
18.700 - LINEAR ALGEBRA, DAY 9
INVERTIBILITY AND ISOMORPHISMS

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning 1
I.1. Goals for lesson 1
I.2. Methods of assessment 1
I.3. Materials to bring 1
II. Lesson Plan 2
II.1. Last time 2
II.2. Matrix multiplication 2
II.3. Invertibility and Isomorphisms 4

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the definition of matrix multiplication.
(2) Students will learn that the row rank = the column rank of a matrix.
(3) Students will learn the definition of invertibility and isomorphism.
(4) Students will learn that an n-dimensional vector space is isomorphic to Fn.
(5) Students will learn that if dim(V) = n and dim(W) = m, then L(V, W) ∼= Mm×n(F).
(6) Students will learn that [T(v)]C = C [T]B[v]B.
(7) Students will learn the change of basis formula.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN(0:00)
Announcements: • Exam 1: Wednesday, October 9th in class. No pset this week; instead
review packet. • TA office hours: Tuesday, Oct 8th, 7:00 - 9:00pm, 2-361

II.1. Last time.
• Defined the image of a linear map.
• Rank-Nullity Theorem: If T : V → W is linear, then dim(V) = dim(ker(T)) +

dim(img(T)).
• Defined coordinate vector [v]B ∈ Fn for v ∈ V.
• Defined the matrix [T] of a linear map with respect to a choice of bases.

Remark 1. Linear vs affine. The function f : R → R, f (x) = mx + b is linear iff b = 0. (In
general, these translates of linear maps are called affine maps.)

II.2. Matrix multiplication. Suppose that U, V, W are finite-dimensional vector spaces
with bases

B := (u1, . . . , up)

C := (v1, . . . , vn)

D := (w1, . . . , wm) .

Suppose T : U → V and S : V → W are linear maps. We previously saw that the
composition ST : U → W is linear. We now define matrix multiplication in such a way
that

[ST] = [S][T] .
Let A := [S] and B := [T]. Then for each j = 1, . . . , p we have

(ST)(uj) = S

(
n

∑
k=1

Bkjvk

)
=

n

∑
k=1

BkjS(vk) =
n

∑
k=1

Bkj

m

∑
i=1

Aikwk =
m

∑
i=1

n

∑
k=1

(
AikBkj

)
wk .

Thus [ST] is the m × p matrix whose i, j entry is
n

∑
k=1

(
AikBkj

)
.

Definition 2. Given an m × n matrix A and a n × p matrix B, their product AB is defined

to be the m × p matrix whose i, j entry is
n

∑
k=1

(
AikBkj

)
.

So we multiply the entries of row j of A by those of column k of B, then add these
together.

Example 3. 1 2
3 4
5 6

(6 5 0 0
2 1 0 −1

)
= · · ·

[Ask students about the other order BA.]

Proposition 4. If T ∈ L(U, V) and S ∈ L(V, W), then [ST] = [S][T].
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Proof. This is true by the definition of matrix multiplication and the earlier calculation
done as motivation. □

Let A be an m × n matrix.
• For i = 1, . . . , m, let Ai,· denote row i of A, which is a 1 × n matrix.
• For j = 1, . . . , n, let A·,j denote column j of A, which is an m × 1 matrix.

The next few results give different interpretations of matrix multiplication. Let A be an
m × n matrix and B be an n × p matrix.

Lemma 5.
(AB)ij = Ai,·B·,j

for all i = 1, . . . , m and all j = 1, . . . , p. [Draw picture of row and column.]

Proof. True by formula defining matrix multiplication. □

Lemma 6.
(AB)·,j = A(B·,j)

for all j = 1, . . . , p.

Proof. Exercise. Both are m × 1 matrices. Check that their ith entries are equal using the
formula. [Draw picture applying A to each of the columns of B.] □

Lemma 7. Suppose A is m × n and x =

x1
...

xn

 is n × 1. Then

Ax = x1A·1 + · · ·+ xn A·n .

I.e., Ax is the linear combination of the columns of A with coefficients given by the entries of x.

