18.700 - LINEAR ALGEBRA, DAY 5 SPAN AND LINEAR INDEPENDENCE

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the definition of span and spanning list.
- (2) Students will learn the definition of linear independence.
- (3) Students will learn the defintion of a polynomial.
- (4) Students will learn the Linear Independence Lemma and the Replacement Theorem.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Second pset due this evening. • Pset Partners

II.1. **Last time.**

- Defined subspaces and gave a criterion to check if a subset is a subspace.
- Applied the subspace criterion to examples.
- Defined sum and direct sum of vector spaces.
- Started to give criterion for checking if a sum is direct.

II.2. **Direct sum wrap up.(0:05)**

Definition 1. Let V_1, \ldots, V_m be subspaces of *V*.

• Their *sum* is

$$
V_1 + \cdots + V_m := \{v_1 + \cdots + v_m : v_1 \in V_1, \ldots, v_m \in V_m\}.
$$

• The sum is a *direct*, denoted $V_1 \oplus \cdots \oplus V_m$, if each $v \in V_1 + \cdots + V_m$ [ask students] can be written *uniquely* as

$$
v=v_1+\cdots+v_m
$$

with $v_i \in V_i$ for $i = 1, \ldots, m$.

Lemma 1. *With notation as above,* $V_1 + \cdots + V_m$ *is a subspace of V.*

Lemma 2. $V_1 + \cdots + V_m$ *is a direct sum iff the only way to write*

 $0 = v_1 + \cdots + v_m$

with $v_i \in V_i$ *for all i is by taking* $v_i = 0$ *for all i.*

Proof. (\Rightarrow): Follows from the definition of direct sum, taking $v = 0$.

(*⇐*): Given $v ∈ V_1 + \cdots + V_m$, suppose

$$
v = v_1 + \dots + v_m
$$

$$
v = u_1 + \dots + u_m
$$

where $u_i, v_i \in V_i$ for all $i = 1, \ldots, m$. Then

$$
0 = v - v = (v_1 + \cdots + v_m) - (u_1 + \cdots + u_m) = \cdots = (v_1 - u_1) + \cdots + (v_m - u_m).
$$

But we also have $0 = 0 + \cdots + 0$ and since this expression for 0 is unique, we must have $v_i - u_i = 0$, i.e., $v_i = u_i$ for all *i*. Thus the expression for *v* is unique. □

Proposition 1. $V_1 + V_2$ *is a direct sum iff* $V_1 \cap V_2 = \{0\}$ *.*

Proof. Exercise. □

[Ask students what $U_1 \cap U_2$ was in first example, where

$$
U_1 := \{ (s, s, t, t) \in \mathbb{F}^4 : s, t \in \mathbb{F} \} U_2 := \{ (s, s, s, t) \in \mathbb{F}^4 : s, t \in \mathbb{F} \} .
$$

]

II.3. **2A. Span and Linear Independence.** Throughout, assume that *V* is an **F**-vector space.

Remark 1. We will usually write lists of vectors without parentheses, e.g., v_1, v_2, \ldots, v_m .

Definition 2. A *linear combination* of a list $v_1, \ldots, v_m \in V$ is an expression of the form

$$
a_1v_1+\cdots+a_mv_m
$$

where $a_1, \ldots, a_m \in \mathbb{F}$.

Example 1.

- Let $u_1 := (1, -1, 3)$ and $u_2 := (2, -1, 4)$. Then $3u_1 - 2u_2 = 3(1, -1, 3) - 2(2, -1, 4) = (3, -3, 9) + (-4, 2, -8) = (-1, -1, 1)$
- so $(-1, -1, 1)$ is a linear combination of u_1 and u_2 .
- Is $w := (1, -2, -1)$ a linear combination of u_1 and u_2 ? [Ask students what this means in symbols.] I.e., do there exist c_1 , $c_2 \in \mathbb{F}$ such that $c_1u_1 + c_2u_2 = w$?

$$
\begin{pmatrix} 1 & 2 & 1 \ 0 & 1 & -1 \ 3 & 4 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \ 0 & 1 & -1 \ 0 & -2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \ 0 & 1 & -1 \ 0 & 0 & -6 \end{pmatrix}
$$

Definition 3. The *span* of a list of vectors $v_1, \ldots, v_m \in V$, denoted span (v_1, \ldots, v_m) , is the set of all their linear combinations. I.e.,

$$
\mathrm{span}(v_1,\ldots,v_m):=\left\{a_1v_1+\cdots+a_mv_m:a_1,\ldots,a_m\in\mathbb{F}\right\}.
$$

The span of the empty list () is defined to be $\{0\}$.

