18.700 PROBLEM SET 6

Due Wednesday, October 30 at 11:59 pm on Canvas

Collaborated with: Sources used:

Problem 1. (5B #21) (5 points) Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that the minimal polynomial of T has degree at most $1 + \dim(\operatorname{img}(T))$. (Observe that if $\dim(\operatorname{img}(T)) < \dim(V) - 1$, then this exercise gives a better upper bound for the degree of minpoly(T).) (*Hint*: Recall that img(T) is T-invariant.)

Problem 2. (5B #22) (6 points) Suppose *V* is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that *T* is invertible iff $I \in \text{span}(T, T^2, \dots, T^{\dim(V)})$.

Problem 3. (5C #6) (5 points) Suppose $\mathbb{F} = \mathbb{C}$, *V* is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that *V* has a *k*-dimensional *T*-invariant subspace for each $k = 1, ..., \dim(V)$.

Problem 4. (5C #11) (6 points) A square matrix is lower-triangular if all its entries above the diagonal are 0. Suppose $\mathbb{F} = \mathbb{C}$ and V is finite-dimensional. Prove that if $T \in \mathcal{L}(V)$, then there exists a basis of V with respect to which T has a lower-triangular matrix.

Problem 5. (5D #1) (7 points) Suppose V is a finite-dimensional C-vector space and $T \in$ $\mathcal{L}(V).$

- (a) Prove that if $T^4 = I$, then *T* is diagonalizable.
- (b) Prove that if $T^4 = T$, then T is diagonalizable.
- (c) Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^2)$ such that $T^4 = T^2$ and T is not diagonalizable. (Make sure to justify why your T is not diagonalizable.)

Problem 6. (5D #21) (12 points) The *Fibonacci sequence* F_0, F_1, F_2, \ldots is defined by

$$F_0 = 0$$
, $F_1 = 1$, and $F_n = F_{n-2} + F_{n-1}$ for $n \ge 2$.

Define $T \in \mathcal{L}(\mathbb{R}^2)$ by T(x, y) = (y, x + y).

- (a) Show that $T^n(0,1) = (F_n, F_{n+1})$ for each $n \in \mathbb{Z}_{\geq 0}$. (b) Find the eigenvalues of *T*.
- (c) Find a basis of \mathbb{R}^2 consisting of eigenvectors of *T*.
- (d) Use the solution to (c) to compute $T^n(0, 1)$. Conclude that

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

for each $n \in \mathbb{Z}_{>0}$. (The number $(1 + \sqrt{5})/2$ is called the *golden ratio*.)