unique ϕ0 ∈ L (D) as above, up

to rescaling.

Since x and y have poles at ∞ of orders 2 and 3, respectively, then a basis for

L (m∞) is 
1, x, y, xy, x2, . . . , xm/2 if m is even

1, x, y, xy, x2, . . . , x
m−3

2 y if m is odd .

(4.4.9)

This allows us to express ϕ0 and ϕ∞ as linear combinations of monomials in x and

y, and hence express ϕ as a rational function in x and y. We illustrate this in the

following example.

Example 4.4.3. The smallest degree d for which there exists a hyperbolic passport of

genus one is d = 4, and there is a unique such passport with (a, b, c) = (4, 3, 4) and

representative triple

σ0 = (1 2 4 3), σ1 = (1 2 3), σ∞ = (1 2 3 4).

Then s = 4, so t = d− s+ 1 = 1 and we have ϕ0 ∈ L (∞) and ϕ∞ ∈ L (5∞). Bases

for these spaces are, respectively, 1 and 1, x, y, x2, xy. Thus we can write

ϕ = u
1

b0 + b2x+ b3y + b4x2 + xy
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for some u, b0, b2, b3, b4 ∈ C. Rearranging, we find that

b0ϕ+ b2xϕ+ b3yϕ+ b4x
2ϕ+ xyϕ− u = 0

and hence there is a linear relation among ϕ, xϕ, yϕ, x2ϕ, xyϕ, 1. To compute this

relation we write the coefficients of the numerical Laurent series for each of these

functions as the entries of the rows of a matrix, and then compute its numerical

kernel.

4.4.4. Newton’s method

In [Klug et al., 2014, Example 5.28], we describe how to use Newton’s method in the

case of genus 0 to achieve very accurate approximations of the coefficients of the Belyi

map, allowing us to quickly pass from tens of digits of precision to tens of thousands.

We now explain how Newton’s method can be extended to the case of genus 1 Belyi

maps.

Let ϕ : E → P1 be a Belyi map with E of genus 1 with E = E(Γ) as in 4.4.2.

In the genus 0 case one can determine equations satisfied by the coefficients of the

Belyi map by simply writing down the required factorization pattern. However, this

approach relies on the fact that the coordinate ring C[x] of the affine line A1 is a

UFD. By contrast, the affine coordinate ring

C[E] :=
C[x, y]

〈y2 − (x3 − 27c4x− 54c6)〉
(4.4.10)

is not a UFD. Nevertheless, since E is a nonsingular curve then C[E] is locally facto-

rial: the local rings C[E]P are DVRs for each affine point P ∈ E(C), and we will see
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that this is enough for our purposes.

Let P = (xP , yP ) ∈ E(C) be an affine point and let ξ := x− xP and ζ := y − yP .

Insisting that ϕ have a zero or pole of a given order at P imposes equations that can

be determined by working in the completed local ring Ĉ[E]P as follows.

If P is not a 2-torsion point of X, then yP 6= 0 and ξ is a uniformizer for Ĉ[E]P .

We solve for ξ in terms of ζ by substituting x = ξ + xP and y = ζ + yP into the

equation for E, thereby obtaining a quadratic equation in ζ

0 = ζ2 + 2yP ζ + ξ3 + 3xP ξ
2(3x2

P − 27c4)ξ

whose solution is

ζ = −yP + yP

√
1 +

ξ3 + 3xP ξ2 + (3x2
P − 27c4)ξ

y2
P

. (4.4.11)

If instead P is a 2-torsion point, then ζ is a uniformizer for Ĉ[E]P ; substituting

as above, we obtain a cubic equation for ξ in terms of ζ, which we solve via Hensel

lifting. In either case, we may express the numerator and denominator of ϕ as power

series in the local parameter.

Once this has been accomplished, we obtain the equations imposed by a zero

(resp., pole) at P of order eP by insisting that the first eP coefficients of the series

for the numerator or denominator, respectively, of ϕ vanish.

However, the system of polynomial equations from these considerations—from

insisting that the ramification points lie on the curve and that ϕ have the desired

ramification indices at each point—may still be underdetermined. In practice, we

have often found that the number of equations obtained as above will be one less
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than the number of variables. In this case, we obtain more equations as follows.

Recall from subsection 4.4.3 that s is the cycle of σ0 containing 1 and t = d− s+ 1.

Then the divisor (s + t)∞ = (d + 1)∞ has degree d + 1, so ϕ∞ ∈ L ((s + t)∞) has

degree at most d+ 1. But ϕ has degree d, so this means that ϕ0 and ϕ∞ must have a

common zero at a point Ps. This common zero allows us to obtain enough equations.