Example 2. With notation as in the previous example,

 $(-1, -1, 1) \in \text{span}(u_1, u_2)$ and $(1, -2, -1) \notin \text{span}(u_1, u_2)$.

Lemma 3. *With notation as above,* $span(v_1, \ldots, v_m)$ *is the smallest subspace of V containing* v_1, \ldots, v_m .

Proof. Exercise. □

Definition 4. If $\text{span}(v_1, \ldots, v_m) = V$, then we say that v_1, \ldots, v_m span or generate V.

Definition 5. A vector space is *finite-dimensional* if it is spanned by some (finite) list of vectors. Otherwise, it is *infinite-dimensional*.

II.3.1. *Polynomials.*

Definition 6. A function $p : \mathbb{F} \to \mathbb{F}$ is a *polynomial (function)* with coefficients in \mathbb{F} if there exist $a_0, \ldots, a_m \in \mathbb{F}$ such that

$$
p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m
$$

for all $z \in \mathbb{F}$. We denote the set of all polynomial with coefficients in \mathbb{F} by $\mathcal{P}(\mathbb{F})$ or $\mathbb{F}[z]$.

Lemma 4. $\mathcal{P}(\mathbb{F})$ *is an* \mathbb{F} *-vector space.*

Proof. Exercise. □

Definition 7.

• A polynomial $p \in \mathcal{P}(\mathbb{F})$ has *degree d* if there exist scalars $a_0, \ldots, a_d \in \mathbb{F}$ with $a_d \neq 0$ such that

$$
p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m
$$

for all $z \in \mathbb{F}$.

- The degree of p is denoted deg(p).
- By convention, deg(0) = $-\infty$.
- Let $\mathcal{P}_m(\mathbb{F})$ be the set of all polynomials of degree $\leq m$.

Lemma 5.

- P*m*(**F**) *is finite-dimensional.*
- P(**F**) *is infinite-dimensional.*

Proof.

- [Ask students.] $\mathcal{P}_m(\mathbb{F}) = \text{span}(1, z, \dots, z^m)$.
- Given any finite list p_1, p_2, \ldots, p_k of polynomials, let *M* be the maximum of their degrees. Then every polynomial in $\text{span}(p_1, \ldots, p_k)$ has degree at most *M*. But then $z^{M+1}\notin \text{span}(p_1,\ldots,p_k)$, so the list does not span $\mathcal{P}(\mathbb{F}).$ This shows that no finite list spans $\mathcal{P}(F)$, so it is infinite-dimensional.

□

Remark 2. F [∞] is also infinite-dimensional. Can you find a proof of this similar to that for $\mathcal{P}(\mathbb{F})$?

II.3.2. *Linear independence.* Q: Can we characterize *minimal* spanning sets?

Q: Given v_1, \ldots, v_m and $v \in \text{span}(v_1, \ldots, v_m)$, when is there a *unique* list of scalars $a_1, \ldots, a_m \in \mathbb{F}$ such that

$$
v = a_1v_1 + \cdots + a_mv_m
$$
?

(Similar to the definition of direct sum.)

If there is another such list of scalars b_1, \ldots, b_m , then

$$
a_1v_1+\cdots+a_mv_m=v=b_1v_1+\cdots+b_mv_m.
$$

Subtracting, then

$$
0 = (a_1 - b_1)v_1 + \cdots + (a_m - b_m)v_m.
$$

Definition 8. A list $v_1, \ldots, v_m \in V$ is *linearly dependent* if there exist scalars $a_1, \ldots, a_m \in \mathbb{F}$, not all 0, such that

$$
a_1v_1+\cdots a_mv_m=0.
$$

A list is *linearly independent* if is not linearly dependent, i.e., if the only choice of scalars $a_1, \ldots, a_m \in \mathbb{F}$ such that

$$
a_1v_1+\cdots a_mv_m=0
$$

is $a_1 = \cdots = a_m = 0$.

By convention, the empty list () is linearly independent.

Remark 3.

- A list *v* of length one in a vector space is linearly dependent iff [ask students] $v = 0$.
- A list *v*, *w* of length two is linearly dependent iff *v* and *w* are scalar multiples of each other.

