18.700 - LINEAR ALGEBRA, DAY 7 LINEAR MAPS, NULL SPACE, RANGE

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the definition of dimension.
- (2) Students will learn the definition of a linear map.
- (3) Students will learn the definition of the null space and range of a linear map.
- (4) Students will learn the Rank-Nullity Theorem.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Final exam: Monday, December 16, 1:30 - 4:30pm, 6-120

II.1. **Last time.**

- LI \leq span
- Defined basis
- Can reduce spanning list to a basis
- Can extend a linearly independent list to a basis

II.2. **2C Dimension.**

Theorem 1. *Any two bases of a finite-dimensional vector space have the same length.*

Proof. Suppose *V* is finite-dimensional and B_1 and B_2 are bases of *V*. Since B_1 is linearly independent and *B*₂ spans *V*, then by the LI \leq span theorem, length(*B*₁) \leq length(*B*₂). Reversing the roles of B_1 and B_2 yields the opposite inequality, so length(B_1) = length(B_2). □

Definition 2. The *dimension* of a finite-dimensional vector space *V* is the length of any basis of *V*. Denoted dim(*V*).

Remark 3. This definition makes sense because of the previous theorem.

Lemma 4. If V is finite-dimensional and U is a subspace of V, then $\dim(U) \leq \dim(V)$.

Proof. Exercise. (Similar to previous proof.) [Choose a basis *B* for *U* and *C* for *V*. Since *B* is LI and *C* spans *V*, can apply LI \leq span result.] \Box

Proposition 5. *Suppose that V is finite-dimensional. Then every linearly independent list of vectors in V of length* dim(*V*) *is a basis.*

Proof. Let $n := \dim(V)$ and suppose $L := (v_1, \ldots, v_n)$ are linearly independent. By the Extension Theorem, then *L* can be extended to a basis of *V*. But by the previous result, every basis of *V* has length *n*, so this must be the trivial extension, where no vectors are adjoined. Thus *L* was a basis of *V* to begin with. \Box

Example 6. Consider the list $(4, 2)$, $(-1, 7)$ of vectors in \mathbb{F}^2 . [Ask students why linearly independent.] Since $\dim(\mathbb{F}^2) = 2$ (consider the standard basis), then this list is a basis.

Corollary 7. Suppose that V is finite-dimensional and U is a subspace of V such that $dim(U)$ = $dim(V)$ *. Then* $U = V$ *.*

Proof. Exercise. [Let $n = \dim(U) = \dim(V)$. Let *B* be a basis of *U*. Then *B* is linearly independent of size *n*, so is a basis of *V* by the Proposition. Then $U = \text{span}(B) = V$. \Box

Proposition 8. *Suppose V is finite-dimensional. Then every spanning list S of V of length* dim(*V*) *is a basis of V.*

Proof. By a previous result, *S* can be reduced to a basis. However, every basis has length dim(*V*), so this reduction must be the trivial one, i.e., no vectors are removed from *S*. Thus *S* was a basis to begin with. □

Given subspaces V_1 , V_2 with $V_1 \cap V_2 = \{0\}$, one can show that $\dim(V_1 \oplus V_2) = \dim(V_1) +$ $\dim(V_2)$. What if the sum is not direct?

Proposition 9. Let *V* be finite-dimensional and V_1 , V_2 be subspaces. Then

 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$.

Remark 10. For a finite set *S*, let #*S* denote its cardinality, i.e., the number of elements in *S*. If *S*¹ and *S*² are finite sets, then

$$
#(S_1 \cup S_2) = #S_1 + #S_2 - #(S_1 \cap S_2).
$$

[Draw Venn diagram.]

Proof. Let *B* := (v_1, \ldots, v_m) be a basis for $V_1 \cap V_2$, so $\dim(V_1 \cap V_2) = m$. Since *B* is linearly independent, it can be extended to a basis

$$
B_1 := (v_1, \ldots, v_m, u_1, \ldots, u_\ell)
$$

of V_1 , so dim $(V_1) = m + \ell$. Similarly, *B* can be extended to a basis

$$
B_2 := (v_1, \ldots, v_m, w_1, \ldots, w_n)
$$

of V_2 , so dim(V_2) = $m + n$. We claim that

$$
C := (v_1, \ldots, v_m, u_1, \ldots, u_\ell, w_1, \ldots, w_n)
$$

is a basis for $V_1 + V_2$. Note that if this holds, then

$$
\dim(V_1 + V_2) = m + \ell + n = (m + \ell) + (m + n) - m
$$

=
$$
\dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2),
$$

which is what we want to show.

