18.700 - LINEAR ALGEBRA, DAY 9 INVERTIBILITY AND ISOMORPHISMS

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the definition of matrix multiplication.
- (2) Students will learn that the row rank = the column rank of a matrix.
- (3) Students will learn the definition of invertibility and isomorphism.
- (4) Students will learn that an *n*-dimensional vector space is isomorphic to \mathbb{F}^n .
- (5) Students will learn that if dim(*V*) = *n* and dim(*W*) = *m*, then $\mathcal{L}(\bar{V}, W) \cong M_{m \times n}(\mathbb{F})$.
- (6) Students will learn that $[T(v)]_C = c[T]_B[v]_B$.
- (7) Students will learn the change of basis formula.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Exam 1: Wednesday, October 9th in class. No pset this week; instead review packet. • TA office hours: Tuesday, Oct 8th, 7:00 - 9:00pm, 2-361

II.1. **Last time.**

- Defined the image of a linear map.
- Rank-Nullity Theorem: If $T: V \to W$ is linear, then $\dim(V) = \dim(\ker(T)) +$ $dim(img(T)).$
- Defined coordinate vector $[v]_{\mathcal{B}} \in \mathbb{F}^n$ for $v \in V$.
- Defined the matrix [*T*] of a linear map with respect to a choice of bases.

Remark 1. Linear vs affine. The function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = mx + b$ is linear iff $b = 0$. (In general, these translates of linear maps are called *affine maps*.)

II.2. **Matrix multiplication.** Suppose that *U*, *V*, *W* are finite-dimensional vector spaces with bases

$$
\mathcal{B} := (u_1, \dots, u_p)
$$

\n
$$
\mathcal{C} := (v_1, \dots, v_n)
$$

\n
$$
\mathcal{D} := (w_1, \dots, w_m).
$$

Suppose $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear maps. We previously saw that the composition $ST: U \rightarrow W$ is linear. We now define matrix multiplication in such a way that

$$
[ST] = [S][T].
$$

Let $A := [S]$ and $B := [T]$. Then for each $j = 1, \ldots, p$ we have

$$
(ST)(u_j) = S\left(\sum_{k=1}^n B_{kj}v_k\right) = \sum_{k=1}^n B_{kj}S(v_k) = \sum_{k=1}^n B_{kj}\sum_{i=1}^m A_{ik}w_k = \sum_{i=1}^m \sum_{k=1}^n (A_{ik}B_{kj}) w_k.
$$

Thus $\left[ST\right]$ is the $m \times p$ matrix whose i, j entry is \sum *k*=1 $(A_{ik}B_{kj}).$

Definition 2. Given an $m \times n$ matrix *A* and a $n \times p$ matrix *B*, their product *AB* is defined to be the $m \times p$ matrix whose *i*, *j* entry is *n* ∑ *k*=1 $(A_{ik}B_{kj}).$

So we multiply the entries of row *j* of *A* by those of column *k* of *B*, then add these together.

Example 3.

$$
\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 & 0 & 0 \\ 2 & 1 & 0 & -1 \end{pmatrix} = \cdots
$$

2

[Ask students about the other order *BA*.]

Proposition 4. If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\left[ST \right] = [S][T]$.

Proof. This is true by the definition of matrix multiplication and the earlier calculation done as motivation. \Box

Let *A* be an $m \times n$ matrix.

- For $i = 1, \ldots, m$, let $A_{i,j}$ denote row *i* of A , which is a $1 \times n$ matrix.
- For $j = 1, ..., n$, let $A_{.j}$ denote column *j* of A , which is an $m \times 1$ matrix.

The next few results give different interpretations of matrix multiplication. Let *A* be an *m* \times *n* matrix and *B* be an *n* \times *p* matrix.

Lemma 5.

$$
(AB)_{ij} = A_{i,.}B_{\cdot,j}
$$

for all i = 1, ..., *m* and all *j* = 1, ..., *p*. [Draw picture of row and column.]

Proof. True by formula defining matrix multiplication. □

Lemma 6.

$$
(AB)_{\cdot,j} = A(B_{\cdot,j})
$$

for all $j = 1, \ldots, p$.

