SUMS AND LINEAR INDEPENDENCE WORKSHEET

SEPTEMBER 18, 2024

(1) Let V be a vector space and V_1 , V_2 be subspaces. Show that $V_1 + V_2$ is a direct sum iff $V_1 \cap V_2 = \{0\}$.

(2) Let $n \in \mathbb{Z}_{>0}$ be a positive integer and let $V := \mathbb{F}^n$. Let $e_1 := (1, 0, ..., 0), e_2 := (0, 1, 0, ..., 0), ..., e_n := (0, ..., 0, 1),$

so e_k is the n-tuple with a 1 in the k^{th} position and zeroes elsewhere. (a) Show that e_1, \ldots, e_n spans \mathbb{F}^n .

(b) Show that e_1, \ldots, e_n is linearly independent.

(3) Let

$$v_1 := (1,3,-4,2),$$
 $v_2 := (2,2,-4,0),$ $v_3 := (1,-3,2,-4),$ $v_4 := (-1,0,1,0).$

(a) Show that v_1, \ldots, v_4 are linearly dependent.

(b) Find the smallest k such that $v_k \in \text{span}(v_1, \dots, v_{k-1})$, and write v_k as a linear combination of v_1, \dots, v_{k-1} .