18.700 - LINEAR ALGEBRA, DAY 9 INVERTIBILITY AND ISOMORPHISMS

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. Matrix multiplication	2
II.3. Invertibility and Isomorphisms	4

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the definition of matrix multiplication.
- (2) Students will learn that the row rank = the column rank of a matrix.
- (3) Students will learn the definition of invertibility and isomorphism.
- (4) Students will learn that an *n*-dimensional vector space is isomorphic to \mathbb{F}^n .
- (5) Students will learn that if dim(*V*) = *n* and dim(*W*) = *m*, then $\mathcal{L}(V, W) \cong M_{m \times n}(\mathbb{F})$.
- (6) Students will learn that $[T(v)]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[v]_{\mathcal{B}}$.
- (7) Students will learn the change of basis formula.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

<u>Announcements</u>: • Exam 1: Wednesday, October 9th in class. No pset this week; instead review packet. • TA office hours: Tuesday, Oct 8th, 7:00 - 9:00pm, 2-361

II.1. Last time.

- Defined the image of a linear map.
- Rank-Nullity Theorem: If $T : V \to W$ is linear, then $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{img}(T))$.
- Defined coordinate vector $[v]_{\mathcal{B}} \in \mathbb{F}^n$ for $v \in V$.
- Defined the matrix [T] of a linear map with respect to a choice of bases.

Remark 1. Linear vs affine. The function $f : \mathbb{R} \to \mathbb{R}$, f(x) = mx + b is linear iff b = 0. (In general, these translates of linear maps are called *affine maps*.)

II.2. Matrix multiplication. Suppose that *U*, *V*, *W* are finite-dimensional vector spaces with bases

$$\mathcal{B} := (u_1, \dots, u_p)$$
$$\mathcal{C} := (v_1, \dots, v_n)$$
$$\mathcal{D} := (w_1, \dots, w_m)$$

Suppose $T : U \to V$ and $S : V \to W$ are linear maps. We previously saw that the composition $ST : U \to W$ is linear. We now define matrix multiplication in such a way that

$$[ST] = [S][T].$$

Let A := [S] and B := [T]. Then for each j = 1, ..., p we have

$$(ST)(u_j) = S\left(\sum_{k=1}^n B_{kj}v_k\right) = \sum_{k=1}^n B_{kj}S(v_k) = \sum_{k=1}^n B_{kj}\sum_{i=1}^m A_{ik}w_k = \sum_{i=1}^m \sum_{k=1}^n (A_{ik}B_{kj})w_k.$$

Thus [*ST*] is the $m \times p$ matrix whose *i*, *j* entry is $\sum_{k=1}^{n} (A_{ik}B_{kj})$.

Definition 2. Given an $m \times n$ matrix A and a $n \times p$ matrix B, their product AB is defined to be the $m \times p$ matrix whose i, j entry is $\sum_{k=1}^{n} (A_{ik}B_{kj})$.

So we multiply the entries of row j of A by those of column k of B, then add these together.

Example 3.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 & 0 & 0 \\ 2 & 1 & 0 & -1 \end{pmatrix} = \cdots$$

[Ask students about the other order *BA*.]

Proposition 4. *If* $T \in \mathcal{L}(U, V)$ *and* $S \in \mathcal{L}(V, W)$ *, then* [ST] = [S][T]*.*

(0:00)

Proof. This is true by the definition of matrix multiplication and the earlier calculation done as motivation. \Box

Let *A* be an $m \times n$ matrix.

- For i = 1, ..., m, let $A_{i,.}$ denote row i of A, which is a $1 \times n$ matrix.
- For j = 1, ..., n, let $A_{i,j}$ denote column j of A, which is an $m \times 1$ matrix.

The next few results give different interpretations of matrix multiplication. Let *A* be an $m \times n$ matrix and *B* be an $n \times p$ matrix.

Lemma 5.

$$(AB)_{ij} = A_{i,\cdot}B_{\cdot,j}$$

for all i = 1, ..., m and all j = 1, ..., p. [Draw picture of row and column.]

