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[. PRE-CLASS PLANNING

I1.1. Goals for lesson.

(1) Students will learn the definition of dimension.
(2) Students will learn the definition of a linear map.

(3) Students will learn the definition of the null space and range of a linear map.

(4) Students will learn the Rank-Nullity Theorem.

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
1

(o )N SN O R N B NS e R e



(0:00) II. LESSON PLAN

Announcements: e Final exam: Monday, December 16, 1:30 - 4:30pm, 6-120

IL.1. Last time.
e LI <span
e Defined basis
e Can reduce spanning list to a basis
e Can extend a linearly independent list to a basis

I1.2. 2C Dimension.
Theorem 1. Any two bases of a finite-dimensional vector space have the same length.

Proof. Suppose V is finite-dimensional and B; and B; are bases of V. Since Bj is linearly in-
dependent and B, spans V, then by the LI < span theorem, length(B;) < length(B;). Re-
versing the roles of By and B, yields the opposite inequality, so length(B;) = length(B;).

O

Definition 2. The dimension of a finite-dimensional vector space V is the length of any
basis of V. Denoted dim(V).

Remark 3. This definition makes sense because of the previous theorem.
Lemma 4. If V is finite-dimensional and U is a subspace of V, then dim(U) < dim(V).

Proof. Exercise. (Similar to previous proof.) [Choose a basis B for U and C for V. Since B
is LI and C spans V, can apply LI < span result.] O

Proposition 5. Suppose that V is finite-dimensional. Then every linearly independent list of
vectors in V of length dim(V') is a basis.

Proof. Let n := dim(V) and suppose L := (vy,...,v,) are linearly independent. By the
Extension Theorem, then L can be extended to a basis of V. But by the previous result,
every basis of V has length n, so this must be the trivial extension, where no vectors are
adjoined. Thus L was a basis of V' to begin with. U

Example 6. Consider the list (4,2), (—1,7) of vectors in IF?. [Ask students why linearly
independent.] Since dim(IF?) = 2 (consider the standard basis), then this list is a basis.

Corollary 7. Suppose that V is finite-dimensional and U is a subspace of V such that dim(U) =
dim(V). Then U = V.

Proof. Exercise. [Let n = dim(U) = dim(V). Let B be a basis of U. Then B is linearly
independent of size n, so is a basis of V by the Proposition. Then U = span(B) = V.] O

Proposition 8. Suppose V is finite-dimensional. Then every spanning list S of V of length
dim(V') is a basis of V.

Proof. By a previous result, S can be reduced to a basis. However, every basis has length
dim(V), so this reduction must be the trivial one, i.e., no vectors are removed from S.
Thus S was a basis to begin with. O

Given subspaces V1, V, with V1 NV, = {0}, one can show that dim(V; & V,) = dim(V;) +
dim(V;). What if the sum is not direct?
2



Proposition 9. Let V be finite-dimensional and V1, V, be subspaces. Then
dim(V1 + Vz) = dim(Vl) + dim(Vz) — dim(V1 N Vz) .

Remark 10. For a finite set S, let #S denote its cardinality, i.e., the number of elements in
S. If S; and S, are finite sets, then

#(S1USy) =#S1 +#S, —#(S51NSy).
[Draw Venn diagram.]

Proof. Let B := (v1,...,vm) be abasis for V1 N V3, so dim (V3 N V;,) = m. Since B is linearly
independent, it can be extended to a basis

By :=(v1,...,0m,U1,...,Up)
of V1, so dim(V;) = m + . Similarly, B can be extended to a basis
By = (v1,...,0m, W1, ..., Wy)
of V5, so dim(V,) = m + n. We claim that
C:=(v1,- ., Om, U1, .., Up, W1, ..., Wy)
is a basis for V; + V5. Note that if this holds, then
dim(Vi+ W) =m+L+n=m+L)+ (m+n)—m
= dim(V;) + dim(V;) — dim(V; N V,),

which is what we want to show.

Observe that C is contained in V; 4+ V, [ask students how to see u; € V; + V;]. More-
over, span(C) contains both V4 and V;, hence contains V; 4+ V;. Thus it remains to show
that C is linearly independent. Suppose

a1v1 + - -+ + amom + bqur + - -+ bpuy +crwr + - - -+ cpwy, =0 (%)
for some scalars a;, bj, cx € F. Subtracting, then
ciwy + - -+ cpwy = — (@101 + - - -+ AV + by + - - - + bpuy) € Vi

By definition wy, ..., w, € V3, s0 cqwy + - - - ch,w, € V1 N Vy. Since B is a basis of V1 NV,
then
1wy + - - cpwy = d101 + - - + dy O

for some dy, ..., dy, € F. Subtracting, then

cqwi+ - cpwy —divg — - —dyoy, = 0.
But B; is basis, hence linearly independent, hencec; = -+ =¢;, =0=dy = -+ = dp.
Then (*) becomes

a101 + - -+ + @O 4+ brug 4+ - - + by = 0.
But B is basis, hence linearly dependent, soa; = --- =4, =0=0b; = --- = b;. Thus C
is linearly independent, hence is a basis. U