Observe that *C* is contained in $V_1 + V_2$ [ask students how to see $u_1 \in V_1 + V_2$]. Moreover, span(*C*) contains both V_1 and V_2 , hence contains $V_1 + V_2$. Thus it remains to show that *C* is linearly independent. Suppose

$$
a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_\ell u_\ell + c_1w_1 + \cdots + c_nw_n = 0
$$
 (*)

for some scalars a_i , b_j , $c_k \in \mathbb{F}$. Subtracting, then

$$
c_1w_1 + \cdots + c_nw_n = -(a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_\ell u_\ell) \in V_1.
$$

By definition $w_1, \ldots, w_n \in V_2$, so $c_1w_1 + \cdots c_nw_n \in V_1 \cap V_2$. Since *B* is a basis of $V_1 \cap V_2$, then

$$
c_1w_1+\cdots c_nw_n=d_1v_1+\cdots+d_mv_m
$$

for some $d_1, \ldots, d_m \in \mathbb{F}$. Subtracting, then

$$
c_1w_1+\cdots c_nw_n-d_1v_1-\cdots-d_mv_m=0.
$$

But *B*₂ is basis, hence linearly independent, hence $c_1 = \cdots = c_n = 0 = d_1 = \cdots = d_m$. Then (∗) becomes

$$
a_1v_1+\cdots+a_mv_m+b_1u_1+\cdots+b_\ell u_\ell=0.
$$

But B_1 is basis, hence linearly dependent, so $a_1 = \cdots = a_m = 0 = b_1 = \cdots = b_\ell$. Thus C is linearly independent, hence is a basis. \Box

Here are some analogies between finite sets and finite dimensional vector spaces.

 T is the above focuses on the analogy between disjoint unions (for sets) α II.3. **Linear maps.** Linear maps are functions that preserve the vector space operations of
addition and scalar multiplication. For this section, assume as usual that E denotes either will be given in 3.94. **R** or **C**, and let *U*, *V*, *W* be **F**-vector spaces. addition and scalar multiplication. For this section, assume as usual that **F** denotes either

 \mathbf{y} should be able to form results about sets that corresponds about sets th **Definition 11.** A function $T: V \to W$ is a *linear map* (or just *linear*) if

- $T(u + v) = T(u) + T(v)$ for all $u, v \in V$; and
- $T(cv) = cT(v)$ for all $v \in V$ and $c \in \mathbb{F}$.

Exercises 2C **Remark 12.** Also sometimes called *linear transformations*.

- The set of all linear maps $V \to W$ is denoted $\mathcal{L}(V, W)$.
- Let $\mathcal{L}(V) := \mathcal{L}(V, V)$.

Example 13.

• The zero linear map

$$
0: V \to W
$$

$$
v \mapsto 0.
$$

• The identity map

$$
I = I_V : V \to V
$$

$$
v \mapsto v.
$$

● Differentiation. Define

$$
D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})
$$

$$
f \mapsto f'.
$$

Since $(f+g)' = f' + g'$ and $(cf)' = cf'$, for all $f, g \in \mathcal{P}(\mathbb{R})$ and all $c \in \mathbb{R}$, then D $\sum_{k=1}^{\infty}$ Extend the basis of $\sum_{k=1}^{\infty}$ is linear.

• Define

$$
T: \mathbb{R}^3 \to \mathbb{R}^2
$$

$$
(x, y, z) \mapsto (2x - y + 3z, 7x + 5y - 6z).
$$

Exercise to show that *T* is linear.

Lemma 14. *Suppose* v_1, \ldots, v_n *is a basis of V and* $w_1, \ldots, w_n \in W$. *Then there exists a unique linear map* $T: V \rightarrow W$ *such that*

$$
T(v_i)=w_i
$$

for each $i = 1, \ldots, n$ *.*

Proof. Given $v \in V$, there exist unique scalars $c_1, \ldots, c_n \in \mathbb{F}$ such that $v = c_1v_1 + \cdots + c_n$ $c_n v_n$. Define $T: V \to W$ by

$$
T(v) = T(c_1v_1 + \cdots + c_nv_n) := c_1w_1 + \cdots + c_nw_n.
$$

This is well-defined because the scalars c_i are unique. Note that by taking $c_i = 1$ and $c_j = 0$ for $j \neq i$, we get $T(v_i) = w_i$, as required.

