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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the definition of the range of a linear map.
(2) Students will learn the Rank-Nullity Theorem.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN(0:00)
Announcements: • Final exam: Monday, December 16, 1:30 - 4:30pm, 6-120

II.1. Last time.
• Gave the definition of dimension.
• Proved some basic properties about dimension.
• Defined linear maps.
• Show that a linear map is uniquely determined by its action on a basis.
• Defined the null space of a linear map.
• T one-to-one ⇐⇒ ker(T) = {0}.

II.2. The Rank-Nullity Theorem.

Definition 1. Let X and Y be sets and f : X → Y be a function. The range or image of f is

range( f ) = img( f ) = f (X) := { f (x) : x ∈ X} .

[Draw picture of blobs, showing that img( f ) need not fill up all of Y.]

Definition 2. If img( f ) = Y, then f is onto or surjective.

Remark 3. Warning: You must specify the codomain for the notion of surjectivity to make
sense! E.g., f (x) = x2 as a function R → R or R → [0, ∞).

Definition 4. Let T : V → W be linear. The dimension of range(T) is called the rank of T.

Lemma 5. If T : V → W is linear, then img(T) is a subspace of W.

Proof. Exercise. Apply subspace criterion. □

II.2.1. Rank-nullity theorem. The sizes of the kernel and the image are inversely correlated.
E.g., the zero map 0 : V → W has large null space [ask students]—all of V—and small
range—just {0}. On the other hand, the identity map I : V → V has small kernel [ask
students]—just {0}—and large image—all of V. This relationship is captured precisely in
the following result.

Theorem 6 (Rank-Nullity Theorem). Suppose V is finite-dimensional and T ∈ L(V, W). Then
img(T) is also finite-dimensional and

dim(V) = dim(ker(T)) + dim(img(T)) .

In words, the dimension of the domain of T is equal to the sum of the nullity and rank of T.

Proof. Let u1, . . . , um be a basis of ker(T). By the Extension Theorem, we can extend this
to a basis u1, . . . , um, v1, . . . , vn of V. Thus dim(ker(T)) = m and dim(V) = m + n, so it
suffices to show that dim(img(T)) = n.

We claim that T(v1), . . . , T(vn) is a basis for img(T). [Ask students why we don’t in-
clude any ui.] Given v ∈ V, then

v = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn

for some scalars ai, bj ∈ F. Applying T, we have

T(v) = T

(
m

∑
i=1

aiui +
n

∑
j=1

bjvj

)
= ∑

i
ai����*

0
T(ui) + ∑

j
bjT(vj)
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since the ui all map to 0 since they are in ker(T). Thus T(v1), . . . , T(vn) spans img(T),
hence it is finite-dimensional.

It remains to show they are linearly independent. Suppose there exists c1, . . . , cn ∈ F

such that
0 = c1T(v1) + · · ·+ cnT(vn) = T(c1v1 + · · ·+ cnvn) .

Then
n

∑
k=1

ckvk ∈ ker(T), so there exist d1, . . . , dm ∈ F such that

c1v1 + · · ·+ cnvn = d1u1 + · · · dmum .

Then
0 = d1u1 + · · · dmum − c1v1 − · · · − cnvn .

Since u1, . . . , um, v1, . . . , vn is a basis of V, hence linearly independent, then 0 = c1 =
· · · , cn = d1 = · · · = dm. Thus T(v1), . . . , T(vn) is linearly independent, hence is a basis
of img(T). □

Corollary 7. Suppose V and W are finite-dimensional vector spaces with dim(V) > dim(W).
Then no linear map T : V → W is injective.

Proof. By the Rank-Nullity Theorem, then

dim(ker(T)) = dim(V)− dim(img(T)) .

Since img(T) ⊆ W, then dim(img(T)) ≤ dim(W), so −dim(W) ≤ −dim(img(T)). Then

dim(ker(T)) = dim(V)− dim(img(T)) ≥ dim(V)− dim(W) > 0 .

Thus ker(T) ̸= {0}, so T is not injective. □

Corollary 8. Suppose V and W are finite-dimensional vector spaces with dim(V) < dim(W).
Then no linear map T : V → W is surjective.

