BELYI MAPS AND DESSINS D'ENFANTS HOMEWORK #4

Exercise 4.1. Use the fact that $\chi(\mathbb{S}^2) = 2$ to show that there are only five regular polyhedra. [*Hint*: Consider subdivisions of the sphere into n-gons such that exactly m edges meet at each vertex, $m, n \geq 3$. Show that nf = 2e = mv, so that

$$\frac{1}{e} + \frac{1}{2} = \frac{1}{m} + \frac{1}{n}$$

and consider the solutions with n = 3, 4, 5 and n > 6 in turn.]

Exercise 4.2. Let $E: Y^2Z = F(X, Z)$ be an elliptic curve given in Weierstrass form. Let x = X/Z and y = Y/Z be affine coordinates on the affine open U where $Z \neq 0$ and let $\omega = \frac{dx}{y}$. We showed in class that ω is holomorphic on U. Let $\infty = [0:1:0]$.

- (a) Show that $\operatorname{ord}_{\infty}(x) = -2$ and $\operatorname{ord}_{\infty}(y) = -3$. [*Hint*: What are the degrees of x and y? How many points in their respective fibers above $\infty = [1:0] \in \mathbb{P}^1$?]
- (b) Show that ω is also holomorphic at [0:1:0] and conclude that it is a holomorphic differential on all of E. [Hint: Compute $\operatorname{ord}_{\infty}(\omega)$ using the fact that $\operatorname{ord}_{\infty}(dx) = \operatorname{ord}_{\infty}(x) 1$.]

Date: March 18, 2021.