We adjoin two more variables xs and ys for the coordinates of Ps and obtain three

more equations: the equation y2
s = x3

s − 27c4xs − 54c6 since Ps lies on the elliptic

curve, and the equations ϕ0(Ps) = ϕ∞(Ps) = 0. This results in a system with as

many equations as variables, which (assuming independence of the equations) has a

unique solution, hence can be solved using Newton’s method.

Newton’s method has proven invaluable in our computations: it has allowed us to

compute genus 1 maps that were previously out of reach, and has also sped up our

computations considerably.

4.4.5. Example

We illustrate the above method with an example.

Example 4.4.4. Consider the passport (1, S7, (6
111, 6111, 2231)) of size 13. Its pointed

refinement taking the 6-cycle over 0 also has size 13. A representative permutation

triple is

σ0 = (1 2 3 4 5 6)(7), σ1 = (1)(2 7 6 3 4 5), σ∞ = (1 7 2)(3 5)(4 6). (4.4.12)

Given this ramification data, then d = 7, s = 6, and t = d − s + 1 = 2 in the

notation of subsection 4.4.3. The Riemann–Roch calculation shows that ϕ can be

written as the ratio of an element of L (2∞) by an element of L (8∞). Since 1, x
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and 1, x, y, x2, xy, . . . , x4 are bases for L (2∞) and L (8∞), respectively, factoring

out leading coefficients, we can write

ϕ = u
ϕ0

ϕ∞
= u

a0 + x

b0 + b2x+ b3y + · · ·+ b7x2y + x4
(4.4.13)

for some u, a0, b0, b2 . . . , b7 ∈ Q ⊂ C, so ϕ ∈ L (2∞) and ϕ∞ ∈ L (8∞). Computing

with 40 decimal digits of precision (but only displaying 5), after 20 seconds on a

standard CPU we find the initial approximation for X and ϕ. After normalizing the

coefficients (which we discuss in detail in the next subsection) to get b7(= b8) = 1,

we obtain

c4, c6 ≈ −0.00031, 0.0000035

ϕ ≈ 0.0024
−0.18587 + x

−0.00042 + 0.00112x+ · · ·+ 0.03839x3 + x2y + x4
.

(4.4.14)

Let P = (xP , yP ) be the point corresponding to the 3-cycle in σ∞. Since P ∈ X(C),

our first equation is y2
P = x3

P − 27c4xP − 54c6. Computing ζ as in (4.4.11), we find

ζ =
3
2
x2
P − 27

2
c4

yP
ξ +
−9

8
x4
P + 81

4
c4x

2
P + 3

2
xPy

2
P − 729

8
c2

4

y3
P

ξ2

+
27
16
x6
P − 729

16
c4x

4
P + · · ·+ 81

4
c4xPy

2
P + 1

2
y4
P − 19683

16
c3

4

y5
P

ξ3 +O(t4) .

(4.4.15)

Substituting x = ξ + xP and y = ζ + yP into the above expression for ϕ∞ yields

ϕ∞ = x4
P + x3

P b6 + x2
PyP b7 + x2

P b4 + xPyP b5 + xP b2 + yP b3 + b0

+
(

3
2
x4
P b7 + 4x3

PyP + 3
2
x3
P + · · ·+ b5 + yP b2 − 27

2
c4b3

) ξ

yP

+
(
−9

8
x6
P b7 − 9

8
x5
P b5 + · · ·+ 729

8
c2

4b3

) ξ2

y3
P

+O(ξ3) .

(4.4.16)
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To impose the condition that ϕ has a pole of order 3 at P , we set the first three

coefficients of ϕ∞ equal to 0, giving 3 equations.

Proceeding similarly with the other ramification points, we obtain 22 polyno-

mial equations in the 23 variables u, c4, c6, a0, b0, . . . , b7 and xP , yP for each of the

ramification points, other than the point corresponding to the cycle containing 1 in

σ0. (The point corresponding to this cycle is ∞, and we have already imposed the

condition that ϕ vanishes to order 6 at ∞ by taking ϕ0 ∈ L (2∞) \ L (∞) and

ϕ∞ ∈ L (8∞) \L (7∞).) This system is underdetermined, so in order to apply New-

ton’s method we must find at least one more equation. We observe that although ϕ

is a degree 7 map, ϕ∞ has degree 8, so there must be a common zero of ϕ0 and ϕ∞.

Calling this point Ps = (xs, ys), we obtain three more equations

y2
s = x3

s − (27c4xs − 54c6) 0 = ϕ0(Ps) = a0 + xs

0 = ϕ∞(Ps) = b0 + b2xs + b3ys + · · ·+ b7x
2
sys + x4

s .

