18.700 - LINEAR ALGEBRA, DAY 6 BASES AND DIMENSION

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the definitions of basis and dimension.
- (2) Students will learn the uniqueness of representing a vector with respect to a basis.
- (3) Students will learn criteria for checking if a list of vectors is a basis.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

II.1. **Last time.**

- Gave a criterion for checking with $V_1 + V_2$ is a direct sum.
- Gave definition of spanning list and linearly independent list of vectors.
- Defined polynomials.
- Proved the Linear Dependence Lemma: if v_1, \ldots, v_m is linearly dependent, then we can express one of the vectors as a linear combination of the previous ones.

II.2. **Worksheet.**

II.3. **Results on span and linear independence.**

Theorem. *(LI* \leq *span)* Let *V* be a finite dimensional vector space. Then the length of every *linearly independent list of vectors in V is* \leq *the length of every spanning list of vectors.*

Proof. Suppose $L := (u_1, \ldots, u_m)$ is a linearly independent list in *V* and $S := (w_1, \ldots, w_n)$ is a list spannning *V*. Goal: $m \leq n$. We show this by recursively replacing the w_i by the *uj* , one by one.

Base case: Since *S* spans *V*, then

 u_1, w_1, \ldots, w_n

must be linearly dependent. By the Linear Dependence Lemma, then one of the above vectors in the list can be written as a linear combination of the previous vectors in the list. Since *L* is linearly independent, then $u_1 \neq 0$, so it's not u_1 . Thus it must be the case that there exists *r* such that

 $\text{span}(u_1, w_1, \ldots, \widehat{w_r}, \ldots, w_n) = \text{span}(u_1, w_1, \ldots, w_r, \ldots, w_n) = V.$

Remove *w^r* from *S*, so now *S* is

$$
u_1, w_1, \ldots, \widehat{w_r}, \ldots, w_n,
$$

and note that it still has length *n* and still spans *V*.

Recursive step: Let *k* ∈ {2, . . . , *m*} and suppose we have already replaced *k* − 1 of the *wⁱ* with *u*1, . . . , *uk*−¹ , producing a list *S* of length *n* that still spans *V*. Then the list *S* looks like u_1, \ldots, u_{k-1} followed by any remaining w_i (possibly none). Adjoin u_k to S just after *uk*−¹ ; since the list already spanned *V*, so now it is linearly dependent. By the Linear Dependence Lemma, then one of the vectors in *S* can be written as a linear combination of the vectors preceding it. Again, since u_1, \ldots, u_k is linearly independent, this vector cannot be one of the u_j . Thus there must be at least one remaining w_i still in the list. So one of the remaining w_i , say w_r , can be written as a linear combination of the previous vectors. We remove *w^r* , which doesn't change the span, and redefine *S* to be this modified list.

After step *m*, we have adjoined all the *u^j* to *S*, a list of length *n*. Note that *S* still spans *V*, and now looks like u_1, \ldots, u_m and then any remaining w_i (possibly none). At each step we adjoined a *u^j* , and the Linear Dependence Lemma implied the existence of a *wⁱ* to remove. Thus $m \leq n$. \Box

2

Proposition 1. *Every subspace of a finite-dimensional vector space is finite-dimensional.*

Proof. Let *V* be a finite-dimensional vector space and *U* a subspace of *V*. Goal: Find a (finite) spanning list for *U*. We do this recursively.

<u>Base case:</u> If $U = \{0\}$, then 0 generates *U* and we're done. Otherwise, $U \neq \{0\}$, so we can choose a nonzero vector $u_1 \in U$.

Recursive step: Suppose we have already chosen $k-1$ nonzero vectors u_1, \ldots, u_{k-1} . If $U = \text{span}(u_1, \ldots, u_{k-1})$, we're done. Otherwise, $U \neq \text{span}(u_1, \ldots, u_{k-1})$, so we can choose $u_k \notin \text{span}(u_1, \ldots, u_{k-1})$. As you'll show on the next pset, this implies that $u_1, \ldots, u_{k-1}, u_k$ is linearly independent.

Thus at each step *k*, we produce a linearly independent list of length *k* in *U*. But by the previous theorem, no linearly independent list can be longer than a spanning list of *V*. Thus the process eventually terminates, at which point we have a finite spanning list for *U*.

II.4. **2B Bases.** We now combine the properties of linearly independent and spanning lists.

Definition 1. A list $v_1, \ldots, v_n \in V$ is a *basis* of *V* iff every $v \in V$ can be written *uniquely* as a linear combination

$$
v = a_1v_1 + \cdots + a_nv_n
$$

with $a_1, \ldots, a_n \in \mathbb{F}$.

Theorem. *A list* $v_1, \ldots, v_n \in V$ *is a basis of V iff it is linearly independent and spans V*.

