18.700 - LINEAR ALGEBRA, DAY 6 **BASES AND DIMENSION**

SAM SCHIAVONE

CONTENTS

1

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. Worksheet	2
II.3. Results on span and linear independence	2
II.4. 2B Bases	3
II.5. 2C Dimension	5

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the definitions of basis and dimension.
- (2) Students will learn the uniqueness of representing a vector with respect to a basis.
- (3) Students will learn criteria for checking if a list of vectors is a basis.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

- II.1. Last time.
 - Gave a criterion for checking with $V_1 + V_2$ is a direct sum.
 - Gave definition of spanning list and linearly independent list of vectors.
 - Defined polynomials.
 - Proved the Linear Dependence Lemma: if v_1, \ldots, v_m is linearly dependent, then we can express one of the vectors as a linear combination of the previous ones.

II.2. Worksheet.

II.3. Results on span and linear independence.

Theorem. ($LI \leq span$) Let V be a finite dimensional vector space. Then the length of every linearly independent list of vectors in V is \leq the length of every spanning list of vectors.

Proof. Suppose $L := (u_1, ..., u_m)$ is a linearly independent list in V and $S := (w_1, ..., w_n)$ is a list spanning V. <u>Goal:</u> $m \le n$. We show this by recursively replacing the w_i by the u_i , one by one.

Base case: Since *S* spans *V*, then

 u_1, w_1, \ldots, w_n

must be linearly dependent. By the Linear Dependence Lemma, then one of the above vectors in the list can be written as a linear combination of the previous vectors in the list. Since *L* is linearly independent, then $u_1 \neq 0$, so it's not u_1 . Thus it must be the case that there exists *r* such that

 $\operatorname{span}(u_1, w_1, \ldots, \widehat{w_r}, \ldots, w_n) = \operatorname{span}(u_1, w_1, \ldots, w_r, \ldots, w_n) = V.$

Remove w_r from *S*, so now *S* is

$$u_1, w_1, \ldots, \widehat{w_r}, \ldots, w_n$$
,

and note that it still has length n and still spans V.

Recursive step: Let $k \in \{2, ..., m\}$ and suppose we have already replaced k - 1 of the w_i with $u_1, ..., u_{k-1}$, producing a list S of length n that still spans V. Then the list S looks like $u_1, ..., u_{k-1}$ followed by any remaining w_i (possibly none). Adjoin u_k to S just after u_{k-1} ; since the list already spanned V, so now it is linearly dependent. By the Linear Dependence Lemma, then one of the vectors in S can be written as a linear combination of the vectors preceding it. Again, since $u_1, ..., u_k$ is linearly independent, this vector cannot be one of the u_j . Thus there must be at least one remaining w_i still in the list. So one of the remaining w_i , say w_r , can be written as a linear combination of the previous vectors. We remove w_r , which doesn't change the span, and redefine S to be this modified list.

After step *m*, we have adjoined all the u_j to *S*, a list of length *n*. Note that *S* still spans *V*, and now looks like u_1, \ldots, u_m and then any remaining w_i (possibly none). At each step we adjoined a u_j , and the Linear Dependence Lemma implied the existence of a w_i to remove. Thus $m \le n$.

Proposition 1. Every subspace of a finite-dimensional vector space is finite-dimensional.

2

(0:00)

Proof. Let *V* be a finite-dimensional vector space and *U* a subspace of *V*. <u>Goal</u>: Find a (finite) spanning list for *U*. We do this recursively.

<u>Base case</u>: If $U = \{0\}$, then 0 generates *U* and we're done. Otherwise, $U \neq \{0\}$, so we can choose a nonzero vector $u_1 \in U$.

Recursive step: Suppose we have already chosen k - 1 nonzero vectors u_1, \ldots, u_{k-1} . If $\overline{U} = \operatorname{span}(u_1, \ldots, u_{k-1})$, we're done. Otherwise, $U \neq \operatorname{span}(u_1, \ldots, u_{k-1})$, so we can choose $u_k \notin \operatorname{span}(u_1, \ldots, u_{k-1})$. As you'll show on the next pset, this implies that $u_1, \ldots, u_{k-1}, u_k$ is linearly independent.

