BELYI MAPS AND DESSINS D'ENFANTS HOMEWORK \#1

Exercise 1.1. Let

$$
X=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\}
$$

be the cone in \mathbb{R}^{3} equipped with the subspace topology. Show that X cannot be given the structure of a topological surface.

Exercise 1.2. Fix $\omega_{1}, \omega_{2} \in \mathbb{C}$ that are \mathbb{R}-linearly independent, and let $\Lambda=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$ be the lattice they span. Let X be the quotient \mathbb{C} / Λ, a complex torus. Show that the collection of charts defined in lecture form a holomorphic atlas. (All that is left to check is that the transition functions are holomorphic.)

Exercise 1.3.

(a) Let $z=a+b i \in \mathbb{C}$. Considering \mathbb{C} as an \mathbb{R}-vector space, then the left-multiplication map

$$
\begin{aligned}
\lambda_{z}: \mathbb{C} & \rightarrow \mathbb{C} \\
w & \mapsto z w
\end{aligned}
$$

is an \mathbb{R}-linear map. Determine the matrix of λ_{z} with respect to the basis $\{1, i\}$.
(b) Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a differentiable function given by component functions $h_{1}, h_{2}: \mathbb{R}^{2} \rightarrow$ \mathbb{R}, so $h(x, y)=\left(h_{1}(x, y), h_{2}(x, y)\right)$. Recall that its derivative is given by the Jacobian matrix

$$
\left(\begin{array}{ll}
\frac{\partial h_{1}}{\partial x} & \frac{\partial h_{1}}{\partial y} \\
\frac{\partial h_{2}}{\partial x} & \frac{\partial h_{2}}{\partial y}
\end{array}\right)
$$

Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \rightarrow \mathbb{C}$ be holomorphic. Then $f(z)=$ $u(x, y)+\overline{i v}(x, y)$ is differentiable considered as a function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, and its Jacobian matrix at z_{0} must be the matrix of left multiplication by the complex number $f^{\prime}\left(z_{0}\right)$.

Recover the Cauchy-Riemann equations by equating the Jacobian matrix and the matrix representation of $a+b i$ you found in the previous part.

