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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the definitions of basis and dimension.
(2) Students will learn the uniqueness of representing a vector with respect to a basis.
(3) Students will learn criteria for checking if a list of vectors is a basis.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN(0:00)

II.1. Last time.
• Gave a criterion for checking with V1 + V2 is a direct sum.
• Gave definition of spanning list and linearly independent list of vectors.
• Defined polynomials.
• Proved the Linear Dependence Lemma: if v1, . . . , vm is linearly dependent, then

we can express one of the vectors as a linear combination of the previous ones.

II.2. Worksheet.

II.3. Results on span and linear independence.

Theorem. (LI ≤ span) Let V be a finite dimensional vector space. Then the length of every
linearly independent list of vectors in V is ≤ the length of every spanning list of vectors.

Proof. Suppose L := (u1, . . . , um) is a linearly independent list in V and S := (w1, . . . , wn)
is a list spannning V. Goal: m ≤ n. We show this by recursively replacing the wi by the
uj, one by one.

Base case: Since S spans V, then

u1, w1, . . . , wn

must be linearly dependent. By the Linear Dependence Lemma, then one of the above
vectors in the list can be written as a linear combination of the previous vectors in the list.
Since L is linearly independent, then u1 ̸= 0, so it’s not u1. Thus it must be the case that
there exists r such that

span(u1, w1, . . . , ŵr, . . . , wn) = span(u1, w1, . . . , wr, . . . , wn) = V .

Remove wr from S, so now S is

u1, w1, . . . , ŵr, . . . , wn ,

and note that it still has length n and still spans V.
Recursive step: Let k ∈ {2, . . . , m} and suppose we have already replaced k − 1 of the

wi with u1, . . . , uk−1, producing a list S of length n that still spans V. Then the list S looks
like u1, . . . , uk−1 followed by any remaining wi (possibly none). Adjoin uk to S just after
uk−1; since the list already spanned V, so now it is linearly dependent. By the Linear
Dependence Lemma, then one of the vectors in S can be written as a linear combination
of the vectors preceding it. Again, since u1, . . . , uk is linearly independent, this vector
cannot be one of the uj. Thus there must be at least one remaining wi still in the list. So
one of the remaining wi, say wr, can be written as a linear combination of the previous
vectors. We remove wr, which doesn’t change the span, and redefine S to be this modified
list.

After step m, we have adjoined all the uj to S, a list of length n. Note that S still spans
V, and now looks like u1, . . . , um and then any remaining wi (possibly none). At each
step we adjoined a uj, and the Linear Dependence Lemma implied the existence of a wi
to remove. Thus m ≤ n. □

Proposition 1. Every subspace of a finite-dimensional vector space is finite-dimensional.
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Proof. Let V be a finite-dimensional vector space and U a subspace of V. Goal: Find a
(finite) spanning list for U. We do this recursively.

Base case: If U = {0}, then 0 generates U and we’re done. Otherwise, U ̸= {0}, so we
can choose a nonzero vector u1 ∈ U.

Recursive step: Suppose we have already chosen k − 1 nonzero vectors u1, . . . , uk−1.
If U = span(u1, . . . , uk−1), we’re done. Otherwise, U ̸= span(u1, . . . , uk−1), so we can
choose uk /∈ span(u1, . . . , uk−1). As you’ll show on the next pset, this implies that u1, . . . , uk−1, uk
is linearly independent.

Thus at each step k, we produce a linearly independent list of length k in U. But by the
previous theorem, no linearly independent list can be longer than a spanning list of V.
Thus the process eventually terminates, at which point we have a finite spanning list for
U. □

II.4. 2B Bases. We now combine the properties of linearly independent and spanning
lists.

Definition 1. A list v1, . . . , vn ∈ V is a basis of V iff every v ∈ V can be written uniquely as
a linear combination

v = a1v1 + · · ·+ anvn

with a1, . . . , an ∈ F.

Theorem. A list v1, . . . , vn ∈ V is a basis of V iff it is linearly independent and spans V.

