18.700 PROBLEM SET 4

Due Wednesday, October 2 at 11:59 pm on Canvas

Collaborated with: Sources used:

Problem 1. (3A #7) (3 points) Prove that if *V* is a 1-dimensional vector space and $T \in \mathcal{L}(V)$, then there exists a scalar $\lambda \in \mathbb{F}$ such that $T(v) = \lambda v$ for all $v \in V$.

Problem 2. (8 points)

(a) Prove that there exists a linear map $T : \mathbb{F}^2 \to \mathbb{F}^3$ such that

$$T\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\0\\2\end{pmatrix}$$
 and $T\begin{pmatrix}2\\3\end{pmatrix} = \begin{pmatrix}1\\-1\\4\end{pmatrix}$

- (b) What is $T\begin{pmatrix} x\\ y \end{pmatrix}$ for any $x, y \in \mathbb{F}$?
- (c) Is T one-to-one?

Problem 3. (2C #4) (8 points)

- (a) Let $U := \{ p \in \mathcal{P}_4(\mathbb{R}) : p''(6) = 0 \}$. Find a basis of *U*.
- (b) Extend the basis in (a) to a basis of $\mathcal{P}_4(\mathbb{R})$.
- (c) Find a subspace *W* of $\mathcal{P}_4(\mathbb{R})$ such that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.

Problem 4. (3B #3) (8 points) Suppose v_1, \ldots, v_m is a list of vectors in *V*. Define $T \in \mathcal{L}(\mathbb{F}^m, V)$ by

 $T(z_1,\ldots,z_m):=z_1v_1+\cdots+z_mv_m.$

(a) What property of *T* corresponds to v_1, \ldots, v_m spanning *V*?

(b) What property of *T* corresponds to the list v_1, \ldots, v_m being linearly independent? Give proofs of your claims in both cases. (Be sure to prove both directions of any "iff" statements.)

Problem 5. (2A #3, #14, 2B #9) (10 points) Suppose $v_1, ..., v_m$ is a list of vectors in *V*. For $k \in \{1, ..., m\}$, let

$$w_k := v_1 + \cdots + v_k.$$

- (a) Show that span $(v_1, \ldots, v_m) = \operatorname{span}(w_1, \ldots, w_m)$.
- (b) Show that the list v_1, \ldots, v_m is linearly independent iff the list w_1, \ldots, w_m is linearly independent.
- (c) Show that v_1, \ldots, v_m is a basis of *V* iff w_1, \ldots, w_m is a basis of *V*.

(*Hint*: It may be useful to find a formula for v_k in terms of w_1, \ldots, w_m .)