Proof. Exercise. □

Lemma 8.
(a) For j = 1, . . . , p, (AB)·,j (column j) is a linear combination of the columns of A with

coefficients from B·,j (column j).
(b) For i = 1, . . . , m, (AB)i,· (row i) is a linear combination of the rows of B with coefficients

from Ai,· (row i).

Proof. Exercise. [Draw picture of second part.] □

Definition 9.
• The column space of A, denoted Col(A), is the span of the columns of A. The column

rank is the dimension of Col(A).
• The row space of A, denoted Row(A), is the span of the rows of A. The row rank is

the dimension of Row(A).

We’ll see that these two quantities are actually equal!

Definition 10. The transpose of a matrix A, denoted At, is obtained from A by interchang-
ing rows and columns. I.e.,

(At)ij = Aji .
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Lemma 11 (Column-row factorization). Suppose A is m × n and has column rank c ∈ Z≥1.
Then there exist an m × c matrix C and a c × n matrix R such that A = CR. [Details left as an
exercise.]

Proof. The columns A·,1, . . . , A·,n, each an m× 1 matrix, span Col(A). By a previous result,
this list can be reduced to a basis v1, . . . , vc of Col(A), which by definition must have
length c. Use these as the columns of a m × c matrix C.

For k = 1, . . . , n, column k of A is a linear combination of the columns of C (since these
are a basis), so there exist scalars R1k, . . . , Rck ∈ F such that

Ak = R1kv1 + · · ·+ Rckvc .

Use the coefficients R1k, . . . , Rck as the entries of the kth column of a c × n matrix R. Then
A = CR. □

Theorem 12 (Column rank = row rank). Suppose A ∈ Mm×n(F). Then the column rank and
row rank of A are equal.

Proof. Let c be the column rank of A. Let A = CR be the column-row factorization of A
given by the previous lemma, where C is m × c and R is c × n. Since every row of A can
be written as a linear combination of the rows of R, and R has c rows, then the row rank
of A is ≤ c, which is the column rank of A.

We obtain the reverse inequality by applying the same argument to At, which yields

column rank of A = row rank of At ≤ column rank of At = row rank of A.

□

Definition 13. The rank of a matrix is its column rank (= its row rank).

II.3. Invertibility and Isomorphisms.

Definition 14.
• T ∈ L(V, W) is invertible if there exists a linear map S ∈ L(W, V) such that ST = IV

and TS = IW .
• With the above notation, S ∈ L(W, V) is called an inverse of T.

Lemma 15. An invertible linear map has a unique inverse.

Proof idea. Given inverses S1, S2, then

· · · = S1TS2 = · · ·
□

If T is invertible, we denote its inverse by T−1.

Example 16.
• Let

T : F2 → F2(
x
y

)
7→
(

x + y
y

)
.
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Then T−1 is given by (
x
y

)
7→
(

x − y
y

)
.

[Write out at least one composition.]
• Let

R : R2 → R2

(
x
y

)
7→


1√
2

x − 1√
2

y

1√
2

x +
1√
2

y

 .

(Rotation counterclockwise by π/4.) Claim: R−1 is given by

(
x
y

)
7→


1√
2

x +
1√
2

y

− 1√
2

x +
1√
2

y

 .

Lemma 17. A linear map T ∈ L(V, W) is invertible iff it is injective and surjective.

Proof. (⇒): Assume T is invertible. One-to-one: Suppose T(u) = T(v) for some u, v ∈ V.
Applying T−1 to both sides, then

u = T−1(T(u)) = T−1(T(v)) = v .

Onto: Given w ∈ W, then T−1(w) ∈ V and T(T−1(w)) = w, so w ∈ img(T).
(⇐): Assume T is injective and surjective. Given w ∈ W, since T is surjective then there

exists v ∈ V such that T(v) = w. Suppose v1, v2 ∈ V are both such preimages. Then

T(v1) = w = T(v2)

and since T is injective, then v1 = v2. Thus there is a unique v ∈ V such that T(v) = w.
Define the map S : W → V as follows: given w ∈ W, let v ∈ V be the unique element
such that T(v) = w. Defined S(w) = v. Then by definition we have T(S(w)) = T(v) = w,
so TS = IW . It remains to show ST = IV .