Proof. Let B = (v1, . . . , vn). (⇒): Assume B is a basis. Since every v ∈ V can be written
as a linear combination of v1, . . . , vn, then B spans V. [Ask students how to check linear
independence.] Suppose

a1v1 + · · ·+ anvn = 0
for some a1, . . . , an ∈ F. Since

0 v1 + · · ·+ 0 vn = 0
then by uniqueness, we must have a1 = · · · = an = 0.

(⇐): Now assume B is linearly independent and spans V. Given v ∈ V, since B spans
V, then

v = a1v1 + · · ·+ anvn

for some a1, . . . , an ∈ F. We aim to show this expression is unique. Given b1, . . . , bn ∈ F

such that
v = b1v1 + · · ·+ bnvn ,

then by subtracting, we have

0 = v − v = (a1 − b1)v1 + · · ·+ (an − bn)vn .

Since B is linearly independent, then a1 − b1 = · · · = an − bn = 0, i.e., a1 = b1, . . . , an =
bn. □

Theorem. Every spanning list S of a finite-dimensional vector space V contains a basis of V.

Proof. Suppose S := (v1, . . . , vn) spans V. We give an algorithm to remove vectors from S
until we obtain a basis. Start with B := S.

If v1 = 0, then delete v1 from B; otherwise, leave B unchanged.
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For k ∈ {2, . . . , n}, if vk ∈ span(v1, . . . , vk−1), then delete vk from B. Otherwise, leave B
unchanged.

After step n, we claim that B is a basis of V. Since the original list spanned V and we
only removed vectors that were contained in the span of the previous vectors, then B
spans V. Moreover, by construction of the algorithm, no vector in B is in the span of the
previous ones. Thus B is linearly independent by the Linear Dependence Lemma. Thus
B is a basis. □

Corollary 1. Every finite-dimensional vector space V has a basis.

Proof. By definition, V has a finite spanning list S. By the previous result, we can find a
basis contained in S. □

Theorem (Extension Theorem). Every linearly independent list L of vectors in a finite dimen-
sional vector space V can be extended to a basis of V.

Proof. Write L := (u1, . . . , um). Let S := (w1, . . . , wn) be a list of vectors spanning V. Then
their concatenation

u1, . . . , um, w1, . . . , wn

spans V. Apply the algorithm from the proof of the previous theorem to obtain a basis
B of V. Since L is linearly independent, then none of u1, . . . , um get deleted during the
algorithm. Thus B contains u1, . . . , um and thus extends L. □

Proposition 2. Suppose V is finite-dimensional and U is a subspace of V. Then there is a subspace
W of V such that V = U ⊕ W.

Proof. Since V is finite-dimensional, then so is U by a previous result. Let u1, . . . , um be a
basis of U. By the previous result, then it can be extended to a basis

B = (u1, . . . , um, w1, . . . , wn)

of V. Let W = span(w1, . . . , wn). We claim that V = U ⊕ W. By our direct sum criterion,
it suffices to show that U + W = V and U ∩ W = {0}.

Given v ∈ V, since B is a basis of V, then there exist a1, . . . , am, b1, . . . , bn ∈ F such that

v = a1u1 + · · ·+ amum︸ ︷︷ ︸
u

+ b1w1 + · · ·+ bnwn︸ ︷︷ ︸
w

.

Since U and W are subspaces, then they are closed under linear combinations, so u ∈ U
and w ∈ W, and hence v = u + w ∈ U + W.

Now suppose v ∈ U ∩ W. Since v ∈ U, then

v = a1u1 + · · ·+ amum

for some a1, . . . , am ∈ F, and since v ∈ W, then

v = b1w1 + · · ·+ bnwn

for some b1, . . . , bn ∈ F. Subtracting, we have

0 = v − v = a1u1 + · · ·+ amum − b1w1 − · · · − bnwn .

But B is a basis, hence linearly independent, so a1 = · · · = am = b1 = · · · = bn = 0. Thus
v = 0. □
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II.5. 2C Dimension.