(4.4.17)

We have adjoined two more variables xs, ys and produced three more equations to

ensure non-degeneracy. This produces a system of 25 equations in 25 variables. Ap-

plying Newton’s method to this system, in 16.20 seconds we obtain approximations

of coefficients with 2000 digits of precision, which allows us to recognize the coeffi-

cients of ϕ as algebraic numbers. After a change of variables to reduce the size of the

output, we find the elliptic curve

X : y2 = x3 − (24ν + 75)x+ 1
2
(−657ν2 − 1014ν + 3278) (4.4.18)
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and Belyi map ϕ = uϕ0/ϕ∞ where u = 1/(2932) and

ϕ0 = (−419ν2 − 358ν + 2947) + 49x

ϕ∞ = (−806361ν2 − 724014ν + 5449304) + (−3150ν2 − 15652ν + 84560)x

+ (−11310ν2 + 17940ν + 118656)y + (−33180ν2 + 74760ν − 55104)x2

+ (59556ν2 − 189336ν + 233856)xy + (5166ν2 − 16380ν + 20720)x3

+ (−59022ν2 + 184980ν − 225792)x2y + (25557ν2 − 80122ν + 97832)x4

over the number field Q(ν) where ν3 − 6ν + 12 = 0. It turns out that this passport

decomposes into two Galois orbits, one of size 3 as shown above, and the other of

size 10. The coefficients of the Belyi map for the size 10 orbit are too large for us to

display here, but it is defined over the number field Q(µ) where

µ10− 2µ9 + 15µ8− 78µ7 + 90µ6 + 48µ5 + 90µ4− 78µ3 + 15µ2− 2µ+ 1 = 0 . (4.4.19)

One can find the full data for this Galois orbit at http://beta.lmfdb.org/Belyi/

7T7/%5B6%2C6%2C6%5D/61/61/322/g1/b.

Remark 4.4.5. The “extra zero” phenomenon described in subsection 4.4.4 can be

avoided in the special case when 0 is totally ramified (i.e., when σ0 is a d-cycle).

4.4.6. Normalization

Once the coefficients of the curve and map have been computed to sufficiently high

precision, it remains to normalize them and recognize them as algebraic numbers.

As shown in [Silverman, 2009, III §1], (cf., Table 3.1 and the discussion following

it), given a Weierstrass model y2 = x3 +Ax+B for an elliptic curve over C, the only
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change of variables preserving the form of the equation is

x = λ2x′ and y = λ3y′ (4.4.20)

for some λ ∈ C×, which then rescales the coefficients and discriminant by

A = λ4A′, B = λ6B′, ∆ = λ12∆′ . (4.4.21)

Since the curve E : y2 = x3 − 27c4x− 54c6 admits a Belyi map, then E has a model

defined over Q by Belyi’s theorem (Theorem 4.2.2). Thus there exists λ ∈ C× such

that c4/λ
4, c6/λ

6 ∈ Q. Moreover, the Belyi map ϕ itself can also be defined over Q,

so we can find a rescaling factor λ so that the coefficients of ϕ also belong to Q.

Under such a change of variable, a monomial axiy becomes a(λ2x)i(λ3y) = λ2i+3axiy.

Thus the coefficients of the Belyi map, when written as a ratio of linear combinations

of monomials in x and y, belong to a weighted projective space, where the weight is

given by the order of pole at ∞ (the identity of the group law) of the corresponding

monomial.

For instance, suppose that the monomials a4x
2 and a5xy both appear in the

expression for ϕ and a4 and a5 are nonzero. Considering [a4 : a5] as an element of the

weighted projective space P(4 : 5), then

[a4 : a5] = λ[a4 : a5] = [λ4a4 : λ5a5]

for any λ ∈ C×. Since the weights 4 and 5 are relatively prime, then we can find a

representative for [a4 : a5] where the components are equal: insisting that λ is chosen
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so that λ4a4 = λ5a5, we solve for λ as

a4/a5 = λ5/λ4 = λ .

More generally, let w1, . . . , wt be the weights of the (numerically) nonzero coefficients

of the Belyi map. If gcd(w1, . . . , wt) = 1 we can still compute the rescaling factor

λ as the product of these coefficients raised to the appropriate powers. If instead

gcd(w1, . . . , wt) = m > 1, then all coefficients appearing in the Belyi map have weight

divisible by m, hence will be rescaled by a power of λm. Then we need only determine

λm, which again can be accomplished as in the case where gcd(w1, . . . , wt) = 1. We

illustrate the case where gcd(w1, . . . , wt) = 1 in the following example.

Example 4.4.6. Consider the permutation triple σ = (σ0, σ1, σ∞) where

σ0 = (1 4 2 5 3), σ1 = (1 2 3)(4 5), σ∞ = (1 2 5)(3 4) .

