18.700 - LINEAR ALGEBRA, DAY 8 MATRICES

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the definition of the range of a linear map.
- (2) Students will learn the Rank-Nullity Theorem.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Final exam: Monday, December 16, 1:30 - 4:30pm, 6-120

- II.1. **Last time.**
	- Gave the definition of dimension.
	- Proved some basic properties about dimension.
	- Defined linear maps.
	- Show that a linear map is uniquely determined by its action on a basis.
	- Defined the null space of a linear map.
	- *T* one-to-one \iff ker(*T*) = {0}.

II.2. **The Rank-Nullity Theorem.**

Definition 1. Let *X* and *Y* be sets and $f : X \to Y$ be a function. The *range* or *image* of *f* is

$$
range(f) = img(f) = f(X) := \{f(x) : x \in X\}.
$$

[Draw picture of blobs, showing that img(*f*) need not fill up all of *Y*.]

Definition 2. If $\text{img}(f) = Y$, then *f* is *onto* or *surjective*.

Remark 3. Warning: You must specify the codomain for the notion of surjectivity to make sense! E.g., $f(x) = x^2$ as a function $\mathbb{R} \to \mathbb{R}$ or $\mathbb{R} \to [0, \infty)$.

Definition 4. Let $T: V \to W$ be linear. The dimension of range(*T*) is called the *rank* of *T*.

Lemma 5. If $T: V \to W$ *is linear, then* $\text{img}(T)$ *is a subspace of W.*

Proof. Exercise. Apply subspace criterion. □

II.2.1. *Rank-nullity theorem.* The sizes of the kernel and the image are inversely correlated. E.g., the zero map $0: V \to W$ has large null space [ask students]—all of *V*—and small range—just $\{0\}$. On the other hand, the identity map *I* : *V* \rightarrow *V* has small kernel [ask students]—just {0}—and large image—all of *V*. This relationship is captured precisely in the following result.

Theorem 6 (Rank-Nullity Theorem). *Suppose V is finite-dimensional and* $T \in \mathcal{L}(V, W)$. Then img(*T*) *is also finite-dimensional and*

 $dim(V) = dim(ker(T)) + dim(img(T)).$

In words, the dimension of the domain of T is equal to the sum of the nullity and rank of T.

Proof. Let u_1, \ldots, u_m be a basis of ker(*T*). By the Extension Theorem, we can extend this to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of *V*. Thus $dim(ker(T)) = m$ and $dim(V) = m + n$, so it suffices to show that $dim(img(T)) = n$.

We claim that $T(v_1), \ldots, T(v_n)$ is a basis for img(*T*). [Ask students why we don't include any u_i .] Given $v \in V$, then

 $v = a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_nv_n$

for some scalars $a_i, b_j \in \mathbb{F}$. Applying *T*, we have

$$
T(v) = T\left(\sum_{i=1}^m a_i u_i + \sum_{j=1}^n b_j v_j\right) = \sum_i a_i \mathcal{I}(u_i) + \sum_j b_j T(v_j)
$$

since the u_i all map to 0 since they are in ker(*T*). Thus $T(v_1), \ldots, T(v_n)$ spans img(*T*), hence it is finite-dimensional.

It remains to show they are linearly independent. Suppose there exists $c_1, \ldots, c_n \in \mathbb{F}$ such that

$$
0=c_1T(v_1)+\cdots+c_nT(v_n)=T(c_1v_1+\cdots+c_nv_n).
$$

Then *n* ∑ *k*=1 $c_k v_k \in \text{ker}(T)$, so there exist $d_1, \ldots, d_m \in \mathbb{F}$ such that

$$
c_1v_1+\cdots+c_nv_n=d_1u_1+\cdots d_mu_m.
$$

Then

$$
0=d_1u_1+\cdots d_mu_m-c_1v_1-\cdots-c_nv_n.
$$

Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of *V*, hence linearly independent, then $0 = c_1$ \cdots , $c_n = d_1 = \cdots = d_m$. Thus $T(v_1)$, ..., $T(v_n)$ is linearly independent, hence is a basis of $\text{img}(T)$. \Box