Theorem. Any two bases of a finite-dimensional vector space have the same length.

Proof. Suppose V is finite-dimensional and B1 and B2 are bases of V. Since B1 is linearly in-
dependent and B2 spans V, then by the LI ≤ span theorem, length(B1) ≤ length(B2). Re-
versing the roles of B1 and B2 yields the opposite inequality, so length(B1) = length(B2).

□

Definition 2. The dimension of a finite-dimensional vector space V is the length of any
basis of V. Denoted dim(V).

Lemma 1. If V is finite-dimensional and U is a subspace of V, then dim(U) ≤ dim(V).

Proof. Exercise. (Similar to previous proof.) □

Proposition 3. Suppose that V is finite-dimensional. Then every linearly independent list of
vectors in V of length dim(V) is a basis.

Proof. Let n := dim(V) and suppose L := (v1, . . . , vn) are linearly independent. By the
Extension Theorem, then L can be extended to a basis of V. But by the previous result,
every basis of V has length n, so this must be the trivial extension, where no vectors are
adjoined. Thus L was a basis of V to begin with. □

Example 1. Consider the list (4, 2), (−1, 7) of vectors in F2. [Ask students why linearly
independent.] Since dim(F2) = 2 (consider the standard basis), then this list is a basis.

Corollary 2. Suppose that V is finite-dimensional and U is a subspace of V such that dim(U) =
dim(V). Then U = V.

Proof. Exercise. □

Proposition 4. Suppose V is finite-dimensional. Then every spanning list S of V of length
dim(V) is a basis of V.

Proof. By a previous result, S can be reduced to a basis. However, every basis has length
dim(V), so this reduction must be the trivial one, i.e., no vectors are removed from S.
Thus S was a basis to begin with. □

Given subspaces V1, V2, one can show that dim(V1 ⊕ V2) = dim(V1) + dim(V2). What
if the sum is not direct?

Proposition 5. Let V be finite-dimensional and V1, V2 be subspaces. Then

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2) .

Proof. Let B := (v1, . . . , vm) be a basis for V1 ∩V2, so dim(V1 ∩V2) = m. Since B is linearly
independent, it can be extended to a basis

B1 := (v1, . . . , vm, u1, . . . , uℓ)

of V1, so dim(V1) = m + ℓ. Similarly, it can be extended to a basis

B2 := (v1, . . . , vm, w1, . . . , wn)

of V2, so dim(V2) = m + n. We claim that

C := (v1, . . . , vm, u1, . . . , uℓ, w1, . . . , wn)
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is a basis for V1 + V2. Note that if this holds, then

dim(V1 + V2) = m + ℓ+ n = (m + ℓ) + (m + n)− m = dim(V1) + dim(V2)− dim(V1 ∩ V2) ,

which is what we want to show.
Observe that C is contained in V1 + V2 [ask students how to see u1 ∈ V1 + V2]. More-

over, SSpan(C) contains both V1 and V2, hence contains V1 + V2. Thus it remains to show
that C is linearly independent. Suppose

a1v1 + · · ·+ amvm + b1u1 + · · ·+ bℓuℓ + c1w1 + · · ·+ cnwn = 0 (∗)

for some scalars ai, bj, ck ∈ F. Subtracting, then

c1w1 + · · ·+ cnwn = −(a1v1 + · · ·+ amvm + b1u1 + · · ·+ bℓuℓ) ∈ V1 .

By definition w1, . . . , wn ∈ V2, so c1w1 + · · · cnwn ∈ V1 ∩ V2. Since B is a basis of V1 ∩ V2,
then

c1w1 + · · · cnwn = d1v1 + · · ·+ dmvm

for some d1, . . . , dm ∈ F. Subtracting, then

c1w1 + · · · cnwn − d1v1 − · · · − dmvm = 0 .