Here are some analogies between finite sets and finite dimensional vector spaces.
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sets vector spaces

S is a finite set V is a finite-dimensional vector space
#S dim V

for subsets S;, S, of S, the union S; U S, | for subspaces V;, V, of V, the sum V; +V,
is the smallest subset of S containing S; | is the smallest subspace of V containing

and S, V; and V,

#(Sl U Sz) dlm(V1 + Vz)

@SlﬂSZIQ <=>V10V2:{0}

S;U--uS§S,, is a disjoint union = Vi, + -+ V, is a direct sum <
#(S,U---US,,) =#S5; + -+ #S,, dim(V; + - + V)

=dimV; + - +dimV,,

II.3. Linear maps. Linear maps are functions that preserve the vector space operations of
addition and scalar multiplication. For this section, assume as usual that [F denotes either
R or C, and let U, V, W be F-vector spaces.

Definition 11. A function T : V — W is a linear map (or just linear) if
e T(u+v)=T(u)+ T(v) forall u,v € V;and
e T(cv) =cT(v) forallv € Vandc € F.

Remark 12. Also sometimes called linear transformations.

e The set of all linear maps V — W is denoted L(V,W).
e Let L(V):=L(V,V).

Example 13.
e The zero linear map
0: VW
v—0.
e The identity map
I=: V=V
V0.

e Differentiation. Define
D:P(R)— P(R)
f=f
Since (f +¢) = f'+¢ and (cf) = cf, forall f,g € P(R) and all ¢ € R, then D

is linear.
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e Define
T:R?® — R?
(x,y,z) — (2x —y +3z,7x + 5y — 62) .
Exercise to show that T is linear.

Lemma 14. Suppose vy, ...,vy isa basis of V and wy, ..., w, € W. Then there exists a unique
linear map T : V. — W such that

T(v;) = w;
foreachi=1,...,n.

Proof. Given v € V, there exist unique scalars cy,...,c; € F such thatv = cjo1 +--- +
cyUy. Define T : V. — W by

T(v) = T(c1v1+ -+ + cn0p) 1= Crw1 + -+ * + Cyly, .

This is well-defined because the scalars c; are unique. Note that by taking ¢c; = 1 and
cj = 0 for j # i, we get T(v;) = w;, as required.

We now show that T is linear. Given u, v € V, then there exist scalarsay,...,a,,by,...,b, €
IF such that

U=a101+- -+ a,0oy
v="bov+---+byo,.
Then
T(u+v)=T(av1+ -+ a0, +byo1+ -+ byo,) = T((ay +by)vr + -+ (an + by)vy)
= (a1 +b))wy + -+ (an + bp)w, = aqwy + - - - + agwy, + bywy + - - - + bywy,
=T(av1+ - +ayon) + T(b1o1+ -+ byoy) = T(u) + T(v).
Similarly, one can show that T(Av) = AT(v) for all A € F. Thus T is linear. O

Remark 15. So a linear map is uniquely determined by its action on a basis.

Definition 16. Suppose S,T € L(V,W) and A € F. The sum S + T and scalar product AT
are defined pointwise:

(S+T)(v) = S(v) + T(v) and (AT)(v) =0
forallv € V.
Lemma 17. With notation as above, S + T and AT are linear.

Proposition 18. With the operations of addition and scalar multiplication above, L(V, W) is a
vector space.

Proof. Exercise. [Ask students: what is the additive identity?] O

Definition 19. Given T € L(U,V) and S € L(V, W), then the product ST € L(U, W) is
defined as their composition:

(ST)(u) == (SoT)(u) = S(T(u))
forall u € U.



Lemma 20. With notation as above, ST is linear.

Proposition 21 (Algebraic properties of linear maps).

o (T1T,)T5 = T1(T,T3) whenever Ty, Ty, T are linear maps such that the compositions are
defined.

o Given T € L(V,W), then IyT = TIy. [Ask students which identity operator.]

e Forall §,51,5, € L(V,W)and T, Ty, T» € L(U, V), we have

(Sl—l-Sz)T: 51T + S,T and S(T1+T2) = ST, + ST>.
Remark 22. Composition of linear maps is not in general commutative!

Example 23. Let V = [F*, the set of infinite sequences, and define
L:V—=V
(x1,%2,%3,...) — (x2,x3,...)
R: V=V
(x1,x2,%3,...) — (0,x1,x2,%3,...).
Then
(LR)(x1,x2,x3,...) = L(R(x1,x2,x3,...)) = L(0,x1,x2,%3,...) = (x1,X2,%3,...),
but
(RL)(x1,x2,x3,...) = R(L(x1,x2,x3,...)) = R(x2,x3,...) = (0,x2,x3,...),
Lemma 24. Suppose T : V. — W is a linear map. Then T(0) = 0.
Proof. Exercise. U
I.4. Null Spaces and Ranges aka Kernels and Images.
I1.4.1. Null Spaces.
Definition 25. Given T € L(V, W), then null space or kernel of T, denoted (T) or ker(T) is
ker(T):={veV:T(v) =0}.

