18.700 - LINEAR ALGEBRA, DAY 8 MATRICES

SAM SCHIAVONE

CONTENTS

י ות ו ת ד	1
I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. The Rank-Nullity Theorem	2
II.3. Worksheet	4
II.4. The matrix of a linear map	4

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the definition of the range of a linear map.
- (2) Students will learn the Rank-Nullity Theorem.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

Announcements: • Final exam: Monday, December 16, 1:30 - 4:30pm, 6-120

- II.1. Last time.
 - Gave the definition of dimension.
 - Proved some basic properties about dimension.
 - Defined linear maps.
 - Show that a linear map is uniquely determined by its action on a basis.
 - Defined the null space of a linear map.
 - *T* one-to-one \iff ker $(T) = \{0\}$.

II.2. The Rank-Nullity Theorem.

Definition 1. Let X and Y be sets and $f : X \to Y$ be a function. The *range* or *image* of f is

$$range(f) = img(f) = f(X) := \{f(x) : x \in X\}.$$

[Draw picture of blobs, showing that img(f) need not fill up all of Y.]

Definition 2. If img(f) = Y, then f is onto or surjective.

Remark 3. Warning: You must specify the codomain for the notion of surjectivity to make sense! E.g., $f(x) = x^2$ as a function $\mathbb{R} \to \mathbb{R}$ or $\mathbb{R} \to [0, \infty)$.

Definition 4. Let $T: V \to W$ be linear. The dimension of range(*T*) is called the *rank* of *T*.

Lemma 5. If $T: V \to W$ is linear, then img(T) is a subspace of W.

Proof. Exercise. Apply subspace criterion.

II.2.1. *Rank-nullity theorem*. The sizes of the kernel and the image are inversely correlated. E.g., the zero map $0: V \to W$ has large null space [ask students]—all of V—and small range—just {0}. On the other hand, the identity map $I: V \to V$ has small kernel [ask students]—just $\{0\}$ —and large image—all of V. This relationship is captured precisely in the following result.

Theorem 6 (Rank-Nullity Theorem). Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Then img(T) is also finite-dimensional and

 $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{img}(T)).$

In words, the dimension of the domain of T is equal to the sum of the nullity and rank of T.

Proof. Let u_1, \ldots, u_m be a basis of ker(*T*). By the Extension Theorem, we can extend this to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of V. Thus dim $(\ker(T)) = m$ and dim(V) = m + n, so it suffices to show that $\dim(\operatorname{img}(T)) = n$.

We claim that $T(v_1), \ldots, T(v_n)$ is a basis for img(T). [Ask students why we don't include any u_i .] Given $v \in V$, then

$$v = a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_nv_n$$

for some scalars $a_i, b_i \in \mathbb{F}$. Applying *T*, we have

$$T(v) = T\left(\sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j\right) = \sum_i a_i T(u_i) + \sum_j b_j T(v_j)$$

(0:00)

since the u_i all map to 0 since they are in ker(T). Thus $T(v_1), \ldots, T(v_n)$ spans img(T), hence it is finite-dimensional.

It remains to show they are linearly independent. Suppose there exists $c_1, \ldots, c_n \in \mathbb{F}$ such that

$$0 = c_1 T(v_1) + \dots + c_n T(v_n) = T(c_1 v_1 + \dots + c_n v_n).$$

Then $\sum_{k=1}^{n} c_k v_k \in \ker(T)$, so there exist $d_1, \ldots, d_m \in \mathbb{F}$ such that

$$c_1v_1+\cdots+c_nv_n=d_1u_1+\cdots d_mu_m$$

Then

$$0 = d_1 u_1 + \cdots + d_m u_m - c_1 v_1 - \cdots - c_n v_n$$

Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of V, hence linearly independent, then $0 = c_1 = c_1$ \cdots , $c_n = d_1 = \cdots = d_m$. Thus $T(v_1), \ldots, T(v_n)$ is linearly independent, hence is a basis of img(T).

Corollary 7. Suppose V and W are finite-dimensional vector spaces with $\dim(V) > \dim(W)$. Then no linear map $T: V \to W$ is injective.