Proof. Let $B = (v_1, \ldots, v_n)$. (\Rightarrow): Assume *B* is a basis. Since every $v \in V$ can be written as a linear combination of v_1, \ldots, v_n , then *B* spans *V*. [Ask students how to check linear independence.] Suppose

$$
a_1v_1+\cdots+a_nv_n=0
$$

for some $a_1, \ldots, a_n \in \mathbb{F}$. Since

$$
0 v_1 + \cdots + 0 v_n = 0
$$

then by uniqueness, we must have $a_1 = \cdots = a_n = 0$.

($∈$): Now assume *B* is linearly independent and spans *V*. Given $v ∈ V$, since *B* spans *V*, then

$$
v = a_1v_1 + \cdots + a_nv_n
$$

for some $a_1, \ldots, a_n \in \mathbb{F}$. We aim to show this expression is unique. Given $b_1, \ldots, b_n \in \mathbb{F}$ such that

$$
v=b_1v_1+\cdots+b_nv_n,
$$

then by subtracting, we have

 $0 = v - v = (a_1 - b_1)v_1 + \cdots + (a_n - b_n)v_n$.

Since *B* is linearly independent, then $a_1 - b_1 = \cdots = a_n - b_n = 0$, i.e., $a_1 = b_1, \ldots, a_n = 0$ b_n . □

Theorem. *Every spanning list S of a finite-dimensional vector space V contains a basis of V.*

Proof. Suppose $S := (v_1, \ldots, v_n)$ spans *V*. We give an algorithm to remove vectors from *S* until we obtain a basis. Start with $B := S$.

If $v_1 = 0$, then delete v_1 from *B*; otherwise, leave *B* unchanged.

For $k \in \{2, \ldots, n\}$, if $v_k \in \text{span}(v_1, \ldots, v_{k-1})$, then delete v_k from *B*. Otherwise, leave *B* unchanged.

After step *n*, we claim that *B* is a basis of *V*. Since the original list spanned *V* and we only removed vectors that were contained in the span of the previous vectors, then *B* spans *V*. Moreover, by construction of the algorithm, no vector in *B* is in the span of the previous ones. Thus *B* is linearly independent by the Linear Dependence Lemma. Thus B is a basis. \Box

Corollary 1. *Every finite-dimensional vector space V has a basis.*

Proof. By definition, *V* has a finite spanning list *S*. By the previous result, we can find a basis contained in *S*. \Box

Theorem (Extension Theorem)**.** *Every linearly independent list L of vectors in a finite dimensional vector space V can be extended to a basis of V.*

Proof. Write $L := (u_1, \ldots, u_m)$. Let $S := (w_1, \ldots, w_n)$ be a list of vectors spanning *V*. Then their concatenation

$$
u_1,\ldots,u_m,w_1,\ldots,w_n
$$

spans *V*. Apply the algorithm from the proof of the previous theorem to obtain a basis *B* of *V*. Since *L* is linearly independent, then none of u_1, \ldots, u_m get deleted during the algorithm. Thus *B* contains u_1, \ldots, u_m and thus extends *L*. \Box

Proposition 2. *Suppose V is finite-dimensional and U is a subspace of V. Then there is a subspace W* of *V* such that $V = U \oplus W$.

Proof. Since *V* is finite-dimensional, then so is *U* by a previous result. Let u_1, \ldots, u_m be a basis of *U*. By the previous result, then it can be extended to a basis

$$
B=(u_1,\ldots,u_m,w_1,\ldots,w_n)
$$

of *V*. Let $W = \text{span}(w_1, \dots, w_n)$. We claim that $V = U \oplus W$. By our direct sum criterion, it suffices to show that $U + W = V$ and $U \cap W = \{0\}.$

Given $v \in V$, since *B* is a basis of *V*, then there exist $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{F}$ such that

.

$$
v = \underbrace{a_1u_1 + \cdots + a_mu_m}_{u} + \underbrace{b_1w_1 + \cdots + b_nw_n}_{w}
$$

Since *U* and *W* are subspaces, then they are closed under linear combinations, so $u \in U$ and $w \in W$, and hence $v = u + w \in U + W$.

Now suppose $v \in U \cap W$. Since $v \in U$, then

$$
v = a_1u_1 + \cdots + a_mu_m
$$

for some $a_1, \ldots, a_m \in \mathbb{F}$, and since $v \in W$, then

$$
v = b_1w_1 + \cdots + b_nw_n
$$

for some $b_1, \ldots, b_n \in \mathbb{F}$. Subtracting, we have

$$
0 = v - v = a_1 u_1 + \cdots + a_m u_m - b_1 w_1 - \cdots - b_n w_n.
$$

But *B* is a basis, hence linearly independent, so $a_1 = \cdots = a_m = b_1 = \cdots = b_n = 0$. Thus $v = 0.$

II.5. **2C Dimension.**

Theorem. *Any two bases of a finite-dimensional vector space have the same length.*

Proof. Suppose *V* is finite-dimensional and B_1 and B_2 are bases of *V*. Since B_1 is linearly independent and *B*₂ spans *V*, then by the LI \leq span theorem, length(*B*₁) \leq length(*B*₂). Reversing the roles of B_1 and B_2 yields the opposite inequality, so length(B_1) = length(B_2). .
口

Definition 2. The *dimension* of a finite-dimensional vector space *V* is the length of any basis of *V*. Denoted dim(*V*).

