18.700 PROBLEM SET 8

Due Wednesday, November 27 at 11:59 pm on Canvas

Collaborated with: Sources used:

Let *V* and *W* be nonzero finite-dimensional inner product spaces over \mathbb{F} .

Problem 1. (7A #4) (7 points) Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is T-invariant $\iff U^{\perp}$ is T^* -invariant.

Problem 2. (7A #5) (6 points) Suppose $T \in \mathcal{L}(V, W)$. Suppose e_1, \ldots, e_n is an orthonormal basis of V and f_1, \ldots, f_m is an orthonormal basis of W. Prove that

$$|T(e_1)|^2 + \dots + ||T(e_n)||^2 = ||T^*(f_1)||^2 + \dots + ||T^*(f_m)||^2$$

Problem 3. (7B #1) (7 points) Let $\mathbb{F} = \mathbb{C}$ and suppose $T \in \mathcal{L}(V)$ is normal. Show that *T* is self-adjoint if and only if all the eigenvalues of *T* are real.

Problem 4. (7B #6) (6 points) Let $\mathbb{F} = \mathbb{C}$ and suppose $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that *T* is self-adjoint and $T^2 = T$. (*Hint*: Use the previous exercise.)

Problem 5. (7C #3) (6 points) Let *n* be a positive integer and $T \in \mathcal{L}(\mathbb{F}^n)$ be the operator whose matrix with respect to the standard basis consists of all 1s. Show that *T* is a positive operator.

Problem 6. (7E #3) (4 points) Give an example of $T \in \mathcal{L}(\mathbb{C}^2)$ such that 0 is the only eigenvalue of *T* and the singular values of *T* are 5, 0.