Proof. Exercise. Similar to the above. □

II.2.2. Linear maps and systems of equations. Fix m, n ∈ Z≥0 and suppose Aij ∈ F for i =
1, . . . , m and j = 1, . . . , n. Consider the homogeneous system of equations

n

∑
k=1

A1kxk = 0

...
n

∑
k=1

Amkxk = 0 .

We can interpret this system using linear maps by defining

T : Fn → Fm

(x1, . . . , xn) 7→
(

n

∑
k=1

A1kxk, . . . ,
n

∑
k=1

Amkxk

)
.
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One can show that T is linear. Thus the above linear system is equivalent to the equation
T(x) = 0. Therefore computing the solutions to the system is the same as computing [ask
students] ker(T).

Let b1, . . . , bm ∈ F. Similarly, we can reinterpret searching for solutions to the linear
system

n

∑
k=1

A1kxk = b1

...
n

∑
k=1

Amkxk = bm

as asking whether b := (b1, . . . , bm) is in img(T) or not.

II.3. Worksheet.

II.4. The matrix of a linear map.

Definition 9. Let B := (u1, . . . , un) be a basis for the finite-dimensional vector space V.
Given x ∈ V, let a1, . . . , an ∈ F be the unique scalars such that

x =
n

∑
i=1

aiui .

The coordinate vector or matrix of x with respect to B, denoted by [x]B, is

[x]B :=


a1
a2
...

an

 ∈ Fn .

[Ask students: what is [u1]B?]

Example 10 (Polynomial example with respect to 1, x, x2.).

Similarly, we can encode linear maps as matrices.

Definition 11. Let m, n ∈ Z≥0. An m-by-n matrix A is a rectangular array of elements of
F with m rows and n columns: A11 · · · A1n

...
. . .

...
Am1 · · · Amn

 .

The entry in row i, column j is called the (i, j)-entry and is denoted Aij.

Suppose V and W are finite-dimensional vector spaces with bases B := (v1, . . . , vn) and
C := (w1, . . . , wm), respectively. Let T : V → W be linear. We have seen that the values
T(v1), . . . , T(vn) uniquely determine T.
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Definition 12. With notation as above, for each j = 1, . . . , n there are unique scalars
A1j, . . . , Amj ∈ F such that

T(vj) = A1jw1 + · · ·+ Amjwm .

The matrix whose i, j entry is Aij is the matrix of T with respect to B and C and is denoted
C [T]B or M(T;B, C). When the bases are clear from context, we simply write [T] or M(T).

Note that the jth column of [T] is the coordinate vector of T(vj):

C [T]B =

 | |
[T(v1)]C · · · [T(vn)]C

| |


• For V = Fn, let En be the basis

1
0
0
...
0
0


,



0
1
0
...
0
0


,



0
0
0
...
0
1


.

We call this the standard basis for Fn and use this basis unless otherwise specified.
• For V = Pm(F), we similarly use the standard monomial basis 1, x, x2, . . . , xm un-

less otherwise specified.

Example 13. Let T : P2(R) → P1(R) be the differentiation map T( f ) = f ′. Then

T(1) = 0 = 0 · 1 + 0 · x
T(x) = 1 = 1 · 1 + 0 · x

T(x2) = 2x = 0 · 1 + 2 · x

so

[T] =
(

0 1 0
0 0 2

)
.

We define addition and scalar multiplication of matrices to agree with the correspond-
ing operations for linear maps.

Definition 14.
• Given matrices A and B of the same size, we define their sum entrywise, i.e., A+ B

is the matrix whose i, j entry is Aij + Bij.
• Given a matrix A and λ ∈ F, we define λA to be the matrix whose i, j entry is λAij.

Lemma 15. Suppose S, T ∈ L(V, W) and λ ∈ F. Then
• [S + T] = [S] + [T], and
• [λT] = λ[T].

Proof. Exercise. □
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Denote the set of all m × n matrices by Mm×n(F) or Matm×n or Fm,n.

Lemma 16. With the operations of addition and scalar multiplication above, Mm×n(F) is a vector
space of dimension mn.

Proof. Exercise. □

II.4.1. Matrix multiplication. Suppose that U, V, W are finite-dimensional vector spaces
with bases

B := (u1, . . . , up)

C := (v1, . . . , vn)

D := (w1, . . . , wm) .

Suppose T : U → V and S : V → W are linear maps. We previously saw that the
composition ST : U → W is linear.We define matrix multiplication in such a way that

[ST] = [S][T] .