Then σ belongs to the passport (1, S5, ((5), (3, 2), (3, 2)) and one can show that this

passport has pointed size 1, hence σ is the unique representative up to simultaneous

conjugacy. Computing as described above, we find the corresponding Belyi map as

the rational function

ϕ =
a0

b0 + b3y + b5xy
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defined on the elliptic curve E : y2 = x3 − 27c4x− 54c6 where

c4 ≈ −0.02600 + 0.01889i c6 ≈ −0.00682− 0.00495i a0 ≈ 0.21234− 0.46856i

b0 ≈ 0.10617 + 0.23427i b3 ≈ −0.21576− 0.23646i b5 ≈ 0.68570− 0.31074i .

(For this example we computed with 50 decimal digits of precision, but display only

5.) Letting b′i = bi/a0 for i = 0, 3, 5, then

ϕ =
1

b′0 + b′3y + b′5xy

and b′0 ≈ 0.5000. Note that in this example there are no nonzero coefficients with

consecutive weights. However the nonzero weights 3 and 5 have gcd(3, 5) = 1, so we

can still find a suitable rescaling factor. Since 2 · 3 + (−1) · 5 = 1, we let

λ = b′5/b
′2
3 ≈ −2.22147 + 3.05758i .

Replacing (x, y) by (λ2x, λ3) has the effect of multiplying b′3 by λ3 and b′5 by λ5.

Letting b′′i = λib′i for i = 0, 3, 5, then

b′′3 ≈ −33.592320000000000000000000000000000000000002133650 + 10−43i

b′′5 ≈ −1128.4439629824000000000000000000000000000001433485 + 10−41i
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which appear rational. Similarly, letting c′4 = c4/λ
4 and c′6 = c6/λ

6, then

c′4 ≈ 0.00015754240672077619518982125904032917577572928450809− 10−48i

c′6 ≈ −2.8920643412287487249185660018382076139734633925465 · 10−6 + 10−49i

which at least appear real, and turn out to be rational.

Once the coefficients of the curve and Belyi map have been normalized to be

(putatively) algebraic, it remains to recognize them as such. We first find a bound on

the degree of the number field containing the coefficients. As discussed in subsection

4.2.3, the degree of the number field over which the pointed Belyi map ϕ is defined

is bounded by the size of its pointed passport. With this bound in hand, we can

recognize the numerical approximations of the coefficients by using, for instance,

LLL, as implemented in Magma’s PowerRelation command. We illustrate this by

continuing Example 4.4.6, completing the computation.

Example 4.4.7. Recognizing the numerical approximations above, we find

b′′0 =
1

2
b′′3 = −104976

3125
= −2438

55
b′′5 = −11019960576

9765625
= −28316

510

c′4 =
1953125

12397455648
=

59

25318
c′6 = − 45166015625

15617223649253376
= − 51337

211327

and thus obtain the Belyi map

ϕ =
1

1
2
− 104976

3125
y − 11019960576

9765625
xy
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defined on the elliptic curve

E : y2 = x3 − 1953125

459165024
x+

45166015625

289207845356544
.

We can simplify the equations for the map and the curve by computing the mini-

mal model Emin of the elliptic curve and pushing the Belyi map forward along the

isomorphism E
∼→ Emin. Performing these calculations in Magma, we obtain the map

ϕmin =
1

1
2

+ 5
324
y + 1

324
xy

=
324

162 + 5y + xy

defined on the elliptic curve

Emin : y2 = x3 − 120x+ 740 ,

which has discriminant ∆(Emin) = −283952.

4.4.7. Results

Using the method described above, we have computed a large collection of elliptic

Belyi maps in low degree. In particular, we have produced an exhaustive list of

elliptic Belyi maps of degree d ≤ 7. This data is available at http://beta.lmfdb.

org/Belyi/ and the raw text files comprising the database are available at https:

//github.com/michaelmusty/BelyiDB.

Theorem 4.4.8. There are 118 Galois orbits of elliptic Belyi maps with degree d ≤ 7.

They are distributed with respect to degree as shown in the table below.

Proof. This is an easy observation from our data, which includes equations for each
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d Number of orbits
3 1
4 2
5 7
6 35
7 73

of these Galois orbits.

We conclude this section with a look at the completeness of our computations in

higher degree. In the following table, the second column records the number of genus

1 passports in each degree d ≤ 9. The last column records the number of passports

that we have computed completely, i.e., such that we have computed equations for

every isomorphism class in this passport.

d Total number of passports Computed
3 1 1
4 2 2
5 6 6
6 29 29
7 50 50
8 217 83
9 427 33

We hope to extend our computations to higher degree in future work.

One practical obstacle arises due to the “extra point” phenomenon described in

subsection 4.4.4. To find an extra point we seek a common zero of two polynomials

with coefficients in C. Loss of numerical precision in factoring these polynomials may

make it appear that the polynomials have no roots in common, preventing us from

finding an extra point. And even when we succeed in finding an extra point, we often

only know it to a much lower numerical precision. If the loss of precision is too large,

it may cause our initial values to fall outside the basin of convergence for Newton’s

method.
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The existence of large Galois orbits presents a genuine obstacle. If a passport

contains a large Galois orbit, then the corresponding Belyi maps will be defined

over a number field of large degree (the size of the orbit). The amount of numer-

ical precision required to recognize these coefficients may figure in the thousands

or tens of thousands of decimal digits. Our approach using Newton’s method has

helped in this regard, as it provides us with much higher numerical precision. For

instance, it has allowed us to successfully compute all maps associated to the passport

(1, S7, ((6, 1), (6, 1), (4, 2, 1))), which has size 32.

