18.700 - LINEAR ALGEBRA, DAY 7 LINEAR MAPS, NULL SPACE, RANGE

SAM SCHIAVONE

Contents

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 2C Dimension	2
II.3. Linear maps	4
II.4. Null Spaces and Ranges aka Kernels and Images	6

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the definition of dimension.
- (2) Students will learn the definition of a linear map.
- (3) Students will learn the definition of the null space and range of a linear map.
- (4) Students will learn the Rank-Nullity Theorem.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

Announcements: • Final exam: Monday, December 16, 1:30 - 4:30pm, 6-120

II.1. Last time.

- $LI \leq span$
- Defined basis
- Can reduce spanning list to a basis
- Can extend a linearly independent list to a basis

II.2. 2C Dimension.

Theorem 1. Any two bases of a finite-dimensional vector space have the same length.

Proof. Suppose *V* is finite-dimensional and B_1 and B_2 are bases of *V*. Since B_1 is linearly independent and B_2 spans *V*, then by the LI \leq span theorem, length(B_1) \leq length(B_2). Reversing the roles of B_1 and B_2 yields the opposite inequality, so length(B_1) = length(B_2).

Definition 2. The *dimension* of a finite-dimensional vector space V is the length of any basis of V. Denoted dim(V).

Remark 3. This definition makes sense because of the previous theorem.

Lemma 4. If *V* is finite-dimensional and *U* is a subspace of *V*, then $\dim(U) \leq \dim(V)$.

Proof. Exercise. (Similar to previous proof.) [Choose a basis *B* for *U* and *C* for *V*. Since *B* is LI and *C* spans *V*, can apply LI \leq span result.]

Proposition 5. Suppose that V is finite-dimensional. Then every linearly independent list of vectors in V of length $\dim(V)$ is a basis.

Proof. Let $n := \dim(V)$ and suppose $L := (v_1, \ldots, v_n)$ are linearly independent. By the Extension Theorem, then *L* can be extended to a basis of *V*. But by the previous result, every basis of *V* has length *n*, so this must be the trivial extension, where no vectors are adjoined. Thus *L* was a basis of *V* to begin with.

Example 6. Consider the list (4,2), (-1,7) of vectors in \mathbb{F}^2 . [Ask students why linearly independent.] Since dim(\mathbb{F}^2) = 2 (consider the standard basis), then this list is a basis.

Corollary 7. *Suppose that V is finite-dimensional and U is a subspace of V such that* dim(U) = dim(V)*. Then* U = V*.*

Proof. Exercise. [Let $n = \dim(U) = \dim(V)$. Let *B* be a basis of *U*. Then *B* is linearly independent of size *n*, so is a basis of *V* by the Proposition. Then $U = \operatorname{span}(B) = V$.] \Box

Proposition 8. Suppose V is finite-dimensional. Then every spanning list S of V of length $\dim(V)$ is a basis of V.

Proof. By a previous result, *S* can be reduced to a basis. However, every basis has length $\dim(V)$, so this reduction must be the trivial one, i.e., no vectors are removed from *S*. Thus *S* was a basis to begin with.

Given subspaces V_1 , V_2 with $V_1 \cap V_2 = \{0\}$, one can show that $\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2)$. What if the sum is not direct?

(0:00)

Proposition 9. Let V be finite-dimensional and V_1 , V_2 be subspaces. Then

 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$

Remark 10. For a finite set *S*, let #S denote its cardinality, i.e., the number of elements in *S*. If *S*₁ and *S*₂ are finite sets, then

$$#(S_1 \cup S_2) = #S_1 + #S_2 - #(S_1 \cap S_2).$$

[Draw Venn diagram.]

Proof. Let $B := (v_1, ..., v_m)$ be a basis for $V_1 \cap V_2$, so dim $(V_1 \cap V_2) = m$. Since *B* is linearly independent, it can be extended to a basis

$$B_1 := (v_1, \ldots, v_m, u_1, \ldots, u_\ell)$$

of V_1 , so dim $(V_1) = m + \ell$. Similarly, *B* can be extended to a basis

$$B_2 := (v_1, \ldots, v_m, w_1, \ldots, w_n)$$

of V_2 , so dim $(V_2) = m + n$. We claim that

$$C := (v_1, \ldots, v_m, u_1, \ldots, u_\ell, w_1, \ldots, w_n)$$

is a basis for $V_1 + V_2$. Note that if this holds, then

$$\dim(V_1 + V_2) = m + \ell + n = (m + \ell) + (m + n) - m$$

= dim(V₁) + dim(V₂) - dim(V₁ \cap V₂),

which is what we want to show.