We now show that *T* is linear. Given $u, v \in V$, then there exist scalars $a_1, \ldots, a_n, b_1, \ldots, b_n \in$ **F** such that

$$
u = a_1v_1 + \cdots + a_nv_n
$$

$$
v = b_1v_1 + \cdots + b_nv_n.
$$

Then

$$
T(u + v) = T(a_1v_1 + \dots + a_nv_n + b_1v_1 + \dots + b_nv_n) = T((a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n)
$$

= $(a_1 + b_1)w_1 + \dots + (a_n + b_n)w_n = a_1w_1 + \dots + a_nw_n + b_1w_1 + \dots + b_nw_n$
= $T(a_1v_1 + \dots + a_nv_n) + T(b_1v_1 + \dots + b_nv_n) = T(u) + T(v).$

Similarly, one can show that $T(\lambda v) = \lambda T(v)$ for all $\lambda \in \mathbb{F}$. Thus *T* is linear. \Box

Remark 15. So a linear map is uniquely determined by its action on a basis.

Definition 16. Suppose *S*, $T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. The *sum S* + *T* and scalar product λT are defined pointwise:

 $(S+T)(v) = S(v) + T(v)$ and $(\lambda T)(v) = v$

for all $v \in V$.

Lemma 17. *With notation as above,* $S + T$ *and* λT *are linear.*

Proposition 18. With the operations of addition and scalar multiplication above, $\mathcal{L}(V, W)$ is a *vector space.*

Proof. Exercise. [Ask students: what is the additive identity?] □ □

Definition 19. Given $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then the *product* $ST \in \mathcal{L}(U, W)$ is defined as their composition:

$$
(ST)(u) := (S \circ T)(u) = S(T(u))
$$

for all $u \in U$.

Lemma 20. *With notation as above, ST is linear.*

Proposition 21 (Algebraic properties of linear maps)**.**

- \bullet $(T_1T_2)T_3 = T_1(T_2T_3)$ *whenever* T_1 , T_2 , T_3 *are linear maps such that the compositions are defined.*
- *Given* $T \in \mathcal{L}(V, W)$, then $I_W T = T I_V$. [Ask students which identity operator.]
- *For all* $S, S_1, S_2 \in \mathcal{L}(V, W)$ and $T, T_1, T_2 \in \mathcal{L}(U, V)$, we have

$$
(S_1 + S_2)T = S_1T + S_2T
$$
 and $S(T_1 + T_2) = ST_1 + ST_2$.

Remark 22. Composition of linear maps is not in general commutative!

Example 23. Let $V = \mathbb{F}^{\infty}$, the set of infinite sequences, and define

$$
L: V \to V
$$

\n $(x_1, x_2, x_3, ...) \mapsto (x_2, x_3, ...)$
\n $R: V \to V$
\n $(x_1, x_2, x_3, ...) \mapsto (0, x_1, x_2, x_3, ...).$

Then

$$
(LR)(x_1, x_2, x_3, \ldots) = L(R(x_1, x_2, x_3, \ldots)) = L(0, x_1, x_2, x_3, \ldots) = (x_1, x_2, x_3, \ldots),
$$

but

$$
(RL)(x_1, x_2, x_3, \ldots) = R(L(x_1, x_2, x_3, \ldots)) = R(x_2, x_3, \ldots) = (0, x_2, x_3, \ldots),
$$

Lemma 24. *Suppose* $T: V \to W$ *is a linear map. Then* $T(0) = 0$ *.*

Proof. Exercise. □

II.4. **Null Spaces and Ranges aka Kernels and Images.**

II.4.1. *Null Spaces.*

Definition 25. Given $T \in \mathcal{L}(V, W)$, then *null space* or *kernel* of *T*, denoted (*T*) or ker(*T*) is $\ker(T) := \{ v \in V : T(v) = 0 \}.$

The dimension of (*T*) is called the *nullity* of *T*.

[Draw picture of two blobs with kernel mapping to $0 \in W$.]

Lemma 26. *With notation as above,* ker(*T*) *is a subspace of V.*

Proof. Exercise. Apply subspace criterion. □

We can use the kernel to characterize when a linear map is one-to-one.

Definition 27. Let *X* and *Y* be sets. A function $f : X \rightarrow Y$ is one-to-one or *injective* if *f*(*x*₁) = *f*(*x*₂) implies *x*₁ = *x*₂ for all *x*₁, *x*₂ \in *X*.

Remark 28. The equivalent contrapositive statement: if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. So distinct inputs get mapped to distinct outputs under *f* . [Draw picture with blobs of one-to-one and not one-to-one functions.]

Proposition 29. Let $T: V \to W$ be linear. Then T is injective iff ker(T) = {0}.

Proof. (\Rightarrow): Assume *T* is injective. Given $v \in \text{ker}(T)$, then $T(v) = 0 = T(0)$. Since *T* is injective, then $v = 0$.