Section 4.5

Hyperelliptic Belyi Maps

This section is based on joint work with Musty, Sijsling, and Voight, specifically

[Musty et al., 2019, §6]. Our main result is a numerical method for computing hy-

perelliptic Belyi maps, that is, Belyi maps defined on hyperelliptic curves. We then

use this method to compute an exhaustive database of Belyi maps of low degree.

Throughout this section we assume that X(Γ) is hyperelliptic (and has genus ≥ 2).

4.5.1. Setup

Definition 4.5.1. Let K be a field of characteristic 0 and let X be a curve over K

of genus ≥ 2. Then X is hyperelliptic if there exists a morphism X → P1
K of degree

2.

Remark 4.5.2. Some authors instead use a broader definition, defining X to be hy-

perelliptic if there is a degree 2 morphism X → C with C a smooth projective conic.

As we compute pointed Belyi maps, this distinction will be inconsequential: we insist
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that the curve X has a K-rational point P , which maps to a K-rational point of

C. A conic with a K-rational point is isomorphic to P1
K , and composing with this

isomorphism yields a degree 2 map X → P1
K .

Recall that a hyperelliptic curve H of genus g ≥ 2 over K has a model

H : y2 + u(x)y = v(x) (4.5.1)

where deg(u) ≤ g + 1 and deg(v) ≤ 2g + 2. Letting f(x) := u(x)2 + 4v(x), we have

f(x) separable with deg f(x) = 2g + 1 or 2g + 2; we refer to the model as even or

odd according to the parity of deg f(x). Note that an odd model has the single point

∞ = (1 : 0 : 0) at infinity while an even model has two, ∞′ = (1 :
√
f0 : 0) and

∞ = (1 : −
√
f0 : 0) where f0 is the leading coefficient of f(x), i.e., the point ∞ is a

Weierstrass point if and only if the model is odd.) In constructing the Belyi map, in

both cases we take ∞ to be the marked point (around which we expand series), and

by convention it corresponds to the cycle containing 1 in σ0.

For more background on hyperelliptic curves, we refer the reader to [Liu, 2002,

§7.4.3].

4.5.2. Numerical test for hyperellipticity

Before we can apply our method for computing hyperelliptic Belyi maps, we must

first determine whether the map at hand is indeed hyperelliptic. Below we describe a

procedure for determining if the source curve X(Γ) appears to be hyperelliptic (over

C) up to the working numerical precision.

Let Γ be a triangle subgroup with X = X(Γ) of genus g ≥ 2. We test if X

is numerically hyperelliptic (in the sense the curve appears to be hyperelliptic to
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the precision computed) as follows. First, we compute power series expansions of

an echelonized basis f1, f2, . . . , fg of S2(X(Γ)). We have an isomorphism S2(X(Γ)) ∼=

Ω(X(Γ)) given by f(z) 7→ f(z) dz where Ω(X(Γ)) is the C-vector space of holomorphic

differential 1-forms on X(Γ). If X is hyperelliptic with model a model H as in (4.5.1),

since f1, . . . , fg is an echelonized basis we have the further isomorphism

Ω(X(Γ))
∼→ Ω(H)

fi(z) dz 7→ xg−i
dx

y

(4.5.2)

for i = 1, . . . , g. Thus, to recover x, y defined on X(Γ), we can take

x := f1/f2 y := x′/fg (4.5.3)

since

f1

f2

=
xg−1 dx/y

xg−2 dx/y
= x

x′

fg
=

dx

dx/y
= y (4.5.4)

where x′ denotes the derivative of x with respect to z (the coordinate in H). If the

model is odd, then ord∞ x = −2 and ord∞ y = −(2g + 1); if the model is even, then

ord∞ x = −1 and ord∞ y = −(g + 1).

Consider the rational map X(Γ) 99K A2
C with coordinates x, y. We test if there is

an approximate linear relation among

1, x, . . . , x2g+2, y, xy, . . . , xg+1y, y2 ∈ C[[w]] (4.5.5)

by using numerical linear algebra on their series expansions. If there is such a relation,

we obtain a rational map from X to a hyperelliptic curve X ′ ⊆ A2. If g(X ′) = g(X),
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then the Riemann–Hurwitz formula implies that this map is birational, hence X ′ is

a model of X as in (4.5.1). If no such relation exists, then we conclude that X is not

numerically hyperelliptic.

