BELYI MAPS AND DESSINS D'ENFANTS HOMEWORK #1

Exercise 1.1. Let

$$X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$$

be the cone in \mathbb{R}^3 equipped with the subspace topology. Show that X cannot be given the structure of a topological surface.

Exercise 1.2. Fix $\omega_1, \omega_2 \in \mathbb{C}$ that are \mathbb{R} -linearly independent, and let $\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ be the lattice they span. Let X be the quotient \mathbb{C}/Λ , a complex torus. Show that the collection of charts defined in lecture form a holomorphic atlas. (All that is left to check is that the transition functions are holomorphic.)

Exercise 1.3.

(a) Let $z = a + bi \in \mathbb{C}$. Considering \mathbb{C} as an \mathbb{R} -vector space, then the left-multiplication map

$$\lambda_z: \mathbb{C} \to \mathbb{C}$$
 $w \mapsto zw$

is an \mathbb{R} -linear map. Determine the matrix of λ_z with respect to the basis $\{1, i\}$.

(b) Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be a differentiable function given by component functions $h_1, h_2: \mathbb{R}^2 \to \mathbb{R}^2$ \mathbb{R} , so $h(x,y)=(h_1(x,y),h_2(x,y))$. Recall that its derivative is given by the Jacobian matrix

$$\begin{pmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{pmatrix}$$

 $\begin{pmatrix} \frac{\partial h_1}{\partial x} & \frac{\partial h_1}{\partial y} \\ \frac{\partial h_2}{\partial x} & \frac{\partial h_2}{\partial y} \end{pmatrix}$ Let $U \subseteq \mathbb{C}$ be an open set and let $f: U \to \mathbb{C}$ be holomorphic. Then f(z) = 0u(x,y) + iv(x,y) is differentiable considered as a function $\mathbb{R}^2 \to \mathbb{R}^2$, and its Jacobian matrix at z_0 must be the matrix of left multiplication by the complex number $f'(z_0)$.

Recover the Cauchy-Riemann equations by equating the Jacobian matrix and the matrix representation of a + bi you found in the previous part.

Date: February 24, 2021.