Proof. True by formula defining matrix multiplication.

Lemma 6.

$$(AB)_{\cdot,i} = A(B_{\cdot,i})$$

for all j = 1, ..., p.

Proof. Exercise. Both are $m \times 1$ matrices. Check that their i^{th} entries are equal using the formula. [Draw picture applying *A* to each of the columns of *B*.]

Lemma 7. Suppose A is
$$m \times n$$
 and $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ is $n \times 1$. Then
 $Ax = x_1A_{\cdot 1} + \dots + x_nA_{\cdot n}$.

I.e., Ax is the linear combination of the columns of A with coefficients given by the entries of x.

Proof. Exercise.

Lemma 8.

- (a) For j = 1, ..., p, $(AB)_{.,j}$ (column j) is a linear combination of the columns of A with coefficients from $B_{.,j}$ (column j).
- (b) For i = 1, ..., m, $(AB)_{i,.}$ (row i) is a linear combination of the rows of B with coefficients from $A_{i,.}$ (row i).

Proof. Exercise. [Draw picture of second part.]

Definition 9.

- The *column space* of *A*, denoted Col(*A*), is the span of the columns of *A*. The *column rank* is the dimension of Col(*A*).
- The *row space* of *A*, denoted Row(*A*), is the span of the rows of *A*. The *row rank* is the dimension of Row(*A*).

We'll see that these two quantities are actually equal!

Definition 10. The *transpose* of a matrix A, denoted A^t , is obtained from A by interchanging rows and columns. I.e.,

$$(A^t)_{ij} = A_{ji} \,.$$

Lemma 11 (Column-row factorization). Suppose A is $m \times n$ and has column rank $c \in \mathbb{Z}_{\geq 1}$. Then there exist an $m \times c$ matrix C and a $c \times n$ matrix R such that A = CR. [Details left as an exercise.]

Proof. The columns $A_{.,1}, ..., A_{.,n}$, each an $m \times 1$ matrix, span Col(A). By a previous result, this list can be reduced to a basis $v_1, ..., v_c$ of Col(A), which by definition must have length *c*. Use these as the columns of a $m \times c$ matrix *C*.

For k = 1, ..., n, column k of A is a linear combination of the columns of C (since these are a basis), so there exist scalars $R_{1k}, ..., R_{ck} \in \mathbb{F}$ such that

$$A_k = R_{1k}v_1 + \cdots + R_{ck}v_c.$$

Use the coefficients R_{1k}, \ldots, R_{ck} as the entries of the k^{th} column of a $c \times n$ matrix R. Then A = CR.

Theorem 12 (Column rank = row rank). *Suppose* $A \in M_{m \times n}(\mathbb{F})$. *Then the column rank and row rank of A are equal.*

Proof. Let *c* be the column rank of *A*. Let A = CR be the column-row factorization of *A* given by the previous lemma, where *C* is $m \times c$ and *R* is $c \times n$. Since every row of *A* can be written as a linear combination of the rows of *R*, and *R* has *c* rows, then the row rank of *A* is $\leq c$, which is the column rank of *A*.

We obtain the reverse inequality by applying the same argument to A^t , which yields

column rank of A = row rank of $A^t \leq \text{column rank}$ of $A^t = \text{row rank}$ of A.

Definition 13. The *rank* of a matrix is its column rank (= its row rank).

II.3. Invertibility and Isomorphisms.

Definition 14.

- $T \in \mathcal{L}(V, W)$ is *invertible* if there exists a linear map $S \in \mathcal{L}(W, V)$ such that $ST = I_V$ and $TS = I_W$.
- With the above notation, $S \in \mathcal{L}(W, V)$ is called an *inverse* of *T*.

Lemma 15. An invertible linear map has a unique inverse.

Proof idea. Given inverses S_1 , S_2 , then

$$\cdots = S_1 T S_2 = \cdots$$

If *T* is invertible, we denote its inverse by T^{-1} .