Remark 4.5.3. If X has genus 2, then X is automatically hyperelliptic (and the above

test will yield an equation). If X has genus 3, then X is hyperelliptic (over C) if and

only if the functions f1, f2, f3 satisfy a quadratic relation (over C), which shows that

the (numerical) image of the canonical map is a plane conic.

Example 4.5.4. Consider the degree 7 triple

σ = ((1, 2, 3, 4, 5, 6, 7), (1, 2, 3, 4, 5, 6, 7), (1, 6, 4, 2, 7, 5, 3))

which belongs to the passport (3, G, ((7), (7), (7))), where G ∼= Z/7Z has transitive

group label 7T1.

We compute with 50 digits of precision. Defining the coordinate functions x and y

as in (4.5.3), we then form the power series for the monomials 1, x, . . . , x8, y, xy, . . . , x4y

and y2. We record the first 30 terms of each of these series as a row of a 15 × 30

matrix. Computing the numerical kernel of this matrix, we find that the kernel is

1-dimensional. We obtain the numerical linear relation (displayed with 5 digits of

precision)

0 ≈ (3.99999)x− 0.99999x8 + y2

which we easily recognize as the equation y2 = x8− 4x for our curve. Thus the Belyi

map corresponding to this triple is hyperelliptic.
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Example 4.5.5. Consider the degree 7 triple

σ = ((1 4 7 3 6 2 5), (1 4 6 5 7 2 3), (1 6 2 4 3 5 7))

which belongs to the passport (3, G, ((7), (7), (7))), where G ∼= GL3(F2) has transitive

group label 7T5.

We proceed as in the previous example. However, this time we find that the

numerical kernel of the matrix is trivial, indicating that, up to numerical precision,

the Belyi map corresponding to σ is not hyperelliptic. Indeed, it turns out that the

Belyi map corresponding to σ is defined on a (non-hyperelliptic) quartic plane curve;

cf., [Klug et al., 2014, Example 5.27].

4.5.3. Computing the Belyi map

If the above test for hyperellipticity is positive, we obtain a (numerical) equation

for the curve X, so it remains to compute the Belyi map. Suppose now that X is

hyperelliptic with model as in (4.5.1). We compute the expression of the Belyi map

ϕ as a rational function in x and y using the same strategy as in the genus 1 case,

namely:

(1) Determine an appropriate Riemann–Roch space L (D).

(2) Compute a basis of L (D) in terms of x and y.

(3) Using numerical linear algebra, express ϕ as a linear combination of functions

in this basis.

We again use the notation from subsection 4.4.3. Let σ = (σ0, σ1, σ∞) be a

transitive permutation triple of degree d with corresponding hyperelliptic Belyi map
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ϕ : X → P1 of genus g. Let s be the length of the cycle containing 1 in σ0 and let

k1, . . . kr be the lengths of the remaining cycles in σ0. As before, we seek an integer t

such that we may write ϕ =
ϕ0

ϕ∞
with ϕ0 ∈ L (t∞ and ϕ∞ ∈ L ((s+ t)∞).

As before, let

D := −
∑r

i=1kiPi + t∞ . (4.5.6)

Applying Riemann-Roch to D yields

`(D) ≥ `(D)− `(KX −D) = 1− g + deg(D) = 1− g + (s− d+ t) . (4.5.7)

Thus to ensure that `(D) ≥ 1, it suffices to have the inequality

1− g + s− d+ t ≥ 1 ,

i.e., t ≥ d − s + g. Thus we may take t = d − s + g. (This conclusion actually does

not require X to be hyperelliptic.) Unlike in the elliptic case, with this choice of t

we may still have `(t∞) > 1. In this case, we can repeatedly replace t by t− 1 until

`(t∞) = 1.

Next, we explain how to compute bases for L (t∞) and L ((s + t)∞) as in step

2. In the case of an odd model, this basis is particularly simple: x and y have poles

at ∞ of orders 2 and 2g + 1, respectively, so

1, x, x2, . . . , xbm/2c, y, xy, . . . , xb
m−(2g+1)

2
cy (4.5.8)

is a basis for L (m∞). In the case of an even model the situation is more complicated.

Now x, y 6∈ L (m∞) because they also have poles at ∞′. We compute a basis for
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L (m∞) as follows. Since x has a simple pole at ∞′ we know ξ := 1/x has a simple

zero, and hence is a uniformizing parameter at∞′. (At this stage in the computation

we have only complex approximations to the coefficients of the curve X = X(Γ), so

Magma’s built-in functions for computing Riemann–Roch bases, which require curves

defined over an exact field, cannot be used.) Working in the completed local ring

ÔX,∞′ ' C[[ξ]], we can express y as a Laurent series in ξ via

y =
1

2

(
−u(1/ξ)±

√
u(1/ξ)2 + 4v(1/ξ)

)
. (4.5.9)

We consider the series expansion for y(w) in order to choose correct sign in (4.5.9).