Proof. By the Rank-Nullity Theorem, then

$$\dim(\ker(T)) = \dim(V) - \dim(\operatorname{img}(T)).$$

Since $\operatorname{img}(T) \subseteq W$, then $\operatorname{dim}(\operatorname{img}(T)) \leq \operatorname{dim}(W)$, so $-\operatorname{dim}(W) \leq -\operatorname{dim}(\operatorname{img}(T))$. Then $\dim(\ker(T)) = \dim(V) - \dim(\operatorname{img}(T)) \ge \dim(V) - \dim(W) > 0.$

Thus ker(*T*) \neq {0}, so *T* is not injective.

Corollary 8. Suppose V and W are finite-dimensional vector spaces with $\dim(V) < \dim(W)$. *Then no linear map* $T : V \to W$ *is surjective.*

Proof. Exercise. Similar to the above.

II.2.2. Linear maps and systems of equations. Fix $m, n \in \mathbb{Z}_{>0}$ and suppose $A_{ii} \in \mathbb{F}$ for i =1,..., *m* and j = 1,...,n. Consider the homogeneous system of equations

$$\sum_{k=1}^{n} A_{1k} x_k = 0$$
$$\vdots$$
$$\sum_{k=1}^{n} A_{mk} x_k = 0.$$

We can interpret this system using linear maps by defining

$$T: \mathbb{F}^n \to \mathbb{F}^m$$
$$(x_1, \dots, x_n) \mapsto \left(\sum_{k=1}^n A_{1k} x_k, \dots, \sum_{k=1}^n A_{mk} x_k\right).$$

One can show that *T* is linear. Thus the above linear system is equivalent to the equation T(x) = 0. Therefore computing the solutions to the system is the same as computing [ask students] ker(*T*).

Let $b_1, \ldots, b_m \in \mathbb{F}$. Similarly, we can reinterpret searching for solutions to the linear system

$$\sum_{k=1}^{n} A_{1k} x_k = b_1$$
$$\vdots$$
$$\sum_{k=1}^{n} A_{mk} x_k = b_m$$

as asking whether $b := (b_1, \dots, b_m)$ is in img(T) or not.

II.3. Worksheet.

II.4. The matrix of a linear map.

Definition 9. Let $\mathcal{B} := (u_1, ..., u_n)$ be a basis for the finite-dimensional vector space *V*. Given $x \in V$, let $a_1, ..., a_n \in \mathbb{F}$ be the unique scalars such that

$$x = \sum_{i=1}^{n} a_i u_i$$

The coordinate vector or matrix of x with respect to \mathcal{B} , denoted by $[x]_{\mathcal{B}}$, is

$$[x]_{\mathcal{B}} := \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n \,.$$

[Ask students: what is $[u_1]_{\mathcal{B}}$?]

Example 10 (Polynomial example with respect to 1, x, x^2 .).

Similarly, we can encode linear maps as matrices.

Definition 11. Let $m, n \in \mathbb{Z}_{\geq 0}$. An *m*-by-*n* matrix *A* is a rectangular array of elements of \mathbb{F} with *m* rows and *n* columns:

$$\begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{pmatrix}$$

The entry in row *i*, column *j* is called the (i, j)-entry and is denoted A_{ij} .

Suppose *V* and *W* are finite-dimensional vector spaces with bases $\mathcal{B} := (v_1, \ldots, v_n)$ and $\mathcal{C} := (w_1, \ldots, w_m)$, respectively. Let $T : V \to W$ be linear. We have seen that the values $T(v_1), \ldots, T(v_n)$ uniquely determine *T*.

Definition 12. With notation as above, for each j = 1, ..., n there are unique scalars $A_{1j}, ..., A_{mj} \in \mathbb{F}$ such that

$$T(v_i) = A_{1i}w_1 + \cdots + A_{mi}w_m.$$

The matrix whose *i*, *j* entry is A_{ij} is the *matrix of T with respect to* \mathcal{B} *and* \mathcal{C} and is denoted $_{\mathcal{C}}[T]_{\mathcal{B}}$ or $\mathcal{M}(T; \mathcal{B}, \mathcal{C})$. When the bases are clear from context, we simply write [T] or $\mathcal{M}(T)$.