Example 16.

• Let

$$T: \mathbb{F}^2 \to \mathbb{F}^2$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ y \end{pmatrix}$$
$$\overset{4}{4}$$

Then T^{-1} is given by

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x - y \\ y \end{pmatrix} .$$

[Write out at least one composition.]

• Let

$$R: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y \\ \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y \end{pmatrix}$$

(Rotation counterclockwise by $\pi/4$.) <u>Claim</u>: R^{-1} is given by

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y \\ -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y \end{pmatrix}$$

Lemma 17. A linear map $T \in \mathcal{L}(V, W)$ is invertible iff it is injective and surjective.

Proof. (\Rightarrow): Assume *T* is invertible. <u>One-to-one</u>: Suppose T(u) = T(v) for some $u, v \in V$. Applying T^{-1} to both sides, then

$$u = T^{-1}(T(u)) = T^{-1}(T(v)) = v$$

<u>Onto</u>: Given $w \in W$, then $T^{-1}(w) \in V$ and $T(T^{-1}(w)) = w$, so $w \in \text{img}(T)$.

(\Leftarrow): Assume *T* is injective and surjective. Given $w \in W$, since *T* is surjective then there exists $v \in V$ such that T(v) = w. Suppose $v_1, v_2 \in V$ are both such preimages. Then

$$T(v_1) = w = T(v_2)$$

and since *T* is injective, then $v_1 = v_2$. Thus there is a *unique* $v \in V$ such that T(v) = w. Define the map $S : W \to V$ as follows: given $w \in W$, let $v \in V$ be the unique element such that T(v) = w. Defined S(w) = v. Then by definition we have T(S(w)) = T(v) = w, so $TS = I_W$. It remains to show $ST = I_V$.

Given $v \in V$, then

$$T((ST)(v)) = (TS)(T(v)) = I_W(T(v)) = T(v).$$

Since *T* is one-to-one, then (ST)(v) = v. Thus $ST = I_V$.

It remains to show that *S* is linear. Suppose $w_1, w_2 \in W$. Then

$$T(S(w_1) + S(w_2)) = T(S(w_1)) + T(S(w_2)) = w_1 + w_2.$$

Now by definition, $S(w_1 + w_2)$ is the unique element that maps to $w_1 + w_2$ under *T*. Thus

$$S(w_1) + S(w_2) = S(w_1 + w_2).$$

The proof that *S* respects scalar multiplication is similar.

Theorem 18. Suppose *V* and *W* are finite-dimensional vector spaces with $\dim(V) = \dim(W)$. For any $T \in \mathcal{L}(V, W)$, the following are equivalent.

(i) T is invertible.

(ii) T is injective.

(iii) T is surjective.

Proof. (ii) \implies (iii): Suppose *T* is injective. Then dim(ker(*T*)) = 0. By the Rank-Nullity Theorem, then

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{img}(T)),$$

so dim(img(T)) = dim(V) = dim(W). Then img(T) = W, so W is surjective.

(iii) \implies (ii): Similar.

By previous result, (i) \iff (ii) and (iii), so they are all equivalent.

Remark 19. Warning! Finite-dimensionality is necessary in the above theorem. Consider the left-shift map

$$L: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$$
$$x_1, x_2, x_3, \ldots) \mapsto (x_2, x_3, \ldots)$$

This map is surjective but not injective.

Proposition 20. Suppose V and W are finite-dimensional vector spaces with $\dim(V) = \dim(W)$. Given $T \in \mathcal{L}(V, W)$ and $S \in \mathcal{L}(W, V)$, then $ST = I \iff TS = I$.

Proof. (\Rightarrow): Assume ST = I. Given $v \in \text{ker}(T)$, then T(v) = 0, so applying *S*, we have [start in middle]

$$v = I(v) = S(T(v)) = S(0) = 0.$$

Thus ker(T) = {0}, so T is injective. Since V and W have the same dimension, then T is invertible by the previous result. Thus T^{-1} exists. Applying T^{-1} on the right to both sides of I = ST, we have [start in middle]

$$T^{-1} = IT^{-1} = STT^{-1} = S$$
.