Corollary 7. *Suppose V and W are finite-dimensional vector spaces with* $dim(V) > dim(W)$ *. Then no linear map* $T: V \to W$ *is injective.*

Proof. By the Rank-Nullity Theorem, then

$$
\dim(\ker(T)) = \dim(V) - \dim(\text{img}(T)).
$$

Since $\text{img}(T) \subseteq W$, then $\dim(\text{img}(T)) \leq \dim(W)$, so − $\dim(W) \leq -\dim(\text{img}(T))$. Then

$$
\dim(\ker(T)) = \dim(V) - \dim(\text{img}(T)) \ge \dim(V) - \dim(W) > 0.
$$

Thus ker(*T*) \neq {0}, so *T* is not injective. \Box

Corollary 8. *Suppose V and W are finite-dimensional vector spaces with* $dim(V) < dim(W)$. *Then no linear map* $T: V \rightarrow W$ *is surjective.*

Proof. Exercise. Similar to the above. □

II.2.2. *Linear maps and systems of equations.* Fix $m, n \in \mathbb{Z}_{\geq 0}$ and suppose $A_{ii} \in \mathbb{F}$ for $i =$ $1, \ldots, m$ and $j = 1, \ldots, n$. Consider the homogeneous system of equations

$$
\sum_{k=1}^{n} A_{1k} x_k = 0
$$

$$
\vdots
$$

$$
\sum_{k=1}^{n} A_{mk} x_k = 0.
$$

We can interpret this system using linear maps by defining

$$
T: \mathbb{F}^n \to \mathbb{F}^m
$$

$$
(x_1, \dots, x_n) \mapsto \left(\sum_{k=1}^n A_{1k} x_k, \dots, \sum_{k=1}^n A_{mk} x_k\right).
$$

One can show that *T* is linear. Thus the above linear system is equivalent to the equation $T(x) = 0$. Therefore computing the solutions to the system is the same as computing [ask students] ker(*T*).

Let $b_1, \ldots, b_m \in \mathbb{F}$. Similarly, we can reinterpret searching for solutions to the linear system

$$
\sum_{k=1}^{n} A_{1k} x_k = b_1
$$

$$
\vdots
$$

$$
\sum_{k=1}^{n} A_{mk} x_k = b_m
$$

as asking whether $b := (b_1, \ldots, b_m)$ is in img(*T*) or not.

II.3. **Worksheet.**

II.4. **The matrix of a linear map.**

Definition 9. Let $\mathcal{B} := (u_1, \dots, u_n)$ be a basis for the finite-dimensional vector space *V*. Given $x \in V$, let $a_1, \ldots, a_n \in \mathbb{F}$ be the unique scalars such that

$$
x=\sum_{i=1}^n a_iu_i.
$$

The *coordinate vector* or *matrix of* x with respect to B, denoted by $[x]_B$, is

$$
[x]_{\mathcal{B}} := \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n.
$$

[Ask students: what is $|u_1|_{\mathcal{B}}$?]

Example 10 (Polynomial example with respect to $1, x, x^2$.).

Similarly, we can encode linear maps as matrices.

Definition 11. Let $m, n \in \mathbb{Z}_{\geq 0}$. An m -by-n matrix A is a rectangular array of elements of **F** with *m* rows and *n* columns:

$$
\begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{pmatrix}.
$$

The entry in row *i*, column *j* is called the (i, j) -entry and is denoted A_{ij} .

Suppose *V* and *W* are finite-dimensional vector spaces with bases $\mathcal{B} := (v_1, \ldots, v_n)$ and $C := (w_1, \ldots, w_m)$, respectively. Let $T : V \to W$ be linear. We have seen that the values $T(v_1)$, ..., $T(v_n)$ uniquely determine *T*.

Definition 12. With notation as above, for each $j = 1, \ldots, n$ there are unique scalars $A_{1j}, \ldots, A_{mj} \in \mathbb{F}$ such that

$$
T(v_j) = A_{1j}w_1 + \cdots + A_{mj}w_m.
$$

The matrix whose i, j entry is A_{ij} is the *matrix of* T with respect to B and C and is denoted $C[T]$ _B or $\mathcal{M}(T;\mathcal{B},\mathcal{C})$. When the bases are clear from context, we simply write [*T*] or $\mathcal{M}(T)$.