Note that the *j*th column of [T] is the coordinate vector of $T(v_i)$:

$$_{\mathcal{C}}[T]_{\mathcal{B}} = \begin{pmatrix} | & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & | \end{pmatrix}$$

• For $V = \mathbb{F}^n$, let \mathcal{E}_n be the basis

$$\begin{pmatrix} 1\\0\\0\\\vdots\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\\vdots\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\\vdots\\0\\1 \end{pmatrix}$$

We call this the *standard basis* for \mathbb{F}^n and use this basis unless otherwise specified.

• For $V = \mathcal{P}_m(\mathbb{F})$, we similarly use the standard monomial basis $1, x, x^2, \ldots, x^m$ unless otherwise specified.

Example 13. Let $T : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ be the differentiation map T(f) = f'. Then

$$T(1) = 0 = 0 \cdot 1 + 0 \cdot x$$

$$T(x) = 1 = 1 \cdot 1 + 0 \cdot x$$

$$T(x^{2}) = 2x = 0 \cdot 1 + 2 \cdot x$$

so

$$[T] = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \,.$$

We define addition and scalar multiplication of matrices to agree with the corresponding operations for linear maps.

Definition 14.

- Given matrices *A* and *B* of the same size, we define their sum entrywise, i.e., A + B is the matrix whose *i*, *j* entry is $A_{ij} + B_{ij}$.
- Given a matrix *A* and $\lambda \in \mathbb{F}$, we define λA to be the matrix whose *i*, *j* entry is λA_{ij} .

Lemma 15. Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. Then

- [S+T] = [S] + [T], and
- $[\lambda T] = \lambda [T].$

Proof. Exercise.

Denote the set of all $m \times n$ matrices by $M_{m \times n}(\mathbb{F})$ or $Mat_{m \times n}$ or $\mathbb{F}^{m,n}$.

Lemma 16. With the operations of addition and scalar multiplication above, $M_{m \times n}(\mathbb{F})$ is a vector space of dimension mn.

Proof. Exercise.

II.4.1. *Matrix multiplication*. Suppose that U, V, W are finite-dimensional vector spaces with bases

$$\mathcal{B} := (u_1, \dots, u_p)$$
$$\mathcal{C} := (v_1, \dots, v_n)$$
$$\mathcal{D} := (w_1, \dots, w_m)$$

Suppose $T : U \to V$ and $S : V \to W$ are linear maps. We previously saw that the composition $ST : U \to W$ is linear. We define matrix multiplication in such a way that

$$[ST] = [S][T].$$

Let A := [S] and B := [T]. Then for each j = 1, ..., p we have

$$(ST)(u_j) = S\left(\sum_{k=1}^n B_{kj}v_k\right) = \sum_{k=1}^n B_{kj}S(v_k) = \sum_{k=1}^n B_{kj}\sum_{i=1}^m A_{ik}w_k = \sum_{i=1}^m \sum_{k=1}^n \left(A_{ik}B_{kj}\right)w_k$$

Thus [*ST*] is the $m \times p$ matrix whose *i*, *j* entry is $\sum_{k=1}^{n} (A_{ik}B_{kj})$.

Definition 17. Given an $m \times n$ matrix A and a $n \times p$ matrix B, their product AB is defined to be the $m \times p$ matrix whose i, j entry is $\sum_{k=1}^{n} (A_{ik}B_{kj})$.

So we multiply the entries of row j of A by those of column k of B, then add these together.

Example 18.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 & 0 & 0 \\ 2 & 1 & 0 & -1 \end{pmatrix} = \cdots$$

[Ask students about the other order *BA*.]

Proposition 19. *If* $T \in \mathcal{L}(U, V)$ *and* $S \in \mathcal{L}(V, W)$ *, then* [ST] = [S][T]*.*

Proof. This is true by the definition of matrix multiplication and the earlier calculation done as motivation. \Box

Let *A* be an $m \times n$ matrix.