Proof. Exercise. Both are $m \times 1$ matrices. Check that their i^{th} entries are equal using the formula. [Draw picture applying *A* to each of the columns of *B*.] \Box

Lemma 7. Suppose A is
$$
m \times n
$$
 and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ is $n \times 1$. Then
\n $Ax = x_1 A_{\cdot 1} + \dots + x_n A_{\cdot n}$.

I.e., Ax is the linear combination of the columns of A with coefficients given by the entries of x.

Proof. Exercise. □

Lemma 8.

- *(a)* For $j = 1, \ldots, p$, $(AB)_{\cdot,j}$ *(column j) is a linear combination of the columns of A with coefficients from B*·,*^j (column j).*
- *(b)* For $i = 1, \ldots, m$, $(AB)_{i}$, (row i) is a linear combination of the rows of B with coefficients *from Ai*,· *(row i).*

Proof. Exercise. [Draw picture of second part.] □

Definition 9.

- The *column space* of *A*, denoted Col(*A*), is the span of the columns of *A*. The *column rank* is the dimension of Col(*A*).
- The *row space* of *A*, denoted Row(*A*), is the span of the rows of *A*. The *row rank* is the dimension of Row(*A*).

We'll see that these two quantities are actually equal!

Definition 10. The *transpose* of a matrix *A*, denoted *A t* , is obtained from *A* by interchanging rows and columns. I.e.,

$$
(A^t)_{ij} = A_{ji}.
$$

Lemma 11 (Column-row factorization). *Suppose A is m* \times *n and has column rank* $c \in \mathbb{Z}_{\geq 1}$ *. Then there exist an m* \times *c matrix C and a c* \times *n matrix R such that A* = *CR. [Details left as an exercise.]*

Proof. The columns $A_{\cdot,1}, \ldots, A_{\cdot,n}$ each an $m \times 1$ matrix, span Col(A). By a previous result, this list can be reduced to a basis v_1, \ldots, v_c of Col(A), which by definition must have length *c*. Use these as the columns of a *m* × *c* matrix *C*.

For $k = 1, \ldots, n$, column *k* of *A* is a linear combination of the columns of *C* (since these are a basis), so there exist scalars $R_{1k}, \ldots, R_{ck} \in \mathbb{F}$ such that

$$
A_k = R_{1k}v_1 + \cdots + R_{ck}v_c.
$$

Use the coefficients R_{1k}, \ldots, R_{ck} as the entries of the k^th column of a $c \times n$ matrix R . Then $A = CR$.

Theorem 12 (Column rank = row rank). *Suppose* $A \in M_{m \times n}(\mathbb{F})$. *Then the column rank and row rank of A are equal.*

Proof. Let *c* be the column rank of *A*. Let *A* = *CR* be the column-row factorization of *A* given by the previous lemma, where *C* is $m \times c$ and *R* is $c \times n$. Since every row of *A* can be written as a linear combination of the rows of *R*, and *R* has *c* rows, then the row rank of *A* is $\leq c$, which is the column rank of *A*.

We obtain the reverse inequality by applying the same argument to A^t , which yields

column rank of $A =$ row rank of $A^t \leq$ column rank of $A^t =$ row rank of A .

Definition 13. The *rank* of a matrix is its column rank (= its row rank).

II.3. **Invertibility and Isomorphisms.**

Definition 14.

- $T \in \mathcal{L}(V, W)$ is *invertible* if there exists a linear map $S \in \mathcal{L}(W, V)$ such that $ST = I_V$ and $TS = I_W$.
- With the above notation, $S \in \mathcal{L}(W, V)$ is called an *inverse* of *T*.

Lemma 15. *An invertible linear map has a unique inverse.*

Proof idea. Given inverses *S*1, *S*2, then

$$
\cdots = S_1 T S_2 = \cdots
$$

□

□

If T is invertible, we denote its inverse by $T^{-1}.$

Example 16.

• Let

$$
T: \mathbb{F}^2 \to \mathbb{F}^2
$$

$$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ y \end{pmatrix}.
$$

Then T^{-1} is given by

$$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x - y \\ y \end{pmatrix}.
$$

[Write out at least one composition.]