Thus at each step k, we produce a linearly independent list of length k in U. But by the previous theorem, no linearly independent list can be longer than a spanning list of V. Thus the process eventually terminates, at which point we have a finite spanning list for U.

II.4. **2B Bases.** We now combine the properties of linearly independent and spanning lists.

Definition 1. A list $v_1, \ldots, v_n \in V$ is a *basis* of *V* iff every $v \in V$ can be written *uniquely* as a linear combination

$$v = a_1v_1 + \cdots + a_nv_n$$

with $a_1, \ldots, a_n \in \mathbb{F}$.

Theorem. A list $v_1, \ldots, v_n \in V$ is a basis of V iff it is linearly independent and spans V.

Proof. Let $B = (v_1, ..., v_n)$. (\Rightarrow): Assume *B* is a basis. Since every $v \in V$ can be written as a linear combination of $v_1, ..., v_n$, then *B* spans *V*. [Ask students how to check linear independence.] Suppose

$$a_1v_1+\cdots+a_nv_n=0$$

for some $a_1, \ldots, a_n \in \mathbb{F}$. Since

$$0\,v_1+\cdots+0\,v_n=0$$

then by uniqueness, we must have $a_1 = \cdots = a_n = 0$.

(\Leftarrow): Now assume *B* is linearly independent and spans *V*. Given $v \in V$, since *B* spans *V*, then

$$v = a_1 v_1 + \dots + a_n v_n$$

for some $a_1, \ldots, a_n \in \mathbb{F}$. We aim to show this expression is unique. Given $b_1, \ldots, b_n \in \mathbb{F}$ such that

$$v=b_1v_1+\cdots+b_nv_n$$
 ,

then by subtracting, we have

$$0 = v - v = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n$$

Since *B* is linearly independent, then $a_1 - b_1 = \cdots = a_n - b_n = 0$, i.e., $a_1 = b_1, \ldots, a_n = b_n$.

Theorem. *Every spanning list S of a finite-dimensional vector space V contains a basis of V.*

Proof. Suppose $S := (v_1, ..., v_n)$ spans *V*. We give an algorithm to remove vectors from *S* until we obtain a basis. Start with B := S.

If $v_1 = 0$, then delete v_1 from *B*; otherwise, leave *B* unchanged.

For $k \in \{2, ..., n\}$, if $v_k \in \text{span}(v_1, ..., v_{k-1})$, then delete v_k from *B*. Otherwise, leave *B* unchanged.

After step *n*, we claim that *B* is a basis of *V*. Since the original list spanned *V* and we only removed vectors that were contained in the span of the previous vectors, then *B* spans *V*. Moreover, by construction of the algorithm, no vector in *B* is in the span of the previous ones. Thus *B* is linearly independent by the Linear Dependence Lemma. Thus *B* is a basis.

Corollary 1. *Every finite-dimensional vector space V has a basis.*

Proof. By definition, *V* has a finite spanning list *S*. By the previous result, we can find a basis contained in *S*. \Box

Theorem (Extension Theorem). *Every linearly independent list L of vectors in a finite dimensional vector space V can be extended to a basis of V.*

Proof. Write $L := (u_1, ..., u_m)$. Let $S := (w_1, ..., w_n)$ be a list of vectors spanning *V*. Then their concatenation

$$u_1,\ldots,u_m,w_1,\ldots,w_n$$

spans *V*. Apply the algorithm from the proof of the previous theorem to obtain a basis *B* of *V*. Since *L* is linearly independent, then none of u_1, \ldots, u_m get deleted during the algorithm. Thus *B* contains u_1, \ldots, u_m and thus extends *L*.

