
18.700 - LINEAR ALGEBRA, DAY 7
LINEAR MAPS, NULL SPACE, RANGE

SAM SCHIAVONE
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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the definition of dimension.
(2) Students will learn the definition of a linear map.
(3) Students will learn the definition of the null space and range of a linear map.
(4) Students will learn the Rank-Nullity Theorem.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN(0:00)
Announcements: • Final exam: Monday, December 16, 1:30 - 4:30pm, 6-120

II.1. Last time.
• LI ≤ span
• Defined basis
• Can reduce spanning list to a basis
• Can extend a linearly independent list to a basis

II.2. 2C Dimension.

Theorem 1. Any two bases of a finite-dimensional vector space have the same length.

Proof. Suppose V is finite-dimensional and B1 and B2 are bases of V. Since B1 is linearly in-
dependent and B2 spans V, then by the LI ≤ span theorem, length(B1) ≤ length(B2). Re-
versing the roles of B1 and B2 yields the opposite inequality, so length(B1) = length(B2).

□

Definition 2. The dimension of a finite-dimensional vector space V is the length of any
basis of V. Denoted dim(V).

Remark 3. This definition makes sense because of the previous theorem.

Lemma 4. If V is finite-dimensional and U is a subspace of V, then dim(U) ≤ dim(V).

Proof. Exercise. (Similar to previous proof.) [Choose a basis B for U and C for V. Since B
is LI and C spans V, can apply LI ≤ span result.] □

Proposition 5. Suppose that V is finite-dimensional. Then every linearly independent list of
vectors in V of length dim(V) is a basis.

Proof. Let n := dim(V) and suppose L := (v1, . . . , vn) are linearly independent. By the
Extension Theorem, then L can be extended to a basis of V. But by the previous result,
every basis of V has length n, so this must be the trivial extension, where no vectors are
adjoined. Thus L was a basis of V to begin with. □

Example 6. Consider the list (4, 2), (−1, 7) of vectors in F2. [Ask students why linearly
independent.] Since dim(F2) = 2 (consider the standard basis), then this list is a basis.

Corollary 7. Suppose that V is finite-dimensional and U is a subspace of V such that dim(U) =
dim(V). Then U = V.

Proof. Exercise. [Let n = dim(U) = dim(V). Let B be a basis of U. Then B is linearly
independent of size n, so is a basis of V by the Proposition. Then U = span(B) = V.] □

Proposition 8. Suppose V is finite-dimensional. Then every spanning list S of V of length
dim(V) is a basis of V.

Proof. By a previous result, S can be reduced to a basis. However, every basis has length
dim(V), so this reduction must be the trivial one, i.e., no vectors are removed from S.
Thus S was a basis to begin with. □

Given subspaces V1, V2 with V1 ∩V2 = {0}, one can show that dim(V1 ⊕V2) = dim(V1)+
dim(V2). What if the sum is not direct?
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Proposition 9. Let V be finite-dimensional and V1, V2 be subspaces. Then

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2) .

Remark 10. For a finite set S, let #S denote its cardinality, i.e., the number of elements in
S. If S1 and S2 are finite sets, then

#(S1 ∪ S2) = #S1 + #S2 − #(S1 ∩ S2) .

[Draw Venn diagram.]

Proof. Let B := (v1, . . . , vm) be a basis for V1 ∩V2, so dim(V1 ∩V2) = m. Since B is linearly
independent, it can be extended to a basis

B1 := (v1, . . . , vm, u1, . . . , uℓ)

of V1, so dim(V1) = m + ℓ. Similarly, B can be extended to a basis

B2 := (v1, . . . , vm, w1, . . . , wn)

of V2, so dim(V2) = m + n. We claim that

C := (v1, . . . , vm, u1, . . . , uℓ, w1, . . . , wn)

is a basis for V1 + V2. Note that if this holds, then

dim(V1 + V2) = m + ℓ+ n = (m + ℓ) + (m + n)− m
= dim(V1) + dim(V2)− dim(V1 ∩ V2) ,

which is what we want to show.
Observe that C is contained in V1 + V2 [ask students how to see u1 ∈ V1 + V2]. More-

over, span(C) contains both V1 and V2, hence contains V1 + V2. Thus it remains to show
that C is linearly independent. Suppose

a1v1 + · · ·+ amvm + b1u1 + · · ·+ bℓuℓ + c1w1 + · · ·+ cnwn = 0 (∗)

for some scalars ai, bj, ck ∈ F. Subtracting, then

c1w1 + · · ·+ cnwn = −(a1v1 + · · ·+ amvm + b1u1 + · · ·+ bℓuℓ) ∈ V1 .