Observe that *C* is contained in $V_1 + V_2$ [ask students how to see $u_1 \in V_1 + V_2$]. Moreover, span(*C*) contains both V_1 and V_2 , hence contains $V_1 + V_2$. Thus it remains to show that *C* is linearly independent. Suppose

$$a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_\ell u_\ell + c_1w_1 + \dots + c_nw_n = 0$$
(*)

for some scalars $a_i, b_i, c_k \in \mathbb{F}$. Subtracting, then

$$c_1w_1 + \dots + c_nw_n = -(a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_\ell u_\ell) \in V_1.$$

By definition $w_1, \ldots, w_n \in V_2$, so $c_1w_1 + \cdots + c_nw_n \in V_1 \cap V_2$. Since *B* is a basis of $V_1 \cap V_2$, then

$$c_1w_1+\cdots c_nw_n=d_1v_1+\cdots+d_mv_m$$

for some $d_1, \ldots, d_m \in \mathbb{F}$. Subtracting, then

$$c_1w_1+\cdots c_nw_n-d_1v_1-\cdots-d_mv_m=0$$

But B_2 is basis, hence linearly independent, hence $c_1 = \cdots = c_n = 0 = d_1 = \cdots = d_m$. Then (*) becomes

$$a_1v_1+\cdots+a_mv_m+b_1u_1+\cdots+b_\ell u_\ell=0$$

But B_1 is basis, hence linearly dependent, so $a_1 = \cdots = a_m = 0 = b_1 = \cdots = b_\ell$. Thus *C* is linearly independent, hence is a basis.

Here are some analogies between finite sets and finite dimensional vector spaces.

sets	vector spaces	
<i>S</i> is a finite set	V is a finite-dimensional vector space	
#S	dim V	
for subsets S_1, S_2 of S , the union $S_1 \cup S_2$ is the smallest subset of S containing S_1 and S_2	for subspaces V_1 , V_2 of V , the sum $V_1 + V_2$ is the smallest subspace of V containing V_1 and V_2	
$ \begin{array}{c} \#(S_1 \cup S_2) \\ = \#S_1 + \#S_2 - \#(S_1 \cap S_2) \end{array} $	$\dim(V_1 + V_2)$ = dim V ₁ + dim V ₂ - dim(V ₁ \cap V ₂)	
$ \begin{array}{c} \#(S_1 \cup S_2) = \#S_1 + \#S_2 \\ \Leftrightarrow S_1 \cap S_2 = \emptyset \end{array} $	$\dim(V_1 + V_2) = \dim V_1 + \dim V_2$ $\iff V_1 \cap V_2 = \{0\}$	
$S_1 \cup \dots \cup S_m \text{ is a disjoint union } \iff \\ \#(S_1 \cup \dots \cup S_m) = \#S_1 + \dots + \#S_m$	$V_1 + \dots + V_m \text{ is a direct sum } \iff \\ \dim(V_1 + \dots + V_m) \\ = \dim V_1 + \dots + \dim V_m$	

II.3. Linear maps. Linear maps are functions that preserve the vector space operations of addition and scalar multiplication. For this section, assume as usual that \mathbb{F} denotes either \mathbb{R} or \mathbb{C} , and let U, V, W be \mathbb{F} -vector spaces.

Definition 11. A function $T: V \to W$ is a *linear map* (or just *linear*) if

- T(u + v) = T(u) + T(v) for all $u, v \in V$; and
- T(cv) = cT(v) for all $v \in V$ and $c \in \mathbb{F}$.

Remark 12. Also sometimes called *linear transformations*.

- The set of all linear maps $V \to W$ is denoted $\mathcal{L}(V, W)$.
- Let $\mathcal{L}(V) := \mathcal{L}(V, V)$.

Example 13.

• The zero linear map

$$0: V \to W$$
$$v \mapsto 0.$$

• The identity map

$$\begin{split} I &= I_V : V \to V \\ v &\mapsto v \,. \end{split}$$

• Differentiation. Define

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$$
$$f \mapsto f'.$$

Since (f + g)' = f' + g' and (cf)' = cf', for all $f, g \in \mathcal{P}(\mathbb{R})$ and all $c \in \mathbb{R}$, then *D* is linear.

• Define

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$

(x, y, z) $\mapsto (2x - y + 3z, 7x + 5y - 6z)$.

Exercise to show that *T* is linear.

Lemma 14. Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_n \in W$. Then there exists a unique linear map $T : V \to W$ such that

$$T(v_i) = w_i$$

for each i = 1, ..., n.

Proof. Given $v \in V$, there exist unique scalars $c_1, \ldots, c_n \in \mathbb{F}$ such that $v = c_1v_1 + \cdots + c_nv_n$. Define $T : V \to W$ by

$$T(v) = T(c_1v_1 + \cdots + c_nv_n) := c_1w_1 + \cdots + c_nw_n,$$

This is well-defined because the scalars c_i are unique. Note that by taking $c_i = 1$ and $c_i = 0$ for $j \neq i$, we get $T(v_i) = w_i$, as required.