Proposition 2. *Suppose V is finite-dimensional and U is a subspace of V. Then there is a subspace W of V such that V = U* \oplus *W.*

Proof. Since *V* is finite-dimensional, then so is *U* by a previous result. Let u_1, \ldots, u_m be a basis of *U*. By the previous result, then it can be extended to a basis

$$B = (u_1, \ldots, u_m, w_1, \ldots, w_n)$$

of *V*. Let $W = \text{span}(w_1, ..., w_n)$. We claim that $V = U \oplus W$. By our direct sum criterion, it suffices to show that U + W = V and $U \cap W = \{0\}$.

Given $v \in V$, since *B* is a basis of *V*, then there exist $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{F}$ such that

$$v = \underbrace{a_1u_1 + \dots + a_mu_m}_{u} + \underbrace{b_1w_1 + \dots + b_nw_n}_{w}$$

Since *U* and *W* are subspaces, then they are closed under linear combinations, so $u \in U$ and $w \in W$, and hence $v = u + w \in U + W$.

Now suppose $v \in U \cap W$. Since $v \in U$, then

$$v = a_1 u_1 + \cdots + a_m u_m$$

for some $a_1, \ldots, a_m \in \mathbb{F}$, and since $v \in W$, then

$$v = b_1 w_1 + \dots + b_n w_n$$

for some $b_1, \ldots, b_n \in \mathbb{F}$. Subtracting, we have

$$0 = v - v = a_1u_1 + \cdots + a_mu_m - b_1w_1 - \cdots - b_nw_n$$

But *B* is a basis, hence linearly independent, so $a_1 = \cdots = a_m = b_1 = \cdots = b_n = 0$. Thus v = 0.

II.5. 2C Dimension.

Theorem. Any two bases of a finite-dimensional vector space have the same length.

Proof. Suppose *V* is finite-dimensional and B_1 and B_2 are bases of *V*. Since B_1 is linearly independent and B_2 spans *V*, then by the LI \leq span theorem, length(B_1) \leq length(B_2). Reversing the roles of B_1 and B_2 yields the opposite inequality, so length(B_1) = length(B_2).

Definition 2. The *dimension* of a finite-dimensional vector space V is the length of any basis of V. Denoted dim(V).

Lemma 1. If *V* is finite-dimensional and *U* is a subspace of *V*, then $\dim(U) \leq \dim(V)$.

Proof. Exercise. (Similar to previous proof.)

Proposition 3. Suppose that V is finite-dimensional. Then every linearly independent list of vectors in V of length $\dim(V)$ is a basis.

Proof. Let $n := \dim(V)$ and suppose $L := (v_1, \ldots, v_n)$ are linearly independent. By the Extension Theorem, then *L* can be extended to a basis of *V*. But by the previous result, every basis of *V* has length *n*, so this must be the trivial extension, where no vectors are adjoined. Thus *L* was a basis of *V* to begin with.

Example 1. Consider the list (4,2), (-1,7) of vectors in \mathbb{F}^2 . [Ask students why linearly independent.] Since dim(\mathbb{F}^2) = 2 (consider the standard basis), then this list is a basis.

Corollary 2. *Suppose that V is finite-dimensional and U is a subspace of V such that* dim(U) = dim(V)*. Then* U = V*.*

Proof. Exercise.

Proposition 4. Suppose V is finite-dimensional. Then every spanning list S of V of length $\dim(V)$ is a basis of V.

Proof. By a previous result, *S* can be reduced to a basis. However, every basis has length $\dim(V)$, so this reduction must be the trivial one, i.e., no vectors are removed from *S*. Thus *S* was a basis to begin with.

Given subspaces V_1 , V_2 , one can show that $\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2)$. What if the sum is not direct?

