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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the definition of span and spanning list.
(2) Students will learn the definition of linear independence.
(3) Students will learn the defintion of a polynomial.
(4) Students will learn the Linear Independence Lemma and the Replacement Theo-

rem.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
1



II. LESSON PLAN(0:00)
Announcements: • Second pset due this evening. • Pset Partners

II.1. Last time.
• Defined subspaces and gave a criterion to check if a subset is a subspace.
• Applied the subspace criterion to examples.
• Defined sum and direct sum of vector spaces.
• Started to give criterion for checking if a sum is direct.

II.2. Direct sum wrap up.(0:05)

Definition 1. Let V1, . . . , Vm be subspaces of V.
• Their sum is

V1 + · · ·+ Vm := {v1 + · · ·+ vm : v1 ∈ V1, . . . , vm ∈ Vm} .

• The sum is a direct, denoted V1 ⊕ · · · ⊕ Vm, if each v ∈ V1 + · · ·+ Vm [ask students]
can be written uniquely as

v = v1 + · · ·+ vm

with vi ∈ Vi for i = 1, . . . , m.

Lemma 1. With notation as above, V1 + · · ·+ Vm is a subspace of V.

Lemma 2. V1 + · · ·+ Vm is a direct sum iff the only way to write

0 = v1 + · · ·+ vm

with vi ∈ Vi for all i is by taking vi = 0 for all i.

Proof. (⇒): Follows from the definition of direct sum, taking v = 0.
(⇐): Given v ∈ V1 + · · ·+ Vm, suppose

v = v1 + · · ·+ vm

v = u1 + · · ·+ um

where ui, vi ∈ Vi for all i = 1, . . . , m. Then

0 = v − v = (v1 + · · ·+ vm)− (u1 + · · ·+ um) = · · · = (v1 − u1) + · · ·+ (vm − um) .

But we also have 0 = 0 + · · ·+ 0 and since this expression for 0 is unique, we must have
vi − ui = 0, i.e., vi = ui for all i. Thus the expression for v is unique. □

Proposition 1. V1 + V2 is a direct sum iff V1 ∩ V2 = {0}.

Proof. Exercise. □

[Ask students what U1 ∩ U2 was in first example, where

U1 := {(s, s, t, t) ∈ F4 : s, t ∈ F}
U2 := {(s, s, s, t) ∈ F4 : s, t ∈ F} .

]
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II.3. 2A. Span and Linear Independence. Throughout, assume that V is an F-vector
space.

Remark 1. We will usually write lists of vectors without parentheses, e.g., v1, v2, . . . , vm.

Definition 2. A linear combination of a list v1, . . . , vm ∈ V is an expression of the form

a1v1 + · · ·+ amvm

where a1, . . . , am ∈ F.

Example 1.
• Let u1 := (1,−1, 3) and u2 := (2,−1, 4). Then

3u1 − 2u2 = 3(1,−1, 3)− 2(2,−1, 4) = (3,−3, 9) + (−4, 2,−8) = (−1,−1, 1)

so (−1,−1, 1) is a linear combination of u1 and u2.
• Is w := (1,−2,−1) a linear combination of u1 and u2? [Ask students what this

means in symbols.] I.e., do there exist c1, c2 ∈ F such that c1u1 + c2u2 = w?1 2 1
0 1 −1
3 4 −1

 ∼

1 2 1
0 1 −1
0 −2 −4

 ∼

1 2 1
0 1 −1
0 0 −6


Definition 3. The span of a list of vectors v1, . . . , vm ∈ V, denoted span(v1, . . . , vm), is the
set of all their linear combinations. I.e.,

span(v1, . . . , vm) := {a1v1 + · · ·+ amvm : a1, . . . , am ∈ F} .

The span of the empty list () is defined to be {0}.

Example 2. With notation as in the previous example,

(−1,−1, 1) ∈ span(u1, u2) and (1,−2,−1) /∈ span(u1, u2) .

Lemma 3. With notation as above, span(v1, . . . , vm) is the smallest subspace of V containing
v1, . . . , vm.

Proof. Exercise. □

Definition 4. If span(v1, . . . , vm) = V, then we say that v1, . . . , vm span or generate V.

Definition 5. A vector space is finite-dimensional if it is spanned by some (finite) list of
vectors. Otherwise, it is infinite-dimensional.

II.3.1. Polynomials.

Definition 6. A function p : F → F is a polynomial (function) with coefficients in F if there
exist a0, . . . , am ∈ F such that

p(z) = a0 + a1z + a2z2 + · · ·+ amzm

for all z ∈ F. We denote the set of all polynomial with coefficients in F by P(F) or F[z].

Lemma 4. P(F) is an F-vector space.

Proof. Exercise. □

Definition 7.
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• A polynomial p ∈ P(F) has degree d if there exist scalars a0, . . . , ad ∈ F with ad ̸= 0
such that

p(z) = a0 + a1z + a2z2 + · · ·+ amzm

for all z ∈ F.
• The degree of p is denoted deg(p).
• By convention, deg(0) = −∞.
• Let Pm(F) be the set of all polynomials of degree ≤ m.

Lemma 5.
• Pm(F) is finite-dimensional.
• P(F) is infinite-dimensional.