Thus $TS = TT^{-1} = I$, as desired.

(\Leftarrow): Swap the roles of *S* and *T*.

II.3.1. *Isomorphic vector spaces.* The notion of isomorphism describes when two vector spaces are essentially "the same."

Definition 21. An *isomorphism* (of vector spaces) is an invertible linear map. Two vector spaces *V* and *W* are *isomorphic*, denoted $V \cong W$, if there is an isomorphism $V \to W$.

An isomorphism $T : V \to W$ is essentially just a relabeling: $v \in V$ is instead relabeled as $T(v) \in W$.

Q: How can we tell when two vector spaces are isomorphic?

Theorem 22 (Dimension determines isomorphism). *Two finite-dimensional vector spaces over* \mathbb{F} *are isomorphic iff they have the same dimension.*

Proof. Suppose *V* and *W* are finite-dimensional vector spaces.

 (\Rightarrow) : Assume *V* and *W* are isomorphic. Then there exists an isomorphism $T: V \to W$. Then *T* is injective and surjective so

$$\ker(T) = \{0\} \qquad \text{and} \qquad \operatorname{img}(T) = W$$

By Rank-Nullity, then [ask students]

$$\dim(V) = \dim(ker(T)) + \dim(\operatorname{img}(T)) = \dim(W).$$

(\Leftarrow): Assume dim(V) = dim(W). Let v_1, \ldots, v_n be a basis for V and w_1, \ldots, w_n be a basis for W. By a previous result, there is a unique linear map $T : V \to W$ such that $T(v_i) = w_i$ for all $i = 1, \ldots, n$. Since w_1, \ldots, w_n span W, then T is surjective. Either by Rank-Nullity, or by using the fact that w_1, \ldots, w_n are linearly independent, T is injective. (Details left as exercise.) Thus T is injective and surjective, hence an isomorphism.

Corollary 23. Let V be an n-dimensional vector space. Then V is isomorphic to \mathbb{F}^n .

Proof. Both have dimension *n*.

Remark 24. We can also give an explicit isomorphism. Choose a basis $\mathcal{B} = (v_1, \ldots, v_n)$ for *V* and consider the coordinate vector map

$$\varphi_{\mathcal{B}}: V \to \mathbb{F}^n$$
$$v \mapsto [v]_{\mathcal{B}}$$

and the linear map

$$S: \mathbb{F}^n \to V$$

(a₁,..., a_n) \mapsto a₁v₁ + · · · + a_nv_n.

Exercise: show these maps are mutually inverse isomorphisms.

Example 25. $\mathcal{P}_m(\mathbb{F})$ has dimension [ask students] m + 1, hence is isomorphic to \mathbb{F}^{m+1} .

Proposition 26. Suppose $\mathcal{B} := (v_1, \ldots, v_n)$ is a basis of V and $\mathcal{C} := (w_1, \ldots, w_m)$ is a basis of W (so dim(V) = n and dim(W) = m). Then the map

$$\mathcal{L}(V,W) \to M_{m \times n}(\mathbb{F})$$
$$T \mapsto_{\mathcal{C}} [T]_{\mathcal{B}}$$

is an isomorphism.

Proof. Exercise.

Corollary 27. *Suppose V and W are finite-dimensional. Then* $\dim(\mathcal{L}(V, W)) = \dim(V) \dim(W)$.

II.3.2. Linear maps as matrices.

Proposition 28 (Multiplication by a matrix is linear). Let $A \in M_{m \times n}(\mathbb{F})$. The left multiplication map

$$L_A: \mathbb{F}^n \to \mathbb{F}^m$$
$$v \mapsto Av$$

is linear.

Proof. Considering *v* as an $n \times 1$ matrix, this follows by properties of matrix multiplication.

