18.700 PROBLEM SET 7

Due Wednesday, November 6 at 11:59 pm on Canvas

Collaborated with: Sources used:

Let *V* be an inner product space.

Problem 1. (6A #9, 11) (10 points)

- (a) Suppose $u, v \in V$, and ||u|| = 1 = ||v|| and $\langle u, v \rangle = 1$. Prove that u = v.
- (b) Find vectors $u, v \in \mathbb{R}^2$ such that u is a scalar multiple of (1,3), v is orthogonal to (1,3), and (1,2) = u + v.

Problem 2. (6A #16) (5 points) Given $x, y \in V$, we defined the angle between x and y to be

$$\angle(x,y) := \arccos\left(\frac{\langle x,y\rangle}{\|x\|\|y\|}\right)$$

Explain why this definition makes sense using the Cauchy-Schwarz inequality.

Problem 3. (6B #1) (6 points) Suppose e_1, \ldots, e_m is a list of vectors in *V* such that

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbb{F}$. Show that e_1, \ldots, e_m is an orthonormal list. (This exercise provides a converse to 6.24 in the textbook.)

Problem 4. (6B #7) (6 points) Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ has an upper-triangular matrix with respect to the basis (1,0,0), (1,1,1), (1,1,2). Find an orthonormal basis of \mathbb{R}^3 with respect to which *T* has an upper-triangular matrix.

Problem 5. (6C #3) (8 points) Suppose *U* is the subspace of \mathbb{R}^4 defined by

$$U := \operatorname{span} \left((1, 2, 3, -4), (-5, 4, 3, 2) \right) \,.$$

Find an orthonormal basis of *U* and an orthonormal basis of U^{\perp} .

Problem 6. (6C #4) (10 points) Suppose e_1, \ldots, e_n is a list of vectors in *V* with $||e_k|| = 1$ for each $k = 1, \ldots, n$, and

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2$$

for all $v \in V$. Prove that e_1, \ldots, e_n is an orthonormal basis of V. (This provides a converse to 6.30(b) in the textbook.)