The dimension of (T) is called the nullity of T.

[Draw picture of two blobs with kernel mapping to0 € W.]
Lemma 26. With notation as above, ker(T) is a subspace of V.
Proof. Exercise. Apply subspace criterion. O

We can use the kernel to characterize when a linear map is one-to-one.

Definition 27. Let X and Y be sets. A function f : X — Y is one-to-one or injective if
f(x1) = f(xp) implies x; = x, for all x1,x, € X.

Remark 28. The equivalent contrapositive statement: if x; # xp, then f(x1) # f(x2).
So distinct inputs get mapped to distinct outputs under f. [Draw picture with blobs of
one-to-one and not one-to-one functions.]

Proposition 29. Let T : V. — W be linear. Then T is injective iff ker(T) = {0}.
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Proof. (=): Assume T is injective. Given v € ker(T), then T(v) = 0 = T(0). Since T is
injective, then v = 0.
(«<): Assume ker(T) = {0}. Given u,v € V such that T(u) = T(v), then

0=T(u)—T(w)=T(u—0)=T(u)—T(v)
sou—uv € ker(T) = {0}. Thenu —v =0,ie.,u=no. O
I1.4.2. Ranges.
Definition 30. Let X and Y be sets and f : X — Y be a function. The range or image of f is
range(f) = img(f) = f(X) := {f(x) : x € X}..
[Draw picture of blobs, showing that img( f) need not fill up all of Y.]
Definition 31. If img(f) = Y, then f is onto or surjective.

Remark 32. Warning: You must specify the codomain for the notion of surjectivity to
make sense! E.g., f(x) = x* as a function R — R or R — [0, o).

Definition 33. Let T : V — W be linear. The dimension of range(T) is called the rank of
T.

Lemma 34. If T : V — W is linear, then img(T) is a subspace of W.
Proof. Exercise. Apply subspace criterion. g

11.4.3. Rank-nullity theorem. The sizes of the kernel and the image are inversely correlated.
E.g., the zero map 0 : V — W has large null space [ask students]—all of V—and small
range—just {0}. On the other hand, the identity map I : V — V has small kernel [ask
students]—just {0}—and large image—all of V. This relationship is captured precisely in
the following result.

Theorem 35 (Rank-Nullity Theorem). Suppose V is finite-dimensional and T € L(V,W).
Then img(T) is also finite-dimensional and

dim(V) = dim(ker(T)) 4+ dim(img(T)).
In words, the dimension of the domain of T is equal to the sum of the nullity and rank of T.

Proof. Let uy, ..., uy be a basis of ker(T). By the Extension Theorem, we can extend this
to a basis uy,..., Uy, v1,...,0, of V. Thus dim(ker(T)) = m and dim(V) = m + n, so it
suffices to show that dim(img(T)) = n.

We claim that T(vy),..., T(vy) is a basis for img(T). [Ask students why we don't in-
clude any u;.] Given v € V, then

v=aquy+ -+ apuy + byog + - - - + byoy,
for some scalars a;,b; € IF. Applying T, we have

m n 0
T(0) =T (Zaiui + Zb]-vj) = L aiTher) + ) biT(2)
i=1 j=1 i j

since the u; all map to 0 since they are in ker(T). Thus T(v1),..., T(v,) spans img(T),
hence it is finite-dimensional.
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It remains to show they are linearly independent. Suppose there exists c1,...,c, € F
such that
0=c1T(v1) + -+ cnT(vy) = T(c101 4 - - - + CnOn) .

n
Then E cxvx € ker(T), so there exist dy, .. .,d, € F such that

k=1
C101 + -+ + CuOp = ditiy + - - - dipliy .
Then
0=diu;+ - -dytty; — 101 — -+ - — €10y .
Since uy,..., Uy, 01,...,0, is a basis of V, hence linearly independent, then 0 = ¢; =
<o, 0p =dy = --- =dy. Thus T(v1),...,T(vy) is linearly independent, hence is a basis
of img(T). O

Corollary 36. Suppose V and W are finite-dimensional vector spaces with dim (V') > dim(W).
Then no linear map T : V. — W is injective.

Proof. By the Rank-Nullity Theorem, then
dim(ker(T)) = dim(V) — dim(img(T)) .
Since img(T) C W, then dim(img(T)) < dim(W), so —dim(W) < — dim(img(T)). Then
dim(ker(T)) = dim(V) — dim(img(T)) > dim(V) — dim(W) > 0.
Thus ker(T) # {0}, so T is not injective. O

Corollary 37. Suppose V and W are finite-dimensional vector spaces with dim (V) < dim(W).
Then no linear map T : V. — W is surjective.

Proof. Exercise. Similar to the above. O