Lemma 1. If V is finite-dimensional and U is a subspace of V, then $\dim(U) \leq \dim(V)$.

Proof. Exercise. (Similar to previous proof.) □

Proposition 3. *Suppose that V is finite-dimensional. Then every linearly independent list of vectors in V of length* dim(*V*) *is a basis.*

Proof. Let $n := \dim(V)$ and suppose $L := (v_1, \ldots, v_n)$ are linearly independent. By the Extension Theorem, then *L* can be extended to a basis of *V*. But by the previous result, every basis of *V* has length *n*, so this must be the trivial extension, where no vectors are adjoined. Thus L was a basis of V to begin with.

Example 1. Consider the list $(4, 2)$, $(-1, 7)$ of vectors in \mathbb{F}^2 . [Ask students why linearly independent.] Since $\dim(\mathbb{F}^2) = 2$ (consider the standard basis), then this list is a basis.

Corollary 2. *Suppose that V is finite-dimensional and U is a subspace of V such that* $dim(U)$ = $dim(V)$ *. Then* $U = V$ *.*

Proof. Exercise. □

Proposition 4. *Suppose V is finite-dimensional. Then every spanning list S of V of length* dim(*V*) *is a basis of V.*

Proof. By a previous result, *S* can be reduced to a basis. However, every basis has length dim(*V*), so this reduction must be the trivial one, i.e., no vectors are removed from *S*. Thus *S* was a basis to begin with. \Box

Given subspaces V_1 , V_2 , one can show that $\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2)$. What if the sum is not direct?

Proposition 5. *Let V be finite-dimensional and V*1, *V*² *be subspaces. Then*

 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$

Proof. Let $B := (v_1, \ldots, v_m)$ be a basis for $V_1 \cap V_2$, so $\dim(V_1 \cap V_2) = m$. Since *B* is linearly independent, it can be extended to a basis

$$
B_1 := (v_1, \ldots, v_m, u_1, \ldots, u_\ell)
$$

of V_1 , so dim(V_1) = $m + \ell$. Similarly, it can be extended to a basis

$$
B_2 := (v_1, \ldots, v_m, w_1, \ldots, w_n)
$$

of V_2 , so dim(V_2) = $m + n$. We claim that

$$
C := (v_1, \ldots, v_m, u_1, \ldots, u_\ell, w_1, \ldots, w_n)
$$

is a basis for $V_1 + V_2$. Note that if this holds, then

 $\dim(V_1 + V_2) = m + \ell + n = (m + \ell) + (m + n) - m = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$, which is what we want to show.

Observe that *C* is contained in $V_1 + V_2$ [ask students how to see $u_1 \in V_1 + V_2$]. Moreover, *SSpan*(*C*) contains both V_1 and V_2 , hence contains $V_1 + V_2$. Thus it remains to show that *C* is linearly independent. Suppose

$$
a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_\ell u_\ell + c_1w_1 + \dots + c_nw_n = 0
$$
 (*)

for some scalars a_i , b_j , $c_k \in \mathbb{F}$. Subtracting, then

$$
c_1w_1 + \cdots + c_nw_n = -(a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_\ell u_\ell) \in V_1.
$$

By definition $w_1, \ldots, w_n \in V_2$, so $c_1w_1 + \cdots c_nw_n \in V_1 \cap V_2$. Since *B* is a basis of $V_1 \cap V_2$, then

 $c_1w_1 + \cdots + c_nw_n = d_1v_1 + \cdots + d_mv_m$

for some $d_1, \ldots, d_m \in \mathbb{F}$. Subtracting, then

$$
c_1w_1+\cdots c_nw_n-d_1v_1-\cdots-d_mv_m=0.
$$

But *B*₂ is basis, hence linearly independent, hence $c_1 = \cdots = c_n = 0 = d_1 = \cdots = d_m$. Then (∗) becomes

$$
a_1v_1+\cdots+a_mv_m+b_1u_1+\cdots+b_\ell u_\ell=0.
$$

But B_1 is basis, hence linearly dependent, so $a_1 = \cdots = a_m = 0 = b_1 = \cdots = b_\ell$. Thus C is linearly independent, hence is a basis. \Box

Remark 1. For a finite set *S*, let #*S* denote its cardinality, i.e., the number of elements in *S*. If S_1 and S_2 are finite sets, then

$$
#(S_1 \cup S_2) = #S_1 + #S_2 - #(S_1 \cap S_2).
$$

[Draw Venn diagram.]

Here are some analogies between finite sets and finite dimensional vector spaces.