• Let

$$
R: \mathbb{R}^2 \to \mathbb{R}^2
$$

$$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y \\ \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y \end{pmatrix}.
$$

(Rotation counterclockwise by $\pi/4$.) <u>Claim</u>: R^{-1} is given by

$$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y \\ -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y \end{pmatrix}.
$$

Lemma 17. *A linear map* $T \in \mathcal{L}(V, W)$ *is invertible iff it is injective and surjective.*

Proof. (\Rightarrow): Assume *T* is invertible. <u>One-to-one</u>: Suppose $T(u) = T(v)$ for some $u, v \in V$. Applying T^{-1} to both sides, then

$$
u = T^{-1}(T(u)) = T^{-1}(T(v)) = v.
$$

 $Onto: Given *w* ∈ *W*, then $T^{-1}(w) ∈ V$ and $T(T^{-1}(w)) = w$, so $w ∈ \text{img}(T)$.$ </u>

(∈): Assume *T* is injective and surjective. Given $w \in W$, since *T* is surjective then there exists *v* \in *V* such that *T*(*v*) = *w*. Suppose *v*₁, *v*₂ \in *V* are both such preimages. Then

$$
T(v_1)=w=T(v_2)
$$

and since *T* is injective, then $v_1 = v_2$. Thus there is a *unique* $v \in V$ such that $T(v) = w$. Define the map $S: W \to V$ as follows: given $w \in W$, let $v \in V$ be the unique element such that $T(v) = w$. Defined $S(w) = v$. Then by definition we have $T(S(w)) = T(v) = w$, so $TS = I_W$. It remains to show $ST = I_V$.

Given $v \in V$, then

$$
T((ST)(v)) = (TS)(T(v)) = I_W(T(v)) = T(v).
$$

Since *T* is one-to-one, then $(ST)(v) = v$. Thus $ST = I_V$.

It remains to show that *S* is linear. Suppose $w_1, w_2 \in W$. Then

$$
T(S(w_1) + S(w_2)) = T(S(w_1)) + T(S(w_2)) = w_1 + w_2.
$$

Now by definition, $S(w_1 + w_2)$ is the unique element that maps to $w_1 + w_2$ under *T*. Thus

$$
S(w_1) + S(w_2) = S(w_1 + w_2).
$$

The proof that *S* respects scalar multiplication is similar. □

Theorem 18. *Suppose V and W are finite-dimensional vector spaces with* $dim(V) = dim(W)$. *For any* $T \in \mathcal{L}(V, W)$, the following are equivalent.

(i) T is invertible.

(ii) T is injective.

(iii) T is surjective.

Proof. (ii) \implies (iii): Suppose *T* is injective. Then dim(ker(*T*)) = 0. By the Rank-Nullity Theorem, then

$$
\dim(V) = \dim(\ker(T)) + \dim(\text{img}(T)),
$$

so dim(img(*T*)) = dim(*V*) = dim(*W*). Then img(*T*) = *W*, so *W* is surjective.

 $(iii) \implies (ii)$: Similar.

By previous result, (i) \iff (ii) and (iii), so they are all equivalent.

Remark 19. Warning! Finite-dimensionality is necessary in the above theorem. Consider the left-shift map

$$
L: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}
$$

$$
(x_1, x_2, x_3, \ldots) \mapsto (x_2, x_3, \ldots).
$$

This map is surjective but not injective.

Proposition 20. *Suppose V and W are finite-dimensional vector spaces with* $dim(V) = dim(W)$ *. Given* $T \in \mathcal{L}(V, W)$ *and* $S \in \mathcal{L}(W, V)$ *, then* $ST = I \iff TS = I$.

Proof. (\Rightarrow): Assume *ST* = *I*. Given $v \in \text{ker}(T)$, then $T(v) = 0$, so applying *S*, we have [start in middle]

$$
v = I(v) = S(T(v)) = S(0) = 0.
$$

Thus ker(*T*) = {0}, so *T* is injective. Since *V* and *W* have the same dimension, then *T* is invertible by the previous result. Thus T^{-1} exists. Applying T^{-1} on the right to both sides of $I = ST$, we have [start in middle]

$$
T^{-1} = IT^{-1} = STT^{-1} = S.
$$

Thus $TS = TT^{-1} = I$, as desired.