(⇐): Assume ker(*T*) = {0}. Given *u*, *v* ∈ *V* such that $T(u) = T(v)$, then

$$
0 = T(u) - T(v) = T(u - v) = T(u) - T(v)
$$

so $u - v \in \text{ker}(T) = \{0\}$. Then $u - v = 0$, i.e., $u = v$.

II.4.2. *Ranges.*

Definition 30. Let *X* and *Y* be sets and $f : X \to Y$ be a function. The *range* or *image* of *f* is $range(f) = img(f) = f(X) := \{f(x) : x \in X\}.$

[Draw picture of blobs, showing that img(*f*) need not fill up all of *Y*.]

Definition 31. If $\text{img}(f) = Y$, then *f* is *onto* or *surjective*.

Remark 32. Warning: You must specify the codomain for the notion of surjectivity to make sense! E.g., $f(x) = x^2$ as a function $\mathbb{R} \to \mathbb{R}$ or $\mathbb{R} \to [0, \infty)$.

Definition 33. Let $T: V \to W$ be linear. The dimension of range(*T*) is called the *rank* of *T*.

Lemma 34. *If* $T: V \to W$ *is linear, then* $\text{img}(T)$ *is a subspace of W*.

Proof. Exercise. Apply subspace criterion. □

II.4.3. *Rank-nullity theorem.* The sizes of the kernel and the image are inversely correlated. E.g., the zero map $0: V \to W$ has large null space [ask students]—all of *V*—and small range—just $\{0\}$. On the other hand, the identity map $I: V \rightarrow V$ has small kernel [ask students]—just {0}—and large image—all of *V*. This relationship is captured precisely in the following result.

Theorem 35 (Rank-Nullity Theorem). *Suppose V is finite-dimensional and* $T \in \mathcal{L}(V, W)$. *Then* img(*T*) *is also finite-dimensional and*

$$
\dim(V) = \dim(\ker(T)) + \dim(\text{img}(T)).
$$

In words, the dimension of the domain of T is equal to the sum of the nullity and rank of T.

Proof. Let u_1, \ldots, u_m be a basis of ker(*T*). By the Extension Theorem, we can extend this to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of *V*. Thus $dim(ker(T)) = m$ and $dim(V) = m + n$, so it suffices to show that $dim(img(T)) = n$.

We claim that $T(v_1), \ldots, T(v_n)$ is a basis for img(*T*). [Ask students why we don't include any u_i .] Given $v \in V$, then

 $v = a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_nv_n$

for some scalars $a_i, b_j \in \mathbb{F}$. Applying *T*, we have

$$
T(v) = T\left(\sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j\right) = \sum_i a_i T(u_i) + \sum_j b_j T(v_j)
$$

since the u_i all map to 0 since they are in ker(*T*). Thus $T(v_1)$, ..., $T(v_n)$ spans img(*T*), hence it is finite-dimensional.

It remains to show they are linearly independent. Suppose there exists $c_1, \ldots, c_n \in \mathbb{F}$ such that

$$
0=c_1T(v_1)+\cdots+c_nT(v_n)=T(c_1v_1+\cdots+c_nv_n).
$$

Then *n* ∑ *k*=1 $c_k v_k \in \text{ker}(T)$, so there exist $d_1, \ldots, d_m \in \mathbb{F}$ such that

$$
c_1v_1+\cdots+c_nv_n=d_1u_1+\cdots d_mu_m.
$$

Then

 $0 = d_1 u_1 + \cdots + d_m u_m - c_1 v_1 - \cdots - c_n v_n$.

Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of *V*, hence linearly independent, then $0 = c_1$ \cdots , $c_n = d_1 = \cdots = d_m$. Thus $T(v_1)$, ..., $T(v_n)$ is linearly independent, hence is a basis of $img(T)$. □

Corollary 36. *Suppose V and W are finite-dimensional vector spaces with* $dim(V) > dim(W)$ *. Then no linear map* $T: V \to W$ *is injective.*

Proof. By the Rank-Nullity Theorem, then

$$
\dim(\ker(T)) = \dim(V) - \dim(\text{img}(T)).
$$

Since $\text{img}(T) \subseteq W$, then $\dim(\text{img}(T)) \leq \dim(W)$, so − $\dim(W) \leq -\dim(\text{img}(T))$. Then $dim(ker(T)) = dim(V) - dim(img(T)) \ge dim(V) - dim(W) > 0$.

Thus ker(*T*) \neq {0}, so *T* is not injective. \Box

Corollary 37. *Suppose V and W are finite-dimensional vector spaces with* $dim(V) < dim(W)$. *Then no linear map* $T: V \rightarrow W$ *is surjective.*

Proof. Exercise. Similar to the above. □