Lemma 6. *(Linear Dependence Lemma)* Suppose $v_1, \ldots, v_m \in V$ is a linearly dependent list. *Then there exists* $k \in \{1, 2, \ldots, m\}$ *such that*

$$
v_k \in \mathrm{span}(v_1,\ldots,v_{k-1})\,.
$$

Furthermore, removing v^k leaves the span unchanged, i.e,

$$
\mathrm{span}(v_1,\ldots,\widehat{v}_k,\ldots,v_m)=\mathrm{span}(v_1,\ldots,v_m)\,.
$$

Proof. Since v_1, \ldots, v_m is linearly dependent, then [ask students] there exist $a_1, \ldots a_m$, not all 0, such that

$$
a_1v_1+\cdots+a_mv_m=0.
$$
 (1)

Let *k* be the largest element of $\{1, \ldots, m\}$ such that $a_k \neq 0$. Subtracting to the other side and dividing by *a^k* , we have

$$
v_k = -\frac{a_1}{a_k}v_1 - \dots - \frac{a_{k-1}}{a_k}v_{k-1}.
$$
 (2)

The last statement is left as an exercise. The idea is, in any linear combination of v_1, \ldots, v_m , one can replace v_k by the RHS of (2). \Box

II.4. **Worksheet.**

II.5. **Results on span and linear independence.**

Theorem. *(Replacement Theorem, LI* ≤ *span) Let V be a finite dimensional vector space. Then the length of every linearly independent list of vectors in V is* \leq *the length of every spanning list of vectors.*

Proof. Suppose $B := (u_1, \ldots, u_m)$ is a linearly independent list in *V* and $C := (w_1, \ldots, w_n)$ is a list spannning *V*. Goal: $m \leq n$. We show this by recursively replacing the w_i by the *uj* , one by one.

Base case: Since *C* spans *V*, then

$$
u_1,w_1,\ldots,w_n
$$

must be linearly dependent. By the Linear Dependence Lemma, then one of the above vectors in the list can be written as a linear combination of the previous vectors in the list. Since *B* is linearly independent, then $u_1 \neq 0$, so it's not u_1 . Thus it must be the case that there exists *r* such that

$$
\mathrm{span}(u_1,w_1,\ldots,\widehat{w_r},\ldots,w_n)=\mathrm{span}(u_1,w_1,\ldots,w_r,\ldots,w_n)=V.
$$

Redefine *C* to be

$$
u_1, w_1, \ldots, \widehat{w_r}, \ldots, w_n,
$$

and note that it still has length *n*.

Recursive step: Let $k \in \{2, \ldots, m\}$ and suppose we have already replaced $k - 1$ of the *w*_{*i*} with *u*₁, . . . , *u*_{*k*−1}. Then the list *C* looks like *u*₁, . . . , *u*_{*k*−1} followed by the remaining *wi* . Adjoin *u^k* to *C* just after *uk*−¹ . By the Linear Dependence Lemma, then one of the vectors in *C* can be written as a linear combination of the vectors preceding it. Again, since u_1, \ldots, u_k is linearly independent, this vector cannot be one of the u_i . Thus it must be one of the *w^j* , say *w^r* . We remove *w^r* , which doesn't change the span, and redefine *C* to be this modified list.

After step *m*, we have adjoined all the *u^j* to *C*, a list of length *n*. Note that *C* still spans *V*, and now looks like u_1, \ldots, u_m and then the remaining w_i . At each step we adjoined a u_j , and the Linear Dependence Lemma implied the exitence of a w_i to remove. Thus $m \leq n$.

Proposition 2. *Every subspace of a finite-dimensional vector space is finite-dimensional.*

Proof. Let *V* be a finite-dimensional vector space and *U* a subspace of *V*. Goal: Find a (finite) spanning list for *U*. We do this recursively.

<u>Base case:</u> If $U = \{0\}$, then 0 generates *U* and we're done. Otherwise, $U \neq \{0\}$, so we can choose a nonzero vector $u_1 \in U$.

Recursive step: Suppose we have already chosen $k-1$ nonzero vectors u_1, \ldots, u_{k-1} . If $U = \text{span}(u_1, \ldots, u_{k-1})$, we're done. Otherwise, $U \neq \text{span}(u_1, \ldots, u_{k-1})$, so we can choose $u_k \notin \text{span}(u_1, \ldots, u_{k-1})$. As you'll show on the next pset, this implies that $u_1, \ldots, u_{k-1}, u_k$ is linearly independent.

Thus at each step *k*, we produce a linearly independent list of length *k* in *U*. But by the Replacement Theorem, no linearly independent list can be longer than a spanning list of *V*. Thus the process eventually terminates, at which point we have a finite spanning list for U . \Box