(\Leftarrow): Swap the roles of *S* and *T*.

II.3.1. *Isomorphic vector spaces.* The notion of isomorphism describes when two vector spaces are essentially "the same."

Definition 21. An *isomorphism* (of vector spaces) is an invertible linear map. Two vector spaces *V* and *W* are *isomorphic*, denoted $V \cong W$, if there is an isomorphism $V \to W$.

An isomorphism $T: V \to W$ is essentially just a relabeling: $v \in V$ is instead relabeled as $T(v) \in W$.

Q: How can we tell when two vector spaces are isomorphic?

Theorem 22 (Dimension determines isomorphism)**.** *Two finite-dimensional vector spaces over* **F** *are isomorphic iff they have the same dimension.*

Proof. Suppose *V* and *W* are finite-dimensional vector spaces.

(\Rightarrow): Assume *V* and *W* are isomorphic. Then there exists an isomorphism *T* : *V* → *W*. Then *T* is injective and surjective so

$$
ker(T) = \{0\} \qquad \text{and} \qquad img(T) = W.
$$

By Rank-Nullity, then [ask students]

$$
\dim(V) = \dim(\ker(T)) + \dim(\text{img}(T)) = \dim(W).
$$

(⇐): Assume dim(*V*) = dim(*W*). Let v_1, \ldots, v_n be a basis for *V* and w_1, \ldots, w_n be a basis for *W*. By a previous result, there is a unique linear map $T: V \rightarrow W$ such that $T(v_i) = w_i$ for all $i = 1, ..., n$. Since $w_1, ..., w_n$ span *W*, then *T* is surjective. Either by Rank-Nullity, or by using the fact that w_1, \ldots, w_n are linearly independent, *T* is injective. (Details left as exercise.) Thus *T* is injective and surjective, hence an isomorphism. \Box

Corollary 23. Let V be an n-dimensional vector space. Then V is isomorphic to \mathbb{F}^n .

Proof. Both have dimension *n*. □

Remark 24. We can also give an explicit isomorphism. Choose a basis $\mathcal{B} = (v_1, \ldots, v_n)$ for *V* and consider the coordinate vector map

$$
\varphi_{\mathcal{B}}: V \to \mathbb{F}^n
$$

$$
v \mapsto [v]_{\mathcal{B}}
$$

and the linear map

$$
S: \mathbb{F}^n \to V
$$

 $(a_1, \ldots, a_n) \mapsto a_1v_1 + \cdots + a_nv_n.$

Exercise: show these maps are mutually inverse isomorphisms.

Example 25. $\mathcal{P}_m(\mathbb{F})$ has dimension [ask students] $m+1$, hence is isomorphic to \mathbb{F}^{m+1} .

Proposition 26. *Suppose* $\mathcal{B} := (v_1, \ldots, v_n)$ *is a basis of V and* $\mathcal{C} := (w_1, \ldots, w_m)$ *is a basis of W* (so dim(*V*) = *n* and dim(*W*) = *m*). Then the map

$$
\mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F})
$$

$$
T \mapsto c[T]_{\mathcal{B}}
$$

is an isomorphism.

Proof. Exercise. □

Corollary 27. *Suppose V and W are finite-dimensional. Then* $dim(\mathcal{L}(V, W)) = dim(V)$ dim(*W*).

II.3.2. *Linear maps as matrices.*

Proposition 28 (Multiplication by a matrix is linear). Let $A \in M_{m \times n}(\mathbb{F})$. The left multipli*cation map*

$$
L_A: \mathbb{F}^n \to \mathbb{F}^m
$$

$$
v \mapsto Av
$$

is linear.