Note that the j^{th} column of $[T]$ is the coordinate vector of $T(v_j)$:

$$
c[T]_{\mathcal{B}} = \begin{pmatrix} | & & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & | & | \end{pmatrix}
$$

• For $V = \mathbb{F}^n$, let \mathcal{E}_n be the basis

$$
\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.
$$

We call this the *standard basis* for \mathbb{F}^n and use this basis unless otherwise specified.

• For $V = \mathcal{P}_m(\mathbb{F})$, we similarly use the standard monomial basis $1, x, x^2, \ldots, x^m$ unless otherwise specified.

Example 13. Let $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ be the differentiation map $T(f) = f'$. Then

$$
T(1) = 0 = 0 \cdot 1 + 0 \cdot x
$$

$$
T(x) = 1 = 1 \cdot 1 + 0 \cdot x
$$

$$
T(x^{2}) = 2x = 0 \cdot 1 + 2 \cdot x
$$

so

$$
[T] = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.
$$

We define addition and scalar multiplication of matrices to agree with the corresponding operations for linear maps.

Definition 14.

- Given matrices A and B of the same size, we define their sum entrywise, i.e., $A + B$ is the matrix whose *i*, *j* entry is $A_{ij} + B_{ij}$.
- Given a matrix *A* and $\lambda \in \mathbb{F}$, we define λA to be the matrix whose *i*, *j* entry is λA_{ii} .

Lemma 15. *Suppose S, T* $\in \mathcal{L}(V, W)$ *and* $\lambda \in \mathbb{F}$ *. Then*

- $[S + T] = [S] + [T]$ *, and*
- $[\lambda T] = \lambda[T]$.

Proof. Exercise. □

Denote the set of all $m \times n$ matrices by $M_{m \times n}(\mathbb{F})$ or $Mat_{m \times n}$ or $\mathbb{F}^{m,n}$.

Lemma 16. With the operations of addition and scalar multiplication above, $M_{m \times n}(\mathbb{F})$ is a vector *space of dimension mn.*

Proof. Exercise. □

II.4.1. *Matrix multiplication.* Suppose that *U*, *V*, *W* are finite-dimensional vector spaces with bases

$$
\mathcal{B} := (u_1, \dots, u_p)
$$

\n
$$
\mathcal{C} := (v_1, \dots, v_n)
$$

\n
$$
\mathcal{D} := (w_1, \dots, w_m)
$$

Suppose $T : U \rightarrow V$ and $S : V \rightarrow W$ are linear maps. We previously saw that the composition $ST: U \rightarrow W$ is linear. We define matrix multiplication in such a way that

$$
[ST] = [S][T].
$$

Let $A := [S]$ and $B := [T]$. Then for each $j = 1, \ldots, p$ we have

$$
(ST)(u_j) = S\left(\sum_{k=1}^n B_{kj}v_k\right) = \sum_{k=1}^n B_{kj}S(v_k) = \sum_{k=1}^n B_{kj}\sum_{i=1}^m A_{ik}w_k = \sum_{i=1}^m \sum_{k=1}^n (A_{ik}B_{kj}) w_k.
$$

Thus $[ST]$ is the $m \times p$ matrix whose *i*, *j* entry is ∑ *k*=1 $(A_{ik}B_{kj}).$

Definition 17. Given an $m \times n$ matrix *A* and a $n \times p$ matrix *B*, their product *AB* is defined to be the $m \times p$ matrix whose *i*, *j* entry is *n* ∑ *k*=1 $(A_{ik}B_{kj}).$

So we multiply the entries of row *j* of *A* by those of column *k* of *B*, then add these together.

Example 18.

$$
\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 6 & 5 & 0 & 0 \\ 2 & 1 & 0 & -1 \end{pmatrix} = \cdots
$$

[Ask students about the other order *BA*.]

Proposition 19. *If* $T \in \mathcal{L}(U, V)$ *and* $S \in \mathcal{L}(V, W)$ *, then* $|ST| = |S||T|$ *.*

Proof. This is true by the definition of matrix multiplication and the earlier calculation done as motivation. □

Let *A* be an $m \times n$ matrix.