We now show that *T* is linear. Given $u, v \in V$, then there exist scalars $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{F}$ such that

$$u = a_1 v_1 + \dots + a_n v_n$$
$$v = b_1 v_1 + \dots + b_n v_n.$$

Then

$$T(u+v) = T(a_1v_1 + \dots + a_nv_n + b_1v_1 + \dots + b_nv_n) = T((a_1+b_1)v_1 + \dots + (a_n+b_n)v_n)$$

= $(a_1+b_1)w_1 + \dots + (a_n+b_n)w_n = a_1w_1 + \dots + a_nw_n + b_1w_1 + \dots + b_nw_n$
= $T(a_1v_1 + \dots + a_nv_n) + T(b_1v_1 + \dots + b_nv_n) = T(u) + T(v)$.

Similarly, one can show that $T(\lambda v) = \lambda T(v)$ for all $\lambda \in \mathbb{F}$. Thus *T* is linear.

Remark 15. So a linear map is uniquely determined by its action on a basis.

Definition 16. Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbb{F}$. The *sum* S + T and scalar product λT are defined pointwise:

$$(S+T)(v) = S(v) + T(v)$$
 and $(\lambda T)(v) = v$

for all $v \in V$.

Lemma 17. With notation as above, S + T and λT are linear.

Proposition 18. With the operations of addition and scalar multiplication above, $\mathcal{L}(V, W)$ is a vector space.

Proof. Exercise. [Ask students: what is the additive identity?]

Definition 19. Given $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then the *product* $ST \in \mathcal{L}(U, W)$ is defined as their composition:

$$(ST)(u) := (S \circ T)(u) = S(T(u))$$

for all $u \in U$.

Lemma 20. With notation as above, ST is linear.

Proposition 21 (Algebraic properties of linear maps).

- $(T_1T_2)T_3 = T_1(T_2T_3)$ whenever T_1, T_2, T_3 are linear maps such that the compositions are *defined*.
- Given $T \in \mathcal{L}(V, W)$, then $I_W T = TI_V$. [Ask students which identity operator.]
- For all $S, S_1, S_2 \in \mathcal{L}(V, W)$ and $T, T_1, T_2 \in \mathcal{L}(U, V)$, we have

$$(S_1+S_2)T = S_1T + S_2T$$
 and $S(T_1+T_2) = ST_1 + ST_2$.

Remark 22. Composition of linear maps is not in general commutative!

Example 23. Let $V = \mathbb{F}^{\infty}$, the set of infinite sequences, and define

$$L: V \to V$$
$$(x_1, x_2, x_3, \ldots) \mapsto (x_2, x_3, \ldots)$$
$$R: V \to V$$
$$(x_1, x_2, x_3, \ldots) \mapsto (0, x_1, x_2, x_3, \ldots)$$

Then

$$(LR)(x_1, x_2, x_3, \ldots) = L(R(x_1, x_2, x_3, \ldots)) = L(0, x_1, x_2, x_3, \ldots) = (x_1, x_2, x_3, \ldots),$$

but

$$(RL)(x_1, x_2, x_3, \ldots) = R(L(x_1, x_2, x_3, \ldots)) = R(x_2, x_3, \ldots) = (0, x_2, x_3, \ldots),$$

Lemma 24. Suppose $T : V \to W$ is a linear map. Then T(0) = 0.

Proof. Exercise.

II.4. Null Spaces and Ranges aka Kernels and Images.

II.4.1. Null Spaces.

Definition 25. Given $T \in \mathcal{L}(V, W)$, then *null space* or *kernel* of *T*, denoted (*T*) or ker(*T*) is $ker(T) := \{v \in V : T(v) = 0\}$.

The dimension of (T) is called the *nullity* of *T*.

[Draw picture of two blobs with kernel mapping to $0 \in W$.]

Lemma 26. With notation as above, ker(T) is a subspace of V.

Proof. Exercise. Apply subspace criterion.

We can use the kernel to characterize when a linear map is one-to-one.

Definition 27. Let *X* and *Y* be sets. A function $f : X \to Y$ is *one-to-one* or *injective* if $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for all $x_1, x_2 \in X$.

Remark 28. The equivalent contrapositive statement: if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. So distinct inputs get mapped to distinct outputs under *f*. [Draw picture with blobs of one-to-one and not one-to-one functions.]

Proposition 29. Let $T: V \to W$ be linear. Then T is injective iff ker $(T) = \{0\}$.