Let *V* and *W* be vector spaces with bases $\mathcal{B} := (v_1, \ldots, v_n)$ and $\mathcal{C} := (w_1, \ldots, w_m)$, respectively. Recall, for $T : V \to W$ linear, the matrix of *T* with respect to \mathcal{B} and \mathcal{C} is given by

$$_{\mathcal{C}}[T]_{\mathcal{B}} = \begin{pmatrix} | & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & | \end{pmatrix}$$

Proposition 29. With notation as above,

$$[T(v)]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[v]_{\mathcal{B}}$$

for all $v \in V$.

Proof. Given $v \in V$, there exist unique scalars $a_1, \ldots, a_n \in \mathbb{F}$ such that $v = a_1v_1 + \cdots + a_nv_n$. Since *T* is linear, then

$$T(v) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n).$$

Since the coordinate vector map is linear, then

$$[T(v)]_{\mathcal{C}} = [a_1 T(v_1) + \dots + a_n T(v_n)]_{\mathcal{C}} = a_1 [T(v_1)]_{\mathcal{C}} + \dots + a_n [T(v_n)]_{\mathcal{C}}$$
$$= \begin{pmatrix} | & | \\ [T(v_1)]_{\mathcal{C}} & \dots & [T(v_n)]_{\mathcal{C}} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = {}_{\mathcal{C}} [T]_{\mathcal{B}} [v]_{\mathcal{B}}.$$

The equality $[T(v)]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}} [v]_{\mathcal{B}}$ can be stated by saying the following diagram "commutes."

[Draw image of *v* traveling both directions.]

Proposition 30. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then the rank of T (*i.e.*, dim(img(T))) is equal to the (column) rank of [T].

Proof. Exercise.

II.3.3. *Change of basis.* \underline{Q} : How does the natrix $_{\mathcal{C}}[T]_{\mathcal{B}}$ change if we change the bases \mathcal{B} and \mathcal{C} ?

Definition 31. Let $n \in \mathbb{Z}_{\geq 0}$. The $n \times n$ identity matrix *I* is the $n \times n$ matrix with 1s on the diagonal and 0s elsewhere:

$$I = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \cdot$$

Remark 32. We use *I* for both the identity operator and the identity matrix. With respect to *any* basis, the matrix of the identity operator I_V is *I*.

Definition 33. An $n \times n$ matrix A is *invertible* if there is a $n \times n$ matrix B such that AB = BA = I. We call B the *inverse* of A and denote it A^{-1} .

Lemma 34. The inverse of a matrix is unique.

Proof. Same as for linear maps.

Theorem 35. Let U, V, and W be vector spaces with bases \mathcal{B}, \mathcal{C} , and \mathcal{D} , respectively. Given $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then

$$\mathcal{D}[ST]_{\mathcal{B}} = \mathcal{D}[S]_{\mathcal{C}} \mathcal{C}[T]_{\mathcal{B}}.$$

Proof. Follows by the definition of matrix multiplication.

Corollary 36 (Change of basis matrix). Suppose B and C are both bases for V. Then

$$_{\mathcal{B}}[I]_{\mathcal{C}} = _{\mathcal{C}}[I]_{\mathcal{B}}^{-1}$$

Proof.

$$I = {}_{\mathcal{B}}[I]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}}.$$

Proposition 37 (Change of basis formula). Suppose \mathcal{B} and \mathcal{C} are both bases of V. Given $T \in \mathcal{L}(V)$, let $A := [T]_{\mathcal{B}}$, $B := [T]_{\mathcal{C}}$, and $C = {}_{\mathcal{B}}[I]_{\mathcal{C}}$. Then

$$A = CBC^{-1}$$

Proof.

$${}_{\mathcal{B}}[T]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} {}_{\mathcal{C}}[T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}} = ({}_{\mathcal{C}}[I]_{\mathcal{B}})^{-1} {}_{\mathcal{C}}[T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}}.$$

Definition 38. Two $n \times n$ matrices A and B are *similar* or *conjugate* if there is an invertible matrix P such that $B = PAP^{-1}$.

 \square

 \square