18.700 MIDTERM EXAM 1 REVIEW

1. OVERVIEW OF TOPICS

- (1) Systems of Linear Equations
 - (a) Definition of a linear system
 - (b) Elementary row operations
 - (c) Row reduction and RREF
 - (d) Pivots and free variables
 - (e) 3 possibilities for number of solutions: none, one, or infinitely many
 - (f) Parametric description of solution sets
 - (g) Test for consistency using echelon form
- (2) Vector Spaces
 - (a) Definition of a vector space
 - (b) Definition of a subspace
 - (c) Subspace criterion
 - (d) Sums and direct sums of subspaces
 - (i) $V_1 + V_2$ is direct iff $V_1 \cap V_2 = \{0\}$.
 - (e) Common examples of vector spaces: \mathbb{F}^n , \mathbb{F}^{∞} , \mathbb{F}^S , $\mathcal{P}(\mathbb{F})$, $\mathcal{P}_m(\mathbb{F})$
- (3) Finite-Dimensional Vector Spaces
 - (a) Linear combinations
 - (b) Span
 - (i) span(L) is the smallest subspace containing L. (Axler 2.6)
 - (c) Linear (in)dependence
 - (i) Linear Dependence Lemma (Axler 2.19)
 - (ii) $LI \leq span$ (Axler 2.22)
 - (d) Bases
 - (i) A list of vectors is a basis iff it is linearly independent and spans.
 - (ii) Reduction Lemma: Every spanning list can be reduced to a basis. (Axler 2.30)
 - (iii) Extension Lemma: Every linearly independent list can be extended to basis. (Axler 2.32)
 - (e) Dimension
 - (i) Independence of Length Theorem: Any two bases of a finite-dimensional vector space have the same length. (Axler 2.34)
 - (ii) *U* a subspace of $V \implies \dim(U) \le \dim(V)$. (Axler 2.37)
 - (iii) Dimension of a sum (Axler 2.43)
- (4) Linear Maps
 - (a) Definition of a linear map
 - (i) Defining a linear map through its action on a basis. (Axler 3.4)
 - (ii) $\mathcal{L}(V, W)$ is itself a vector space. (Axler 3.6)
 - (b) Kernels aka null spaces

- (c) Images aka ranges
- (d) Injectivity and surjectivity
 - (i) *T* is injective iff ker $(T) = \{0\}$. (Axler 3.15)
 - (ii) Rank-Nullity Theorem (Axler 3.21)
- (5) Matrices
 - (a) The matrix of a linear map with respect to a choice of bases. (Axler 3.31)
 - (b) $[\lambda S + T] = \lambda[S] + [T]$, i.e., $[\cdot] : \mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F})$ is a linear map. (Axler 3.35, 3.38)
 - (c) Definiton of matrix multiplication (Axler 3.41)
 - (d) [ST] = [S][T] (Axler 3.43)
 - (e) Interpretations of matrix multiplication in terms of rows and columns. (Axler 3.48, 3.51)
 - (f) Row rank = column rank.
- (6) Invertibility and Isomorphisms
 - (a) Invertible linear maps aka isomorphisms
 - (i) Invertible \iff bijective. (Axler 3.63)
 - (ii) If $\dim(V) = \dim(W)$, injective \iff surjective. (Axler 3.65)
 - (b) Isomorphic vector spaces
 - (i) $V \cong W \iff \dim(V) = \dim(W)$. (Axler 3.70)

2. PRACTICE PROBLEMS

Problem 1. Let *V* and *W* be vector spaces, and let $T \in \mathcal{L}(V, W)$. Suppose that *Z* is a subspace of *W*. Show that

$$U := \{ v \in V : T(v) \in Z \}$$

is a subspace of *V*.

Problem 2. Let $V = \mathcal{P}_3(\mathbb{R})$ and let $\mathcal{B} := (1, 2z, -2 + 4z^2, -12z + 8z^3)$. (These are the first four *Hermite polynomials*.)

- (a) Show that \mathcal{B} is basis of $\mathcal{P}_3(\mathbb{R})$.
- (b) Let $p(z) = 7 12z 8z^2 + 12z^3$. Find $[p]_{\mathcal{B}}$, the coordinate vector of p with respect to \mathcal{B} .

Problem 3. Let $V := \mathcal{P}_3(\mathbb{R})$ and let $T \in \mathcal{L}(V)$ be the linear map $T := \frac{d^2}{dx^2} + \frac{d}{dx}$, so T(f) = f'' + f'.

Compute the matrix of *T* with respect to the standard monomial basis
$$1, x, x^2, x^3$$
.

Problem 4. (2A #8, 9)

(a) Suppose $v_1, v_2, v_3, v_4 \in V$ are linearly independent. Show that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

is also linearly independent.

(b) Prove or give a counterexample: if $v_1, v_2, \ldots, v_m \in V$ are linearly independent, then

$$5v_1 - 4v_2, v_2, v_3, \ldots, v_m$$

are also linearly independent.

Problem 5. (3A #13) Let *V* be a finite-dimensional vector space. Prove that every linear map on a subspace of *V* can be extended to a linear map on *V*. In other words, show that if *U* is a subspace of *V* and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ such that T(u) = S(u) for all $u \in U$.

Problem 6. (3B #5, 6)

- (a) Give an example of $T \in \mathcal{L}(\mathbb{R}^4)$ such that $\operatorname{img}(T) = \operatorname{ker}(T)$.
- (b) Prove that there does not exist $T \in \mathcal{L}(\mathbb{R}^5)$ such that $\operatorname{img}(T) = \operatorname{ker}(T)$.

Problem 7. (3B #27) Let *V* be a vector space. Suppose $T \in \mathcal{L}(V)$ such that $T^2 = T$. Prove that $V = \ker(T) \oplus \operatorname{img}(T)$.

Problem 8. (3C #5) Suppose *V* and *W* are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that there exists a basis \mathcal{B} of *V* and a basis \mathcal{C} of *W* such that $A := {}_{\mathcal{C}}[T]_{\mathcal{B}}$ has the following form: $A_{ii} = 1$ for $i = 1, ..., \dim(\operatorname{img}(T))$ and $A_{ij} = 0$ otherwise.

Problem 9. (3C #10) Give an example of 2×2 matrices *A* and *B* such that $AB \neq BA$.

Problem 10. (3D #2) Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps. Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.