Given v ∈ V, then

T((ST)(v)) = (TS)(T(v)) = IW(T(v)) = T(v) .

Since T is one-to-one, then (ST)(v) = v. Thus ST = IV .
It remains to show that S is linear. Suppose w1, w2 ∈ W. Then

T(S(w1) + S(w2)) = T(S(w1)) + T(S(w2)) = w1 + w2 .

Now by definition, S(w1 + w2) is the unique element that maps to w1 + w2 under T. Thus

S(w1) + S(w2) = S(w1 + w2) .

The proof that S respects scalar multiplication is similar. □

Theorem 18. Suppose V and W are finite-dimensional vector spaces with dim(V) = dim(W).
For any T ∈ L(V, W), the following are equivalent.

(i) T is invertible.
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(ii) T is injective.
(iii) T is surjective.

Proof. (ii) =⇒ (iii): Suppose T is injective. Then dim(ker(T)) = 0. By the Rank-Nullity
Theorem, then

dim(V) =
��������:0
dim(ker(T)) + dim(img(T)) ,

so dim(img(T)) = dim(V) = dim(W). Then img(T) = W, so W is surjective.
(iii) =⇒ (ii): Similar.
By previous result, (i) ⇐⇒ (ii) and (iii), so they are all equivalent. □

Remark 19. Warning! Finite-dimensionality is necessary in the above theorem. Consider
the left-shift map

L : F∞ → F∞

(x1, x2, x3, . . .) 7→ (x2, x3, . . .) .

This map is surjective but not injective.

Proposition 20. Suppose V and W are finite-dimensional vector spaces with dim(V) = dim(W).
Given T ∈ L(V, W) and S ∈ L(W, V), then ST = I ⇐⇒ TS = I.

Proof. (⇒): Assume ST = I. Given v ∈ ker(T), then T(v) = 0, so applying S, we have
[start in middle]

v = I(v) = S(T(v)) = S(0) = 0 .
Thus ker(T) = {0}, so T is injective. Since V and W have the same dimension, then T
is invertible by the previous result. Thus T−1 exists. Applying T−1 on the right to both
sides of I = ST, we have [start in middle]

T−1 = IT−1 = STT−1 = S .

Thus TS = TT−1 = I, as desired.
(⇐): Swap the roles of S and T. □

II.3.1. Isomorphic vector spaces. The notion of isomorphism describes when two vector
spaces are essentially “the same.”

Definition 21. An isomorphism (of vector spaces) is an invertible linear map. Two vector
spaces V and W are isomorphic, denoted V ∼= W, if there is an isomorphism V → W.

An isomorphism T : V → W is essentially just a relabeling: v ∈ V is instead relabeled
as T(v) ∈ W.

Q: How can we tell when two vector spaces are isomorphic?

Theorem 22 (Dimension determines isomorphism). Two finite-dimensional vector spaces
over F are isomorphic iff they have the same dimension.

Proof. Suppose V and W are finite-dimensional vector spaces.
(⇒): Assume V and W are isomorphic. Then there exists an isomorphism T : V → W.

Then T is injective and surjective so

ker(T) = {0} and img(T) = W .
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By Rank-Nullity, then [ask students]

dim(V) =
��������:0
dim(ker(T)) + dim(img(T)) = dim(W) .

(⇐): Assume dim(V) = dim(W). Let v1, . . . , vn be a basis for V and w1, . . . , wn be a
basis for W. By a previous result, there is a unique linear map T : V → W such that
T(vi) = wi for all i = 1, . . . , n. Since w1, . . . , wn span W, then T is surjective. Either by
Rank-Nullity, or by using the fact that w1, . . . , wn are linearly independent, T is injective.
(Details left as exercise.) Thus T is injective and surjective, hence an isomorphism. □

Corollary 23. Let V be an n-dimensional vector space. Then V is isomorphic to Fn.