For each j ∈ {0, . . . ,m− (g+ 1)} we compute the Laurent tail Pj ∈ C[1/ξ] = C[x] of

xjy, so that xjy − Pj is holomorphic at ∞′. In this way we obtain the basis

1, y − P0, xy − P1, . . . , x
m−(g+1)y − Pm−(g+1) (4.5.10)

for L (m∞). We illustrate the above procedure in the following example.

Example 4.5.6. Consider the passport (2, G, (61, 61, 32)), where G := 2A4(6) ∼= A4×C2

has transitive group label 6T6. The pointed passport has size 1, with representative

triple

σ0 = (1 6 2 4 3 5), σ1 = (1 3 5 4 6 2), σ∞ = (1 3 5)(2 4 6). (4.5.11)

Computing the coordinate functions x, y as in (4.5.3) to 50 digits (displaying 5), we
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find approximate series

x ≈ 0.99999w−1 − 0.79370w − 0.31498w3 +O(w4)

y ≈ −0.99999w−3 − 0.79370w−1 − 0.94494w − 0.02142w3 +O(w4) .

(4.5.12)

Since the series for y has a pole of order 3 = g + 1, we are in the case of an even

model. Forming the matrix of coefficients of the monomials

1, x, x2, x3, x4, x5, x6, y, xy, x3y, y2 , (4.5.13)

we find a hyperelliptic equation as in (4.5.1) with u = 0 and

v ≈ 1.00000x6 + 6.34960x4 + 15.11905x2 + 11.99999 (4.5.14)

This gives the local expansion

y =
√
v(1/ξ) =

√
1.00000ξ−6 + 6.34960ξ−4 + 15.11905ξ−2 + 11.99999

= 1.00000ξ−3 + 3.17480ξ−1 + 2.51984ξ − 1.99999ξ3 +O(ξ4) .

(4.5.15)

Thus the Laurent tail of y is 1.00000x3 + 3.17480x, and the first nonconstant element

of our basis for L (m∞) for m ≥ 3 is

y − (1.00000x3 + 3.17480x)

≈ −2.00000w−3 − 1.58740w−1 + 0.62996w − 0.04285w3 +O(w4)

(4.5.16)

and we compute the remaining elements of the basis similarly.
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4.5.4. Normalization

As in the case of genus 1 Belyi maps considered in subsection 4.4.6, we can consider

the coefficients of a Belyi map as belonging to a weighted projective space, with

weights given by the order of pole at ∞ of the corresponding monomial. Again,

provided the weights of the nonzero coefficients of the Belyi map have gcd 1, we can

compute the rescaling factor λ as a product of these coefficients raised to appropriate

powers. We illustrate this, continuing the computation from the previous example.

Example 4.5.7. Let σ be as in Example 4.5.6. Computing as described above, we find

the corresponding Belyi map as the rational function

ϕ =
a0

b0 + b4f4 + b6f6

≈ −1.00000

−1.99999 + 0.79370f4 + 0.50000f6

,

where

f4 ≈ xy − (1.00000x4 + 3.17480x2)

f4 ≈ x3y − (1.00000x6 + 3.17480x4 + 2.51984x2)

defined on the hyperelliptic curve X : y2 = c6x
6 + c4x

4 + c2x
2 + c0 where

c0 ≈ 12.00000 c2 ≈ 15.11905 c4 ≈ 6.34960 c6 ≈ 1.00000 .

(For this example we computed with 50 decimal digits of precision, but display only

5.) We observe that all basis functions have poles at w = 0 (equivalently, at ∞) of

even order, so it suffices to compute λ2, the square of the rescaling factor. Since f4
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and f6 have poles of orders 4 and 6, then we may take

λ2 =
b4

b6

≈ 1.58740 .

Replacing (f4, f6) by (λ4f4, λ
6f6) transforms the Belyi map by

ϕ =
a0

b0 + λ4b4f4 + λ6b6f6

≈ −1.00000

−1.99999 + 1.99999f4 + 1.99999f6

whose coefficients are easily recognized as rational numbers. Replacing (x, y) by

(λx, λ3y) transforms the equation of the curve by

λ6y2 = λ6c6x
6 + λ4c4x

4 + λ2c2x
2 + c0

and dividing through by λ6 to maintain a Weierstrass equation, we have

y2 = c6x
6 + λ−2c4x

4 + λ−4c2x
2 + λ−6c0

≈ 1.00000x6 + 4.00000x4 + 6.00000x2 + 3.00000

which is easily recognized as y2 = x6+4x4+6x2+3. We recompute the Riemann-Roch

basis as before, now using this curve, and obtain

f4 = xy − (x4 + 2x2) and f6 = x3y − (x6 + 2x4 + x2) .
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Using the coefficients for the Belyi map computed above, we have

ϕ =
−1

−2 + 2(xy − (x4 + 2x2)) + 2(x3y − (x6 + 2x4 + x2))

=
1

1 + 3x2 + 3x4 − xy + x6 − x3y
=
x4 + 2x2 + xy + 1

2(x2 + 1)2
.