Let A := [S] and B := [T]. Then for each j = 1, . . . , p we have

(ST)(uj) = S

(
n

∑
k=1

Bkjvk

)
=

n

∑
k=1

BkjS(vk) =
n

∑
k=1

Bkj

m

∑
i=1

Aikwk =
m

∑
i=1

n

∑
k=1

(
AikBkj

)
wk .

Thus [ST] is the m × p matrix whose i, j entry is
n

∑
k=1

(
AikBkj

)
.

Definition 17. Given an m× n matrix A and a n× p matrix B, their product AB is defined

to be the m × p matrix whose i, j entry is
n

∑
k=1

(
AikBkj

)
.

So we multiply the entries of row j of A by those of column k of B, then add these
together.

Example 18. 1 2
3 4
5 6

(6 5 0 0
2 1 0 −1

)
= · · ·

[Ask students about the other order BA.]

Proposition 19. If T ∈ L(U, V) and S ∈ L(V, W), then [ST] = [S][T].

Proof. This is true by the definition of matrix multiplication and the earlier calculation
done as motivation. □

Let A be an m × n matrix.
• For i = 1, . . . , m, let Ai,· denote row i of A, which is a 1 × n matrix.
• For j = 1, . . . , n, let A·,j denote column j of A, which is an m × 1 matrix.

The next few results give different interpretations of matrix multiplication. Let A be an
m × n matrix and B be an n × p matrix.
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Lemma 20.
(AB)ij = Ai,·B·,j

for all i = 1, . . . , m and all j = 1, . . . , p. [Draw picture of row and column.]

Proof. True by formula defining matrix multiplication. □

Lemma 21.
(AB)·,j = A(B·,j)

for all j = 1, . . . , p.

Proof. Exercise. Both are m × 1 matrices. Check that their ith entries are equal using the
formula. [Draw picture applying A to each of the columns of B.] □

Lemma 22. Suppose A is m × n and x =

(
x1

. . . xn

)
is n × 1. Then

Ax = x1A·1 + · · ·+ xn A·n .

I.e., Ax is the linear combination of the columns of A with coefficients given by the entries of x.

Proof. Exercise. □

Lemma 23. (a) For j = 1, . . . , p, (AB)·,j (column j) is a linear combination of the columns
of A with coefficients from B·,j (column j).

(b) For i = 1, . . . , m, (AB)i,· (row i) is a linear combination of the rows of B with coefficients
from Ai,· (row i).

Proof. Exercise. [Draw picture of second part.] □

Definition 24.
• The column space of A, denoted Col(A), is the span of the columns of A. The column

rank is the dimension of Col(A).
• The row space of A, denoted Row(A), is the span of the rows of A. The row rank is

the dimension of Row(A).

We’ll see that these two quantities are actually equal!

Definition 25. The transpose of a matrix A, denoted At, is obtained from A by interchang-
ing rows and columns. I.e.,

(At)ij = Aji .

Lemma 26 (Column-row factorization). Suppose A is m × n and has column rank c ∈ Z≥1.
Then there exist an m × c matrix C and a c × n matrix R such that A = CR.

Proof. The columns A·,1, . . . , A·,n, each an m× 1 matrix, span Col(A). By a previous result,
this list can be reduced to a basis v1, . . . , vc of Col(A), which by definition must have
length c. Use these as the columns of a m × c matrix C.

For k = 1, . . . , n, column k of A is a linear combination of the columns of C (since these
are a basis), so there exist scalars R1k, . . . , Rck ∈ F such that

Ak = R1kv1 + · · ·+ Rckvc .

Use the coefficients R1k, . . . , Rck as the entries of the kth column of a c × n matrix R. Then
A = CR. □
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Theorem 27 (Column rank = row rank). Suppose A ∈ Mm×n(F). Then the column rank and
row rank of A are equal.

Proof. Let c be the column rank of A. Let A = CR be the column-row factorization of A
given by the previous lemma, where C is m × c and R is c × n. Since every row of A can
be written as a linear combination of the rows of R, and R has c rows, then the row rank
of A is ≤ c, which is the column rank of A.

We obtain the reverse inequality by applying the same argument to At, which yields

column rank of A = row rank of At ≤ column rank of At = row rank of A.

□

Definition 28. The rank of a matrix is its column rank (= its row rank).
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