- For i = 1, ..., m, let A_{i} , denote row i of A, which is a $1 \times n$ matrix.
- For j = 1, ..., n, let $A_{.,j}$ denote column j of A, which is an $m \times 1$ matrix.

The next few results give different interpretations of matrix multiplication. Let *A* be an $m \times n$ matrix and *B* be an $n \times p$ matrix.

Lemma 20.

for all
$$i = 1, ..., m$$
 and all $j = 1, ..., p$. [Draw picture of row and column.]

Proof. True by formula defining matrix multiplication.

Lemma 21.

$$(AB)_{\cdot,j} = A(B_{\cdot,j})$$

 $(AB) \dots = A \dots B$

for all j = 1, ..., p.

Proof. Exercise. Both are $m \times 1$ matrices. Check that their *i*th entries are equal using the formula. [Draw picture applying *A* to each of the columns of *B*.]

Lemma 22. Suppose A is
$$m \times n$$
 and $x = \begin{pmatrix} x_1 \\ \ddots \\ x_n \end{pmatrix}$ is $n \times 1$. Then
 $Ax = x_1 A_{\cdot 1} + \cdots + x_n A_{\cdot n}$.

I.e., Ax is the linear combination of the columns of A with coefficients given by the entries of x.

- Proof. Exercise.
- **Lemma 23.** (a) For j = 1, ..., p, $(AB)_{.,j}$ (column j) is a linear combination of the columns of A with coefficients from $B_{.,j}$ (column j).
 - (b) For i = 1, ..., m, $(AB)_{i,.}$ (row i) is a linear combination of the rows of B with coefficients from $A_{i,.}$ (row i).

Proof. Exercise. [Draw picture of second part.]

Definition 24.

- The *column space* of *A*, denoted Col(*A*), is the span of the columns of *A*. The *column rank* is the dimension of Col(*A*).
- The *row space* of *A*, denoted Row(*A*), is the span of the rows of *A*. The *row rank* is the dimension of Row(*A*).

We'll see that these two quantities are actually equal!

Definition 25. The *transpose* of a matrix A, denoted A^t , is obtained from A by interchanging rows and columns. I.e.,

$$(A^t)_{ij} = A_{ji}.$$

Lemma 26 (Column-row factorization). Suppose A is $m \times n$ and has column rank $c \in \mathbb{Z}_{\geq 1}$. Then there exist an $m \times c$ matrix C and a $c \times n$ matrix R such that A = CR.

Proof. The columns $A_{.,1}, ..., A_{.,n}$, each an $m \times 1$ matrix, span Col(A). By a previous result, this list can be reduced to a basis $v_1, ..., v_c$ of Col(A), which by definition must have length *c*. Use these as the columns of a $m \times c$ matrix *C*.

For k = 1, ..., n, column k of A is a linear combination of the columns of C (since these are a basis), so there exist scalars $R_{1k}, ..., R_{ck} \in \mathbb{F}$ such that

$$A_k = R_{1k}v_1 + \cdots + R_{ck}v_c.$$

Use the coefficients R_{1k}, \ldots, R_{ck} as the entries of the k^{th} column of a $c \times n$ matrix R. Then A = CR.

Theorem 27 (Column rank = row rank). *Suppose* $A \in M_{m \times n}(\mathbb{F})$. *Then the column rank and row rank of A are equal.*

Proof. Let *c* be the column rank of *A*. Let A = CR be the column-row factorization of *A* given by the previous lemma, where *C* is $m \times c$ and *R* is $c \times n$. Since every row of *A* can be written as a linear combination of the rows of *R*, and *R* has *c* rows, then the row rank of *A* is $\leq c$, which is the column rank of *A*.

We obtain the reverse inequality by applying the same argument to A^t , which yields

column rank of A = row rank of $A^t \leq \text{column rank}$ of $A^t = \text{row rank}$ of A.

Definition 28. The *rank* of a matrix is its column rank (= its row rank).