But B2 is basis, hence linearly independent, hence c1 = · · · = cn = 0 = d1 = · · · = dm.
Then (∗) becomes

a1v1 + · · ·+ amvm + b1u1 + · · ·+ bℓuℓ = 0 .
But B1 is basis, hence linearly dependent, so a1 = · · · = am = 0 = b1 = · · · = bℓ. Thus C
is linearly independent, hence is a basis. □

Remark 1. For a finite set S, let #S denote its cardinality, i.e., the number of elements in S.
If S1 and S2 are finite sets, then

#(S1 ∪ S2) = #S1 + #S2 − #(S1 ∩ S2) .

[Draw Venn diagram.]

Here are some analogies between finite sets and finite dimensional vector spaces.

6



48 Chapter 2 Finite-Dimensional Vector Spaces

For 𝑆 a finite set, let #𝑆 denote the number of elements of 𝑆. The table below
compares finite sets with finite-dimensional vector spaces, showing the analogy
between #𝑆 (for sets) and dim𝑉 (for vector spaces), as well as the analogy between
unions of subsets (in the context of sets) and sums of subspaces (in the context of
vector spaces).

sets vector spaces𝑆 is a finite set 𝑉 is a finite-dimensional vector space#𝑆 dim𝑉
for subsets 𝑆џ, 𝑆ӝ of 𝑆, the union 𝑆џ ∪ 𝑆ӝ
is the smallest subset of 𝑆 containing 𝑆џ
and 𝑆ӝ

for subspaces 𝑉џ,𝑉ӝ of 𝑉, the sum 𝑉џ+𝑉ӝ
is the smallest subspace of 𝑉 containing𝑉џ and 𝑉ӝ#(𝑆џ ∪ 𝑆ӝ) dim(𝑉џ + 𝑉ӝ)= #𝑆џ + #𝑆ӝ − #(𝑆џ ∩ 𝑆ӝ) = dim𝑉џ + dim𝑉ӝ − dim(𝑉џ ∩ 𝑉ӝ)#(𝑆џ ∪ 𝑆ӝ) = #𝑆џ + #𝑆ӝ dim(𝑉џ + 𝑉ӝ) = dim𝑉џ + dim𝑉ӝ⟺ 𝑆џ ∩ 𝑆ӝ = ∅ ⟺ 𝑉џ ∩ 𝑉ӝ = {0}𝑆џ ∪ ⋯ ∪ 𝑆֕ is a disjoint union ⟺#(𝑆џ ∪ ⋯ ∪ 𝑆֕) = #𝑆џ + ⋯ + #𝑆֕
𝑉џ + ⋯ + 𝑉 is a direct sum ⟺
dim(𝑉џ + ⋯ + 𝑉 )= dim𝑉џ + ⋯ + dim𝑉

The last row above focuses on the analogy between disjoint unions (for sets)
and direct sums (for vector spaces). The proof of the result in the last box above
will be given in 3.94.

You should be able to find results about sets that correspond, via analogy, to
the results about vector spaces in Exercises 12 through 18.

Exercises 2C

1 Show that the subspaces of 𝐑ӝ are precisely {0}, all lines in 𝐑ӝ containing
the origin, and 𝐑ӝ.

2 Show that the subspaces of 𝐑ӗ are precisely {0}, all lines in 𝐑ӗ containing
the origin, all planes in 𝐑ӗ containing the origin, and 𝐑ӗ.

3 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐅) ∶ 𝑝(6) = 0}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐅).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐅) such that 𝒫ͳ(𝐅) = 𝑈 ⊕ 𝑊.

4 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐑) ∶ 𝑝࿌(6) = 0}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐑).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐑) such that 𝒫ͳ(𝐑) = 𝑈 ⊕ 𝑊.

5 (a) Let 𝑈 = {𝑝 ∈ 𝒫ͳ(𝐅) ∶ 𝑝(2) = 𝑝(5)}. Find a basis of 𝑈.
(b) Extend the basis in (a) to a basis of 𝒫ͳ(𝐅).
(c) Find a subspace 𝑊 of 𝒫ͳ(𝐅) such that 𝒫ͳ(𝐅) = 𝑈 ⊕ 𝑊.

Linear Algebra Done Right, fourth edition, by Sheldon Axler
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