By definition w1, . . . , wn ∈ V2, so c1w1 + · · · cnwn ∈ V1 ∩ V2. Since B is a basis of V1 ∩ V2,
then

c1w1 + · · · cnwn = d1v1 + · · ·+ dmvm

for some d1, . . . , dm ∈ F. Subtracting, then

c1w1 + · · · cnwn − d1v1 − · · · − dmvm = 0 .

But B2 is basis, hence linearly independent, hence c1 = · · · = cn = 0 = d1 = · · · = dm.
Then (∗) becomes

a1v1 + · · ·+ amvm + b1u1 + · · ·+ bℓuℓ = 0 .

But B1 is basis, hence linearly dependent, so a1 = · · · = am = 0 = b1 = · · · = bℓ. Thus C
is linearly independent, hence is a basis. □

Here are some analogies between finite sets and finite dimensional vector spaces.
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48 Chapter 2 Finite-Dimensional Vector Spaces

For 𝑆 a finite set, let #𝑆 denote the number of elements of 𝑆. The table below
compares finite sets with finite-dimensional vector spaces, showing the analogy
between #𝑆 (for sets) and dim𝑉 (for vector spaces), as well as the analogy between
unions of subsets (in the context of sets) and sums of subspaces (in the context of
vector spaces).

sets vector spaces𝑆 is a finite set 𝑉 is a finite-dimensional vector space#𝑆 dim𝑉
for subsets 𝑆џ, 𝑆ӝ of 𝑆, the union 𝑆џ ∪ 𝑆ӝ
is the smallest subset of 𝑆 containing 𝑆џ
and 𝑆ӝ

for subspaces 𝑉џ,𝑉ӝ of 𝑉, the sum 𝑉џ+𝑉ӝ
is the smallest subspace of 𝑉 containing𝑉џ and 𝑉ӝ#(𝑆џ ∪ 𝑆ӝ) dim(𝑉џ + 𝑉ӝ)= #𝑆џ + #𝑆ӝ − #(𝑆џ ∩ 𝑆ӝ) = dim𝑉џ + dim𝑉ӝ − dim(𝑉џ ∩ 𝑉ӝ)#(𝑆џ ∪ 𝑆ӝ) = #𝑆џ + #𝑆ӝ dim(𝑉џ + 𝑉ӝ) = dim𝑉џ + dim𝑉ӝ⟺ 𝑆џ ∩ 𝑆ӝ = ∅ ⟺ 𝑉џ ∩ 𝑉ӝ = {0}𝑆џ ∪ ⋯ ∪ 𝑆֕ is a disjoint union ⟺#(𝑆џ ∪ ⋯ ∪ 𝑆֕) = #𝑆џ + ⋯ + #𝑆֕
𝑉џ + ⋯ + 𝑉 is a direct sum ⟺
dim(𝑉џ + ⋯ + 𝑉 )= dim𝑉џ + ⋯ + dim𝑉

The last row above focuses on the analogy between disjoint unions (for sets)
and direct sums (for vector spaces). The proof of the result in the last box above
will be given in 3.94.

You should be able to find results about sets that correspond, via analogy, to
the results about vector spaces in Exercises 12 through 18.

Exercises 2C

1 Show that the subspaces of 𝐑ӝ are precisely {0}, all lines in 𝐑ӝ containing
the origin, and 𝐑ӝ.

2 Show that the subspaces of 𝐑ӗ are precisely {0}, all lines in 𝐑ӗ containing
the origin, all planes in 𝐑ӗ containing the origin, and 𝐑ӗ.

3 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐅) ∶ 𝑝(6) = 0}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐅).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐅) such that 𝒫ͳ(𝐅) = 𝑈 ⊕ 𝑊.

4 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐑) ∶ 𝑝࿌(6) = 0}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐑).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐑) such that 𝒫ͳ(𝐑) = 𝑈 ⊕ 𝑊.

5 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐅) ∶ 𝑝(2) = 𝑝(5)}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐅).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐅) such that 𝒫ͳ(𝐅) = 𝑈 ⊕ 𝑊.

Linear Algebra Done Right, fourth edition, by Sheldon Axler

II.3. Linear maps. Linear maps are functions that preserve the vector space operations of
addition and scalar multiplication. For this section, assume as usual that F denotes either
R or C, and let U, V, W be F-vector spaces.

Definition 11. A function T : V → W is a linear map (or just linear) if
• T(u + v) = T(u) + T(v) for all u, v ∈ V; and
• T(cv) = cT(v) for all v ∈ V and c ∈ F.

Remark 12. Also sometimes called linear transformations.

• The set of all linear maps V → W is denoted L(V, W).
• Let L(V) := L(V, V).

