BELYI MAPS AND DESSINS D'ENFANTS HOMEWORK \#4

Exercise 4.1. Use the fact that $\chi\left(\mathrm{S}^{2}\right)=2$ to show that there are only five regular polyhedra. [Hint: Consider subdivisions of the sphere into n-gons such that exactly m edges meet at each vertex, $m, n \geq 3$. Show that $n f=2 e=m v$, so that

$$
\frac{1}{e}+\frac{1}{2}=\frac{1}{m}+\frac{1}{n}
$$

and consider the solutions with $n=3,4,5$ and $n \geq 6$ in turn.]
Exercise 4.2. Let $E: Y^{2} Z=F(X, Z)$ be an elliptic curve given in Weierstrass form. Let $x=X / Z$ and $y=Y / Z$ be affine coordinates on the affine open U where $Z \neq 0$ and let $\omega=\frac{d x}{y}$. We showed in class that ω is holomorphic on U. Let $\infty=[0: 1: 0]$.
(a) Show that $\operatorname{ord}_{\infty}(x)=-2$ and $\operatorname{ord}_{\infty}(y)=-3$. [Hint: What are the degrees of x and y ? How many points in their respective fibers above $\infty=[1: 0] \in \mathbb{P}^{1}$? $]$
(b) Show that ω is also holomorphic at $[0: 1: 0]$ and conclude that it is a holomorphic differential on all of E. [Hint: Compute $\operatorname{ord}_{\infty}(\omega)$ using the fact that $\operatorname{ord}_{\infty}(d x)=$ $\operatorname{ord}_{\infty}(x)-1$.]