Proof. Both have dimension n. □

Remark 24. We can also give an explicit isomorphism. Choose a basis B = (v1, . . . , vn)
for V and consider the coordinate vector map

φB : V → Fn

v 7→ [v]B

and the linear map

S : Fn → V
(a1, . . . , an) 7→ a1v1 + · · ·+ anvn .

Exercise: show these maps are mutually inverse isomorphisms.

Example 25. Pm(F) has dimension [ask students] m + 1, hence is isomorphic to Fm+1.

Proposition 26. Suppose B := (v1, . . . , vn) is a basis of V and C := (w1, . . . , wm) is a basis of
W (so dim(V) = n and dim(W) = m). Then the map

L(V, W) → Mm×n(F)

T 7→ C [T]B

is an isomorphism.

Proof. Exercise. □

Corollary 27. Suppose V and W are finite-dimensional. Then dim(L(V, W)) = dim(V)dim(W).

II.3.2. Linear maps as matrices.

Proposition 28 (Multiplication by a matrix is linear). Let A ∈ Mm×n(F). The left multipli-
cation map

LA : Fn → Fm

v 7→ Av

is linear.

Proof. Considering v as an n × 1 matrix, this follows by properties of matrix multiplica-
tion. □
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Let V and W be vector spaces with bases B := (v1, . . . , vn) and C := (w1, . . . , wm),
respectively. Recall, for T : V → W linear, the matrix of T with respect to B and C is given
by

C [T]B =

 | |
[T(v1)]C · · · [T(vn)]C

| |


Proposition 29. With notation as above,

[T(v)]C = C [T]B[v]B
for all v ∈ V.

Proof. Given v ∈ V, there exist unique scalars a1, . . . , an ∈ F such that v = a1v1 + · · ·+
anvn. Since T is linear, then

T(v) = T(a1v1 + · · ·+ anvn) = a1T(v1) + · · ·+ anT(vn) .

Since the coordinate vector map is linear, then

[T(v)]C = [a1T(v1) + · · ·+ anT(vn)]C = a1[T(v1)]C + · · ·+ an[T(vn)]C

=

 | |
[T(v1)]C · · · [T(vn)]C

| |


a1

...
an

 = C [T]B [v]B .

□

The equality [T(v)]C = C [T]B [v]B can be stated by saying the following diagram “com-
mutes.”

V W

Fn Fm

φB

T

φC

LC [T]B

[Draw image of v traveling both directions.]

Proposition 30. Suppose V and W are finite-dimensional and T ∈ L(V, W). Then the rank of
T (i.e., dim(img(T))) is equal to the (column) rank of [T].

Proof. Exercise. □

II.3.3. Change of basis. Q: How does the natrix C [T]B change if we change the bases B and
C?

Definition 31. Let n ∈ Z≥0. The n × n identity matrix I is the n × n matrix with 1s on the
diagonal and 0s elsewhere:

I =


1

1
. . .

1

 .
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Remark 32. We use I for both the identity operator and the identity matrix. With respect
to any basis, the matrix of the identity operator IV is I.

Definition 33. An n × n matrix A is invertible if there is a n × n matrix B such that AB =
BA = I. We call B the inverse of A and denote it A−1.

Lemma 34. The inverse of a matrix is unique.

Proof. Same as for linear maps. □

Theorem 35. Let U, V, and W be vector spaces with bases B, C, and D, respectively. Given
T ∈ L(U, V) and S ∈ L(V, W), then

D[ST]B = D[S]C C [T]B .

Proof. Follows by the definition of matrix multiplication. □

Corollary 36 (Change of basis matrix). Suppose B and C are both bases for V. Then

B[I]C = C [I]−1
B .

Proof.
I = B[I]B = B[I]C C [I]B .

□

Proposition 37 (Change of basis formula). Suppose B and C are both bases of V. Given
T ∈ L(V), let A := [T]B, B := [T]C , and C = B[I]C . Then

A = CBC−1 .

Proof.

B[T]B = B[I]C C [T]C C [I]B = (C [I]B)−1
C [T]C C [I]B .

□

Definition 38. Two n × n matrices A and B are similar or conjugate if there is an invertible
matrix P such that B = PAP−1.
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