Example 13.
• The zero linear map

0 : V → W
v 7→ 0 .

• The identity map

I = IV : V → V
v 7→ v .

• Differentiation. Define

D : P(R) → P(R)

f 7→ f ′ .

Since ( f + g)′ = f ′ + g′ and (c f )′ = c f ′, for all f , g ∈ P(R) and all c ∈ R, then D
is linear.
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• Define

T : R3 → R2

(x, y, z) 7→ (2x − y + 3z, 7x + 5y − 6z) .

Exercise to show that T is linear.

Lemma 14. Suppose v1, . . . , vn is a basis of V and w1, . . . , wn ∈ W. Then there exists a unique
linear map T : V → W such that

T(vi) = wi

for each i = 1, . . . , n.

Proof. Given v ∈ V, there exist unique scalars c1, . . . , cn ∈ F such that v = c1v1 + · · ·+
cnvn. Define T : V → W by

T(v) = T(c1v1 + · · ·+ cnvn) := c1w1 + · · ·+ cnwn, .

This is well-defined because the scalars ci are unique. Note that by taking ci = 1 and
cj = 0 for j ̸= i, we get T(vi) = wi, as required.

We now show that T is linear. Given u, v ∈ V, then there exist scalars a1, . . . , an, b1, . . . , bn ∈
F such that

u = a1v1 + · · ·+ anvn

v = b1v1 + · · ·+ bnvn .

Then

T(u + v) = T(a1v1 + · · ·+ anvn + b1v1 + · · ·+ bnvn) = T((a1 + b1)v1 + · · ·+ (an + bn)vn)

= (a1 + b1)w1 + · · ·+ (an + bn)wn = a1w1 + · · ·+ anwn + b1w1 + · · ·+ bnwn

= T(a1v1 + · · ·+ anvn) + T(b1v1 + · · ·+ bnvn) = T(u) + T(v) .

Similarly, one can show that T(λv) = λT(v) for all λ ∈ F. Thus T is linear. □

Remark 15. So a linear map is uniquely determined by its action on a basis.

Definition 16. Suppose S, T ∈ L(V, W) and λ ∈ F. The sum S + T and scalar product λT
are defined pointwise:

(S + T)(v) = S(v) + T(v) and (λT)(v) = v

for all v ∈ V.

Lemma 17. With notation as above, S + T and λT are linear.

Proposition 18. With the operations of addition and scalar multiplication above, L(V, W) is a
vector space.

Proof. Exercise. [Ask students: what is the additive identity?] □

Definition 19. Given T ∈ L(U, V) and S ∈ L(V, W), then the product ST ∈ L(U, W) is
defined as their composition:

(ST)(u) := (S ◦ T)(u) = S(T(u))

for all u ∈ U.
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Lemma 20. With notation as above, ST is linear.

Proposition 21 (Algebraic properties of linear maps).
• (T1T2)T3 = T1(T2T3) whenever T1, T2, T3 are linear maps such that the compositions are

defined.
• Given T ∈ L(V, W), then IW T = TIV . [Ask students which identity operator.]
• For all S, S1, S2 ∈ L(V, W) and T, T1, T2 ∈ L(U, V), we have

(S1 + S2)T = S1T + S2T and S(T1 + T2) = ST1 + ST2 .

Remark 22. Composition of linear maps is not in general commutative!

Example 23. Let V = F∞, the set of infinite sequences, and define

L : V → V
(x1, x2, x3, . . .) 7→ (x2, x3, . . .)

R : V → V
(x1, x2, x3, . . .) 7→ (0, x1, x2, x3, . . .) .

Then

(LR)(x1, x2, x3, . . .) = L(R(x1, x2, x3, . . .)) = L(0, x1, x2, x3, . . .) = (x1, x2, x3, . . .) ,

but

(RL)(x1, x2, x3, . . .) = R(L(x1, x2, x3, . . .)) = R(x2, x3, . . .) = (0, x2, x3, . . .) ,

Lemma 24. Suppose T : V → W is a linear map. Then T(0) = 0.

Proof. Exercise. □

II.4. Null Spaces and Ranges aka Kernels and Images.

II.4.1. Null Spaces.

Definition 25. Given T ∈ L(V, W), then null space or kernel of T, denoted (T) or ker(T) is

ker(T) := {v ∈ V : T(v) = 0} .

The dimension of (T) is called the nullity of T.

[Draw picture of two blobs with kernel mapping to 0 ∈ W.]

Lemma 26. With notation as above, ker(T) is a subspace of V.

Proof. Exercise. Apply subspace criterion. □

We can use the kernel to characterize when a linear map is one-to-one.

