18.700 PROBLEM SET 5

Due Wednesday, October 23 at 11:59 pm on Canvas

Collaborated with: Sources used:

Problem 1. (3D #18) (8 points) Show that *V* and $\mathcal{L}(\mathbb{F}, V)$ are isomorphic \mathbb{F} -vector spaces.

Problem 2. (3D #6) (10 points) Suppose that *W* is finite-dimensional and $S, T \in \mathcal{L}(V, W)$. Prove that ker(S) = ker(T) if and only if there exists an invertible $P \in \mathcal{L}(W)$ such that S = PT.

Problem 3. (5A #20) (8 points) Define the left shift operator $L \in \mathcal{L}(\mathbb{F}^{\infty})$ by

$$L(z_1, z_2, z_3, \ldots) = (z_2, z_3, \ldots).$$

- (a) Show that every element of \mathbb{F} is an eigenvalue of *L*.
- (b) Find all eigenvectors of *L*.

Problem 4. (5A #21) (8 points) Suppose $T \in \mathcal{L}(V)$ is invertible.

- (a) Suppose $\lambda \in \mathbb{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of *T* if and only if $1/\lambda$ is an eigenvalue of T^{-1} .
- (b) Prove that *T* and T^{-1} have the same eigenvectors.

Problem 5. (5B #11) (10 points) Suppose *V* is a 2-dimensional vector space, $T \in \mathcal{L}(V)$, and the matrix of *T* with respect to some basis of *V* is $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- (c)
 - (a) Show that $T^2 (a+d)T + (ad-bc)I = 0$.
 - (b) Show that the minimal polynomial of *T* is

$$\begin{cases} z-a & \text{if } b=c=0 \text{ and } a=d, \\ z^2-(a+d)z+(ad-bc)=0 & \text{otherwise.} \end{cases}$$

Problem 6. (5A #30) (5 points) Suppose $T \in \mathcal{L}(V)$ and

$$(T-2I)(T-3I)(T-4I) = 0.$$

Suppose λ is an eigenvalue of *T*. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.