Proposition 5. Let V be finite-dimensional and V_1 , V_2 be subspaces. Then

 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$

Proof. Let $B := (v_1, ..., v_m)$ be a basis for $V_1 \cap V_2$, so dim $(V_1 \cap V_2) = m$. Since *B* is linearly independent, it can be extended to a basis

$$B_1 := (v_1, \ldots, v_m, u_1, \ldots, u_\ell)$$

of V_1 , so dim $(V_1) = m + \ell$. Similarly, it can be extended to a basis

$$B_2 := (v_1, \ldots, v_m, w_1, \ldots, w_n)$$

of V_2 , so dim $(V_2) = m + n$. We claim that

$$C := (v_1, \ldots, v_m, u_1, \ldots, u_\ell, w_1, \ldots, w_n)$$

is a basis for $V_1 + V_2$. Note that if this holds, then

 $\dim(V_1 + V_2) = m + \ell + n = (m + \ell) + (m + n) - m = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$, which is what we want to show.

Observe that *C* is contained in $V_1 + V_2$ [ask students how to see $u_1 \in V_1 + V_2$]. Moreover, SSpan(C) contains both V_1 and V_2 , hence contains $V_1 + V_2$. Thus it remains to show that *C* is linearly independent. Suppose

$$a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_\ell u_\ell + c_1w_1 + \dots + c_nw_n = 0 \tag{(*)}$$

for some scalars $a_i, b_j, c_k \in \mathbb{F}$. Subtracting, then

$$c_1w_1 + \cdots + c_nw_n = -(a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_\ell u_\ell) \in V_1.$$

By definition $w_1, \ldots, w_n \in V_2$, so $c_1w_1 + \cdots + c_nw_n \in V_1 \cap V_2$. Since *B* is a basis of $V_1 \cap V_2$, then

 $c_1w_1+\cdots c_nw_n=d_1v_1+\cdots+d_mv_m$

for some $d_1, \ldots, d_m \in \mathbb{F}$. Subtracting, then

$$c_1w_1+\cdots c_nw_n-d_1v_1-\cdots-d_mv_m=0.$$

But B_2 is basis, hence linearly independent, hence $c_1 = \cdots = c_n = 0 = d_1 = \cdots = d_m$. Then (*) becomes

$$a_1v_1+\cdots+a_mv_m+b_1u_1+\cdots+b_\ell u_\ell=0$$

But B_1 is basis, hence linearly dependent, so $a_1 = \cdots = a_m = 0 = b_1 = \cdots = b_\ell$. Thus *C* is linearly independent, hence is a basis.

Remark 1. For a finite set *S*, let #S denote its cardinality, i.e., the number of elements in *S*. If *S*₁ and *S*₂ are finite sets, then

$$#(S_1 \cup S_2) = #S_1 + #S_2 - #(S_1 \cap S_2).$$

[Draw Venn diagram.]

Here are some analogies between finite sets and finite dimensional vector spaces.

sets	vector spaces	
S is a finite set	V is a finite-dimensional vector space	
#S	dim V	
for subsets S_1, S_2 of S , the union $S_1 \cup S_2$ is the smallest subset of S containing S_1 and S_2	for subspaces V_1 , V_2 of V , the sum $V_1 + V_2$ is the smallest subspace of V containing V_1 and V_2	
$ \begin{array}{c} \#(S_1 \cup S_2) \\ = \#S_1 + \#S_2 - \#(S_1 \cap S_2) \end{array} $	$\dim(V_1 + V_2)$ = dim V ₁ + dim V ₂ - dim(V ₁ \cap V ₂)	
$ \begin{array}{l} \#(S_1\cup S_2)=\#S_1+\#S_2\\ \Longleftrightarrow \ S_1\cap S_2=\emptyset \end{array}$	$\dim(V_1 + V_2) = \dim V_1 + \dim V_2$ $\iff V_1 \cap V_2 = \{0\}$	
$S_1 \cup \dots \cup S_m \text{ is a disjoint union } \Leftrightarrow \\ \#(S_1 \cup \dots \cup S_m) = \#S_1 + \dots + \#S_m$	$V_1 + \dots + V_m \text{ is a direct sum } \iff \\ \dim(V_1 + \dots + V_m) \\ = \dim V_1 + \dots + \dim V_m$	