Proof. (\Rightarrow): Assume *T* is injective. Given $v \in \text{ker}(T)$, then T(v) = 0 = T(0). Since *T* is injective, then v = 0.

(\Leftarrow): Assume ker(T) = {0}. Given $u, v \in V$ such that T(u) = T(v), then

$$0 = T(u) - T(v) = T(u - v) = T(u) - T(v)$$

so $u - v \in ker(T) = \{0\}$. Then u - v = 0, i.e., u = v.

II.4.2. Ranges.

Definition 30. Let *X* and *Y* be sets and $f : X \to Y$ be a function. The *range* or *image* of *f* is $range(f) = img(f) = f(X) := \{f(x) : x \in X\}.$

[Draw picture of blobs, showing that img(f) need not fill up all of Y.]

Definition 31. If img(f) = Y, then *f* is *onto* or *surjective*.

Remark 32. Warning: You must specify the codomain for the notion of surjectivity to make sense! E.g., $f(x) = x^2$ as a function $\mathbb{R} \to \mathbb{R}$ or $\mathbb{R} \to [0, \infty)$.

Definition 33. Let $T : V \to W$ be linear. The dimension of range(*T*) is called the *rank* of *T*.

Lemma 34. If $T : V \to W$ is linear, then img(T) is a subspace of W.

Proof. Exercise. Apply subspace criterion.

II.4.3. *Rank-nullity theorem.* The sizes of the kernel and the image are inversely correlated. E.g., the zero map $0 : V \to W$ has large null space [ask students]—all of *V*—and small range—just {0}. On the other hand, the identity map $I : V \to V$ has small kernel [ask students]—just {0}—and large image—all of *V*. This relationship is captured precisely in the following result.

Theorem 35 (Rank-Nullity Theorem). Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Then img(T) is also finite-dimensional and

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{img}(T)).$$

In words, the dimension of the domain of T is equal to the sum of the nullity and rank of T.

Proof. Let u_1, \ldots, u_m be a basis of ker(T). By the Extension Theorem, we can extend this to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of V. Thus dim(ker(T)) = m and dim(V) = m + n, so it suffices to show that dim(img(T)) = n.

We claim that $T(v_1), \ldots, T(v_n)$ is a basis for img(T). [Ask students why we don't include any u_i .] Given $v \in V$, then

 $v = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n$

for some scalars $a_i, b_i \in \mathbb{F}$. Applying *T*, we have

$$T(v) = T\left(\sum_{i=1}^{m} a_{i}u_{i} + \sum_{j=1}^{n} b_{j}v_{j}\right) = \sum_{i} a_{i}T(u_{i}) + \sum_{j} b_{j}T(v_{j})$$

since the u_i all map to 0 since they are in ker(T). Thus $T(v_1), \ldots, T(v_n)$ spans img(T), hence it is finite-dimensional.

It remains to show they are linearly independent. Suppose there exists $c_1, \ldots, c_n \in \mathbb{F}$ such that

$$0 = c_1T(v_1) + \cdots + c_nT(v_n) = T(c_1v_1 + \cdots + c_nv_n).$$

Then $\sum_{k=1}^{n} c_k v_k \in \ker(T)$, so there exist $d_1, \ldots, d_m \in \mathbb{F}$ such that

$$c_1v_1+\cdots+c_nv_n=d_1u_1+\cdots d_mu_m.$$

Then

 $0=d_1u_1+\cdots d_mu_m-c_1v_1-\cdots-c_nv_n.$

Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of *V*, hence linearly independent, then $0 = c_1 = \cdots, c_n = d_1 = \cdots = d_m$. Thus $T(v_1), \ldots, T(v_n)$ is linearly independent, hence is a basis of img(*T*).

Corollary 36. Suppose V and W are finite-dimensional vector spaces with $\dim(V) > \dim(W)$. Then no linear map $T : V \to W$ is injective.

Proof. By the Rank-Nullity Theorem, then

$$\dim(\ker(T)) = \dim(V) - \dim(\operatorname{img}(T)).$$

Since $\operatorname{img}(T) \subseteq W$, then $\operatorname{dim}(\operatorname{img}(T)) \leq \operatorname{dim}(W)$, so $-\operatorname{dim}(W) \leq -\operatorname{dim}(\operatorname{img}(T))$. Then $\operatorname{dim}(\operatorname{ker}(T)) = \operatorname{dim}(V) - \operatorname{dim}(\operatorname{img}(T)) \geq \operatorname{dim}(V) - \operatorname{dim}(W) > 0$.

Thus ker(*T*) \neq {0}, so *T* is not injective.

Corollary 37. Suppose V and W are finite-dimensional vector spaces with $\dim(V) < \dim(W)$. Then no linear map $T : V \to W$ is surjective.

Proof. Exercise. Similar to the above.

 \square