Proof. Considering *v* as an $n \times 1$ matrix, this follows by properties of matrix multiplication. \Box

Let *V* and *W* be vector spaces with bases $\mathcal{B} := (v_1, \ldots, v_n)$ and $\mathcal{C} := (w_1, \ldots, w_m)$, respectively. Recall, for $T: V \to W$ linear, the matrix of T with respect to B and C is given by

$$
c[T]B = \begin{pmatrix} | & | & | \\ [T(v_1)]_C & \cdots & [T(v_n)]_C \\ | & | & | \end{pmatrix}
$$

Proposition 29. *With notation as above,*

$$
[T(v)]_{\mathcal{C}} = c[T]_{\mathcal{B}}[v]_{\mathcal{B}}
$$

for all $v \in V$.

Proof. Given $v \in V$, there exist unique scalars $a_1, \ldots, a_n \in \mathbb{F}$ such that $v = a_1v_1 + \cdots + a_nv_n$ *anvn*. Since *T* is linear, then

$$
T(v) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n).
$$

Since the coordinate vector map is linear, then

$$
[T(v)]_{\mathcal{C}} = [a_1 T(v_1) + \cdots + a_n T(v_n)]_{\mathcal{C}} = a_1 [T(v_1)]_{\mathcal{C}} + \cdots + a_n [T(v_n)]_{\mathcal{C}}
$$

=
$$
\begin{pmatrix} | & & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & & | \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = c [T]_{\mathcal{B}} [v]_{\mathcal{B}}.
$$

The equality $[T(v)]_C = c[T]_B[v]_B$ can be stated by saying the following diagram "commutes."

$$
V \xrightarrow{T} W
$$

\n
$$
\varphi_B \downarrow \qquad \qquad \downarrow \varphi_C
$$

\n
$$
\mathbb{F}^n \xrightarrow{L_{\mathcal{C}}[T]_B} \mathbb{F}^m
$$

[Draw image of *v* traveling both directions.]

Proposition 30. *Suppose V and W are finite-dimensional and* $T \in \mathcal{L}(V, W)$ *. Then the rank of T* (*i.e.*, $dim(img(T))$ *is equal to the (column) rank of* [*T*].

Proof. Exercise. □

II.3.3. *Change of basis.* Q: How does the natrix $c[T]_B$ change if we change the bases B and \mathcal{C} ?

Definition 31. Let $n \in \mathbb{Z}_{\geq 0}$. The $n \times n$ *identity matrix I* is the $n \times n$ matrix with 1s on the diagonal and 0s elsewhere:

$$
I = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}.
$$

□

Remark 32. We use *I* for both the identity operator and the identity matrix. With respect to *any* basis, the matrix of the identity operator I_V is I .

Definition 33. An $n \times n$ matrix *A* is *invertible* if there is a $n \times n$ matrix *B* such that $AB =$ $BA = I$. We call *B* the *inverse* of *A* and denote it A^{-1} .

Lemma 34. *The inverse of a matrix is unique.*

Proof. Same as for linear maps. □

Theorem 35. *Let U*, *V, and W be vector spaces with bases* B, C*, and* D*, respectively. Given* $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then

$$
D[ST]_{\mathcal{B}} = D[S]_{\mathcal{C}} C[T]_{\mathcal{B}}.
$$

Proof. Follows by the definition of matrix multiplication. □

Corollary 36 (Change of basis matrix)**.** *Suppose* B *and* C *are both bases for V. Then*

$$
B[I]_{\mathcal{C}} = c[I]_{\mathcal{B}}^{-1}
$$

Proof.

$$
I = g[I]_{\mathcal{B}} = g[I]_{\mathcal{C}} c[I]_{\mathcal{B}}.
$$

.

.

Proposition 37 (Change of basis formula)**.** *Suppose* B *and* C *are both bases of V. Given* $T \in \mathcal{L}(V)$, let $A := [T]_{\mathcal{B}}$, $B := [T]_{\mathcal{C}}$, and $C = \mathcal{B}[I]_{\mathcal{C}}$. Then

$$
A = CBC^{-1}
$$

Proof.

$$
B[T]B = B[I]c c[T]c c[I]B = (c[I]B)^{-1}c[T]c c[I]B.
$$

Definition 38. Two $n \times n$ matrices A and B are *similar* or *conjugate* if there is an invertible matrix *P* such that $B = PAP^{-1}$.

□