Definition 27. Let X and Y be sets. A function f : X → Y is one-to-one or injective if
f (x1) = f (x2) implies x1 = x2 for all x1, x2 ∈ X.

Remark 28. The equivalent contrapositive statement: if x1 ̸= x2, then f (x1) ̸= f (x2).
So distinct inputs get mapped to distinct outputs under f . [Draw picture with blobs of
one-to-one and not one-to-one functions.]

Proposition 29. Let T : V → W be linear. Then T is injective iff ker(T) = {0}.
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Proof. (⇒): Assume T is injective. Given v ∈ ker(T), then T(v) = 0 = T(0). Since T is
injective, then v = 0.

(⇐): Assume ker(T) = {0}. Given u, v ∈ V such that T(u) = T(v), then

0 = T(u)− T(v) = T(u − v) = T(u)− T(v)

so u − v ∈ ker(T) = {0}. Then u − v = 0, i.e., u = v. □

II.4.2. Ranges.

Definition 30. Let X and Y be sets and f : X → Y be a function. The range or image of f is

range( f ) = img( f ) = f (X) := { f (x) : x ∈ X} .

[Draw picture of blobs, showing that img( f ) need not fill up all of Y.]

Definition 31. If img( f ) = Y, then f is onto or surjective.

Remark 32. Warning: You must specify the codomain for the notion of surjectivity to
make sense! E.g., f (x) = x2 as a function R → R or R → [0, ∞).

Definition 33. Let T : V → W be linear. The dimension of range(T) is called the rank of
T.

Lemma 34. If T : V → W is linear, then img(T) is a subspace of W.

Proof. Exercise. Apply subspace criterion. □

II.4.3. Rank-nullity theorem. The sizes of the kernel and the image are inversely correlated.
E.g., the zero map 0 : V → W has large null space [ask students]—all of V—and small
range—just {0}. On the other hand, the identity map I : V → V has small kernel [ask
students]—just {0}—and large image—all of V. This relationship is captured precisely in
the following result.

Theorem 35 (Rank-Nullity Theorem). Suppose V is finite-dimensional and T ∈ L(V, W).
Then img(T) is also finite-dimensional and

dim(V) = dim(ker(T)) + dim(img(T)) .

In words, the dimension of the domain of T is equal to the sum of the nullity and rank of T.

Proof. Let u1, . . . , um be a basis of ker(T). By the Extension Theorem, we can extend this
to a basis u1, . . . , um, v1, . . . , vn of V. Thus dim(ker(T)) = m and dim(V) = m + n, so it
suffices to show that dim(img(T)) = n.

We claim that T(v1), . . . , T(vn) is a basis for img(T). [Ask students why we don’t in-
clude any ui.] Given v ∈ V, then

v = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn

for some scalars ai, bj ∈ F. Applying T, we have

T(v) = T

(
m

∑
i=1

aiui +
n

∑
j=1

bjvj

)
= ∑

i
ai��

��*
0

T(ui) + ∑
j

bjT(vj)

since the ui all map to 0 since they are in ker(T). Thus T(v1), . . . , T(vn) spans img(T),
hence it is finite-dimensional.
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It remains to show they are linearly independent. Suppose there exists c1, . . . , cn ∈ F

such that
0 = c1T(v1) + · · ·+ cnT(vn) = T(c1v1 + · · ·+ cnvn) .

Then
n

∑
k=1

ckvk ∈ ker(T), so there exist d1, . . . , dm ∈ F such that

c1v1 + · · ·+ cnvn = d1u1 + · · · dmum .

Then
0 = d1u1 + · · · dmum − c1v1 − · · · − cnvn .

Since u1, . . . , um, v1, . . . , vn is a basis of V, hence linearly independent, then 0 = c1 =
· · · , cn = d1 = · · · = dm. Thus T(v1), . . . , T(vn) is linearly independent, hence is a basis
of img(T). □

Corollary 36. Suppose V and W are finite-dimensional vector spaces with dim(V) > dim(W).
Then no linear map T : V → W is injective.

Proof. By the Rank-Nullity Theorem, then

dim(ker(T)) = dim(V)− dim(img(T)) .

Since img(T) ⊆ W, then dim(img(T)) ≤ dim(W), so −dim(W) ≤ −dim(img(T)). Then

dim(ker(T)) = dim(V)− dim(img(T)) ≥ dim(V)− dim(W) > 0 .

Thus ker(T) ̸= {0}, so T is not injective. □

Corollary 37. Suppose V and W are finite-dimensional vector spaces with dim(V) < dim(W).
Then no linear map T : V → W is surjective.

Proof. Exercise. Similar to the above. □
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