To show that this map has the correct ramification, we compute the divisors of ϕ and

ϕ− 1, obtaining

div(ϕ) = 6(1 : −1 : 0)− 3(i : 0 : 1)− 3(−i : 0 : 1)

div(ϕ− 1) = 6(1 : 1 : 0)− 3(i : 0 : 1)− 3(−i : 0 : 1)

(4.5.17)

where i2 + 1 = 0.

4.5.5. Results

Using the method described above, we have computed a modest collection of hyper-

elliptic Belyi maps in low degree. In particular, we have produced an exhaustive list

of hyperelliptic Belyi maps of degree d ≤ 6.

Theorem 4.5.8. There are 12 Galois orbits of hyperelliptic Belyi maps with degree

d ≤ 6. There are 4 orbits of Belyi maps in degree 5 and 8 orbits in degree 6.

Proof. Again, this is an easy observation from our data, available at http://beta.

lmfdb.org/Belyi/.

Example 4.5.9. The passport (3, C7, (7
1, 71, 71)) produces interesting results. It has

size 5 and decomposes into 5 Galois orbits, each of size 1. Three of these orbits
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produce the hyperelliptic Belyi maps

X : y2 = x8 − 2x, ϕ =
y + x4

2x4

X : y2 = x8 + 16x, ϕ = −x
3y + x7

8

X : y2 = x8 + 2x, ϕ = x3y + x7 + 1

while the remaining two are defined on the Klein quartic X : xy3 + x3 + y = 0, one

given by ϕ = −xy2 and the other by ϕ = xy2 + 1. (Note that these maps are related

by the automorphism x 7→ 1− x of P1.)

We conclude this section with a look at the completeness of our computations in

higher degree. In the following table, each entry records our computation of passports

in a given degree d ≤ 7 and genus g ∈ {2, 3}. The denominator is the total number

of passports for the given genus and degree, while the numerator is the number

of passports that we have computed completely, i.e., such that we have computed

equations for every isomorphism class in this passport.

d
g

2 3

5 2/2 0
6 7/7 0
7 7/13 2/3

As in the case of elliptic Belyi maps, the main obstruction to completing the

computations indicated in the table above is the presence of large passports. In

degree 7 and genus 2, the passports that remain to be computed have sizes 12, 20,

20 24, 24, and 38, and the remaining passport in degree 7 and genus 3 has size 23.

Some of these passports decompose into Galois orbits, some of which are of moderate

size, but the larger orbits require too much numerical precision for us to compute
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equations for the entire passport.

We conclude this section with an examination of the completeness of our compu-

tations in low degree for all genera. The denominator of each entry gives the total

number of passports in a given degree and genus, while the numerator specifies how

many these passports we have computed completely, i.e., such that we have computed

equations for every isomorphism class in the passport.

d

g
0 1 2 3 ≥ 4 total

1 1/1 0 0 0 0 1/1

2 1/1 0 0 0 0 1/1

3 2/2 1/1 0 0 0 3/3

4 6/6 2/2 0 0 0 8/8

5 12/12 6/6 2/2 0 0 20/20

6 38/38 29/29 7/7 0 0 74/74

7 89/89 50/50 7/13 2/3 0 148/155

8 243/261 83/217 0/84 0/11 0 326/573

9 410/583 33/427 0/163 0/28 0/6 443/1207

total 802/993 204/732 16/269 2/42 0/6 1024/2042

We hope to extend our computations to higher degree in future work. In par-

ticular, we hope to implement an approach using Newton’s method for hyperelliptic

Belyi maps similar to the one used in the case of elliptic Belyi maps. Such an imple-

mentation would allow us to overcome the presence of large passports and compute

a much larger range of degrees, in addition to speeding up our computations.

In the longer term, we hope to further analyze the data we have computed, espe-

cially concerning the Galois action. In particular, for each passport that decomposes

into multiple Galois orbits, we seek to find some sort of explanation for this reducibil-
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ity. For instance, suppose that (g,G, λ) is a passport and C is the triple of conjugacy

classes of Sd corresponding to λ. Suppose G̃ is a central extension of G. If one or more

of the conjugacy classes in C split into several conjugacy classes when considered in

G̃, then we expect that the passport (g,G, λ) will decompose into multiple Galois

orbits. This approach is studied extensively in [Roberts, 2018], which includes many

examples.

We hope that such analysis may help us to better understand this important and

mysterious group, Gal(Q/Q).
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