- For $i = 1, \ldots, m$, let A_i , denote row *i* of A , which is a $1 \times n$ matrix.
- For $j = 1, \ldots, n$, let $A_{\cdot,j}$ denote column j of A , which is an $m \times 1$ matrix.

The next few results give different interpretations of matrix multiplication. Let *A* be an $m \times n$ matrix and *B* be an $n \times p$ matrix.

Lemma 20.

 $(AB)_{ij} = A_{i} B_{\cdot,j}$ *for all i* = 1, ..., *m* and all *j* = 1, ..., *p*. [Draw picture of row and column.]

Proof. True by formula defining matrix multiplication. □

Lemma 21.

$$
(AB)_{\cdot,j} = A(B_{\cdot,j})
$$

for all $j = 1, \ldots, p$.

Proof. Exercise. Both are $m \times 1$ matrices. Check that their i^{th} entries are equal using the formula. [Draw picture applying A to each of the columns of B .] \Box

Lemma 22. Suppose A is
$$
m \times n
$$
 and $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ is $n \times 1$. Then
\n
$$
Ax = x_1 A_{11} + \dots + x_n A_{1n}.
$$

I.e., Ax is the linear combination of the columns of A with coefficients given by the entries of x.

- *Proof.* Exercise. □
- **Lemma 23.** *(a)* For $j = 1, \ldots, p$, $(AB)_{\cdot,j}$ (column j) is a linear combination of the columns *of A with coefficients from B*·,*^j (column j).*
	- (b) For $i=1,\ldots,m$, $\left(AB\right)_{i,\cdot}$ (row i) is a linear combination of the rows of B with coefficients *from Ai*,· *(row i).*

Proof. Exercise. [Draw picture of second part.] □

Definition 24.

- The *column space* of *A*, denoted Col(*A*), is the span of the columns of *A*. The *column rank* is the dimension of Col(*A*).
- The *row space* of *A*, denoted Row(*A*), is the span of the rows of *A*. The *row rank* is the dimension of Row(*A*).

We'll see that these two quantities are actually equal!

Definition 25. The *transpose* of a matrix *A*, denoted *A t* , is obtained from *A* by interchanging rows and columns. I.e.,

$$
(A^t)_{ij}=A_{ji}.
$$

Lemma 26 (Column-row factorization). *Suppose A is m* \times *n and has column rank* $c \in \mathbb{Z}_{\geq 1}$ *. Then there exist an m* \times *c matrix C and a c* \times *n matrix R such that A = CR.*

Proof. The columns $A_{\cdot,1}, \ldots, A_{\cdot,n}$, each an $m \times 1$ matrix, span Col(A). By a previous result, this list can be reduced to a basis v_1, \ldots, v_c of Col(A), which by definition must have length *c*. Use these as the columns of a *m* × *c* matrix *C*.

For $k = 1, \ldots, n$, column *k* of *A* is a linear combination of the columns of *C* (since these are a basis), so there exist scalars $R_{1k}, \ldots, R_{ck} \in \mathbb{F}$ such that

$$
A_k = R_{1k}v_1 + \cdots + R_{ck}v_c.
$$

Use the coefficients R_{1k} , . . . , R_{ck} as the entries of the k^{th} column of a $c \times n$ matrix R . Then $A = CR$.

Theorem 27 (Column rank = row rank). *Suppose* $A \in M_{m \times n}(\mathbb{F})$. *Then the column rank and row rank of A are equal.*

Proof. Let *c* be the column rank of *A*. Let *A* = *CR* be the column-row factorization of *A* given by the previous lemma, where *C* is $m \times c$ and *R* is $c \times n$. Since every row of *A* can be written as a linear combination of the rows of *R*, and *R* has *c* rows, then the row rank of *A* is ≤ *c*, which is the column rank of *A*.

We obtain the reverse inequality by applying the same argument to A^t , which yields

column rank of $A =$ row rank of $A^t \leq$ column rank of $A^t =$ row rank of A .

□

Definition 28. The *rank* of a matrix is its column rank (= its row rank).