18.700 PROBLEM SET 3

Due Wednesday, September 25 at 11:59 pm on Canvas

Collaborated with: Sources used:

Problem 1. (2A #5) (5 points)

(a) Find a number $t \in \mathbb{R}$ such that

$$(3,1,4), (2,-3,5), (5,9,t)$$

is linearly dependent in \mathbb{R}^3 .

(b) For the value of *t* found in the previous part, determine the smallest $k \in \{1, 2, 3\}$ such that $v_k \in \text{span}(v_1, \ldots, v_{k-1})$. Express the v_k as a linear combination of v_1, \ldots, v_{k-1} .

Problem 2. (2A #7) (5 points)

- (a) Show that if we consider \mathbb{C} as vector space over \mathbb{R} , the list 1 + i, 1 i is linearly independent.
- (b) Show that if we consider \mathbb{C} as vector space over \mathbb{C} , the list 1 + i, 1 i is linearly dependent.

Problem 3. (2A #13) (6 points) Suppose that $v_1, \ldots, v_m \in V$ are linearly independent and $w \in V$. Show that v_1, \ldots, v_m, w are linearly independent iff $w \notin \text{span}(v_1, \ldots, v_m)$.

Problem 4. (1C #24) (10 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a function.

- *f* is called *even* if f(-x) = f(x) for all $x \in \mathbb{R}$.
- *f* is called *odd* if f(-x) = -f(x) for all $x \in \mathbb{R}$.

Let

$$V_e := \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is even} \}, \text{ and}$$
$$V_o := \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is odd} \}.$$

- (a) Show that V_e and V_o are subspaces of $\mathbb{R}^{\mathbb{R}}$.
- (b) Show that $\mathbb{R}^{\mathbb{R}} = V_e \oplus V_o$.

Problem 5. (11 points) Consider the following subspaces of \mathbb{F}^3 :

$$V_1 := \{ (x, y, 0) \in \mathbb{F}^3 \mid x, y \in \mathbb{F} \}$$
$$V_2 := \{ (x, 0, z) \in \mathbb{F}^3 \mid x, z \in \mathbb{F} \}$$
$$V_3 := \{ (0, y, z) \in \mathbb{F}^3 \mid y, z \in \mathbb{F} \}.$$

(a) Compute $V_1 \cap V_2 \cap V_3$.

(b) Is the sum $V_1 + V_2 + V_3$ direct? Why or why not?

(c) Prove the following generalized criterion for a sum to be direct. Let *V* be a vector space and V_1, \ldots, V_m be subspaces of *V*. Then the sum $V_1 + \cdots + V_m$ is direct iff

$$V_j \cap \left(\sum_{i \neq j} V_i\right) = V_j \cap \left(V_1 + \cdots + V_{j-1} + V_{j+1} + \cdots + V_m\right) = \{0\}$$

for each $j = 1, \ldots, m$.