BELYI MAPS AND DESSINS D'ENFANTS HOMEWORK \#6

Exercise 6.1. Let T be a hyperbolic triangle with one vertex at infinity, and the other two vertices on the unit circle. Denote the angles of T at these latter two vertices by α and β, as shown below. Compute the hyperbolic area of T. (Recall that the hyperbolic area is given by

$$
a(T)=\int_{T} \frac{d x d y}{y^{2}}
$$

Use polar coordinates to compute this integral.)

Exercise 6.2. Let G be a transitive permutation group on a finite set A. Recall the following definitions.

- A block of G is a nonempty subset B of A such that for all $\sigma \in G$, either $\sigma(B)=B$ or $\sigma(B) \cap B=\varnothing$, where $\sigma(B)=\{\sigma(b): b \in B\}$.
- G is primitive if the only blocks of G are are the trivial ones: the sets of size 1 , and A itself.
(a) If B is a block and $a \in B$, show that the set

$$
\operatorname{Stab}_{G}(B)=\{\sigma \in G \mid \sigma(B)=B\}
$$

is a subgroup of G containing $\operatorname{Stab}_{G}(a)$.
(b) If B is a block and $\sigma_{1}(B), \sigma_{2}(B), \ldots, \sigma_{n}(B)$ are the distinct images of B under elements of G, show that these form a partition of A.
(c) Prove that G is primitive if and only if for each $a \in A$, the only subgroups of G containing $\operatorname{Stab}_{G}(a)$ are $\operatorname{Stab}_{G}(a)$ and G itself, i.e., $\operatorname{Stab}_{G}(a)$ is a maximal subgroup of G.