Proof.
• [Ask students.] Pm(F) = span(1, z, . . . , zm).
• Given any finite list p1, p2, . . . , pk of polynomials, let M be the maximum of their

degrees. Then every polynomial in span(p1, . . . , pk) has degree at most M. But
then zM+1 /∈ span(p1, . . . , pk), so the list does not span P(F). This shows that no
finite list spans P(F), so it is infinite-dimensional.

□

Remark 2. F∞ is also infinite-dimensional. Can you find a proof of this similar to that for
P(F)?

II.3.2. Linear independence. Q: Can we characterize minimal spanning sets?
Q: Given v1, . . . , vm and v ∈ span(v1, . . . , vm), when is there a unique list of scalars

a1, . . . , am ∈ F such that
v = a1v1 + · · ·+ amvm ?

(Similar to the definition of direct sum.)
If there is another such list of scalars b1, . . . , bm, then

a1v1 + · · ·+ amvm = v = b1v1 + · · ·+ bmvm .

Subtracting, then
0 = (a1 − b1)v1 + · · ·+ (am − bm)vm .

Definition 8. A list v1, . . . , vm ∈ V is linearly dependent if there exist scalars a1, . . . , am ∈ F,
not all 0, such that

a1v1 + · · · amvm = 0 .
A list is linearly independent if is not linearly dependent, i.e., if the only choice of scalars
a1, . . . , am ∈ F such that

a1v1 + · · · amvm = 0
is a1 = · · · = am = 0.

By convention, the empty list () is linearly independent.

Remark 3.
• A list v of length one in a vector space is linearly dependent iff [ask students] v = 0.
• A list v, w of length two is linearly dependent iff v and w are scalar multiples of

each other.
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Lemma 6. (Linear Dependence Lemma) Suppose v1, . . . , vm ∈ V is a linearly dependent list.
Then there exists k ∈ {1, 2, . . . , m} such that

vk ∈ span(v1, . . . , vk−1) .

Furthermore, removing vk leaves the span unchanged, i.e,

span(v1, . . . , v̂k, . . . , vm) = span(v1, . . . , vm) .

Proof. Since v1, . . . , vm is linearly dependent, then [ask students] there exist a1, . . . am, not
all 0, such that

a1v1 + · · ·+ amvm = 0 . (1)
Let k be the largest element of {1, . . . , m} such that ak ̸= 0. Subtracting to the other side
and dividing by ak, we have

vk = − a1

ak
v1 − · · · − ak−1

ak
vk−1 . (2)

The last statement is left as an exercise. The idea is, in any linear combination of v1, . . . , vm,
one can replace vk by the RHS of (2). □

II.4. Worksheet.

II.5. Results on span and linear independence.

Theorem. (Replacement Theorem, LI ≤ span) Let V be a finite dimensional vector space. Then
the length of every linearly independent list of vectors in V is ≤ the length of every spanning list
of vectors.

Proof. Suppose B := (u1, . . . , um) is a linearly independent list in V and C := (w1, . . . , wn)
is a list spannning V. Goal: m ≤ n. We show this by recursively replacing the wi by the
uj, one by one.

Base case: Since C spans V, then

u1, w1, . . . , wn

must be linearly dependent. By the Linear Dependence Lemma, then one of the above
vectors in the list can be written as a linear combination of the previous vectors in the list.
Since B is linearly independent, then u1 ̸= 0, so it’s not u1. Thus it must be the case that
there exists r such that

span(u1, w1, . . . , ŵr, . . . , wn) = span(u1, w1, . . . , wr, . . . , wn) = V .

Redefine C to be
u1, w1, . . . , ŵr, . . . , wn ,

and note that it still has length n.
Recursive step: Let k ∈ {2, . . . , m} and suppose we have already replaced k − 1 of the

wi with u1, . . . , uk−1. Then the list C looks like u1, . . . , uk−1 followed by the remaining
wi. Adjoin uk to C just after uk−1. By the Linear Dependence Lemma, then one of the
vectors in C can be written as a linear combination of the vectors preceding it. Again,
since u1, . . . , uk is linearly independent, this vector cannot be one of the ui. Thus it must
be one of the wj, say wr. We remove wr, which doesn’t change the span, and redefine C to
be this modified list.
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After step m, we have adjoined all the uj to C, a list of length n. Note that C still spans
V, and now looks like u1, . . . , um and then the remaining wi. At each step we adjoined
a uj, and the Linear Dependence Lemma implied the exitence of a wi to remove. Thus
m ≤ n. □

Proposition 2. Every subspace of a finite-dimensional vector space is finite-dimensional.

Proof. Let V be a finite-dimensional vector space and U a subspace of V. Goal: Find a
(finite) spanning list for U. We do this recursively.

Base case: If U = {0}, then 0 generates U and we’re done. Otherwise, U ̸= {0}, so we
can choose a nonzero vector u1 ∈ U.

Recursive step: Suppose we have already chosen k − 1 nonzero vectors u1, . . . , uk−1.
If U = span(u1, . . . , uk−1), we’re done. Otherwise, U ̸= span(u1, . . . , uk−1), so we can
choose uk /∈ span(u1, . . . , uk−1). As you’ll show on the next pset, this implies that u1, . . . , uk−1, uk
is linearly independent.

Thus at each step k, we produce a linearly independent list of length k in U. But by the
Replacement Theorem, no linearly independent list can be longer than a spanning list of
V. Thus the process eventually terminates, at which point we have a finite spanning list
for U. □
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