18.700 - LINEAR ALGEBRA, DAY 4 SUBSPACES

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will start or continue learning how to write proofs.
- (2) Students will learn the subspace criterion.
- (3) Students will apply the subspace criterion to examples.
- (4) Students will learn the definitions of the sum of a finite collection of subspaces.
- (5) Students will learn the definition of a direct sum of a finite collection of subspaces.
- (6) Students will learn how to check if a sum of subspaces is direct.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Second pset due Wednesday. • Mention Velleman's *How To Prove It*.

II.1. **Last time.**

- Recalled the algebraic properties of \mathbb{R}^n and \mathbb{C}^n .
- Abstracted these properties and gave the definition of a vector space.
- Proved some elementary properties of vector spaces.
- Considered some examples of vector spaces, such as \mathbb{F}^n , \mathbb{F}^∞ , and \mathbb{F}^S .

II.2. **Worksheet.(0:05)**

II.3. **Subspaces.** Given a vector space *V*, it is often useful to consider smaller vector spaces that are contained inside *V*. We call these subspaces. [Draw picture of a line **(0:15)** through the origin inside \mathbb{R}^2 .]

Definition 1. A subset $U \subseteq V$ is called a *(vector) subspace* if *U* is also a vector space when considered with the same addition, scalar multiplication, and additive identity as *V*.

Remark 1.

- Also sometimes known as *linear subspaces*.
- {0} and *V* itself are always subspaces of a vector space *V*.

To check if a subset $U \subseteq V$ is a subspace, it's not necessary to check all the vector space axioms. We get some for free from knowing already that *V* is a vector space.

Proposition 1 (Subspace criterion). A subset $U \subseteq V$ is a subspace of V iff U satisfies the *following.*

- (i) 0 ∈ *U*.
- *(ii) U* is closed under addition, i.e., if $u, v \in U$, then $u + v \in U$.
- *(iii) U* is closed under scalar multiplication, i.e., if $a \in \mathbb{F}$ and $u \in U$, then au $\in U$.

Proof. Suppose $U \subseteq V$.

(⇒): Suppose *U* is a subspace. Then *U* must satisfy the 3 conditions above by the definition of a vector space.

 (\Leftarrow) : Now suppose that *U* satisfies the 3 conditions above. The conditions (ii) and (iii) ensure that the restrictions of addition and scalar multiplication give well-defined binary operations

$$
+: U \times U \to U \qquad \mathbb{F} \times U \to U.
$$

Since *V* is a vector space, then its addition is associative and commutative, so the same is true for *U* ((1) and (4)). Similarly, the distrubitive laws (7) and scalar multiplicativity (5) hold for *U*.

By (i), $0 \in U$ (2). Given $u \in U$, then

$$
(-1)u = -u \in U
$$

by (iii), so *U* has additive inverses (3). \Box

(0:30) Let's apply this criterion to some examples.

Example 1. • Let $V := \mathbb{F}^2$ and

$$
U := \{(x_1, x_2) \in \mathbb{F}^2 \mid 3x_1 - x_2 = 0\}
$$

[Check 3 conditions. Ask students what the zero vector is, how to start proofs of (ii) and (iii) .]

• Let

$$
V:=\{f:[0,1]\to\mathbb{R}\mid f\text{ is continuous}\},
$$

which is a subset of $\mathbb{R}^{[0,1]}.$

• Let

$$
V := \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable} \},
$$

which is a subset of $\mathbb{R}^{\mathbb{R}}$.

(0:40) II.3.1. *Sums of subspaces.*

It's sometimes useful to combine two subspaces V_1 , V_2 of *V*. However, the union $V_1 \cup V_2$ is rarely itself a subspace. [Draw picture of example using **R** 2 and coordinate axes as subspaces.] We instead can define their sum.

Definition 2. Given subspaces V_1, \ldots, V_m of *V*, their *sum* is

$$
V_1+\cdots+V_m:=\{v_1+\cdots+v_m:v_1\in V_1,\ldots,v_m\in V_m\},\,
$$

i.e., the set of all possible sums of elements of V_1, \ldots, V_m .

Lemma 1. *With notation as above,* $V_1 + \cdots + V_m$ *is a subspace of V*.

Proof. Exercise. □

(0:45)

Example 2. Let $V := \mathbb{F}^4$,

$$
U_1 := \{ (s, s, t, t) \in \mathbb{F}^4 : s, t \in \mathbb{F} \}
$$

$$
U_2 := \{ (s, s, s, t) \in \mathbb{F}^4 : s, t \in \mathbb{F} \}.
$$

Q: Can we described $U_1 + U_2$?

Let's try computing systems of equations that describe *U*₁ and *U*₂. Given elements of $(a, a, b, b) ∈ U_1$ and $(c, c, c, d) ∈ U_2$, then

$$
(a, a, b, b) + (c, c, c, d) = (a + c, a + c, b + c, b + d).
$$

Since the first two coordinates are equal, we see that $U_1 + U_2 \subseteq W$, where

$$
W := \{ (x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F} \}.
$$

We claim this is actually an equality. Given $(x, x, y, z) \in W$, we want to write it as a sum of an element of *U*¹ and an element of *U*2. Goal:

$$
(x, x, y, z) = (s, s, t, t) + (u, u, u, v)
$$

for some $s, t, u, v \in \mathbb{F}$. Idea: Use this equation to derive some necessary conditions, then show that they are also sufficient. (Working backwards.) [Mention $P \implies Q$ vs. $Q \implies$ *P*.]

Scratchwork: From the vector equation, we have

$$
\begin{array}{rcl}\ns & +u & = & x \\
t & +u & = & y \\
t & +v & = & z\n\end{array}
$$

which has augmented matrix

$$
\begin{pmatrix} 1 & 0 & 1 & 0 & | & x \\ 0 & 1 & 1 & 0 & | & y \\ 0 & 1 & 0 & 1 & | & z \end{pmatrix}.
$$

Row reducing, this is equivalent to

$$
\begin{pmatrix} 1 & 0 & 0 & 1 & | & x - y + z \\ 0 & 1 & 0 & 1 & | & z \\ 0 & 0 & 1 & -1 & | & y - z \end{pmatrix},
$$

which corresponds to

$$
\begin{array}{rcl}\ns & +v & = & x-y+z \\
t & +v & = & z \\
u & -v & = & y-z.\n\end{array}
$$

[Ask students how many solutions system has.] Since we only need one solution, we can set the free variable *v* to 0. And finally, we need to check that our answer actually works.

 $Claim: W \subseteq U_1 + U_2.$

Proof. Given $(x, x, y, z) \in W$, then

$$
(x, x, y, z) = (x - y + z, x - y + z, z, z) + (y - z, y - z, y - z, 0) \in U_1 + U_2.
$$

Remark 2. Later we'll see an easy way to prove this containment using the notion of spanning sets.

(1:00)

Lemma 2. *Suppose* V_1, \ldots, V_m *are subspaces of V. Then* $V_1 + \cdots + V_m$ *is the smallest [ask students](with respect to containment) subspace of V containing V*1, . . . , *Vm. I.e., if W is another such subspace, then*

$$
V_1+\cdots+V_m\subseteq W.
$$

Proof. Suppose *W* is another subspace containing V_1, \ldots, V_m . Goal: $V_1 + \cdots + V_m \subseteq W$. Given $v \in V_1 + \cdots + V_m$, then

$$
v=v_1+\cdots+v_m
$$

for some $v_1 \in V_1, \ldots, v_m \in V_m$. Since $V_i \subseteq W$ for all $i = 1, \ldots, m$, then $v_i \in W$ for all *i*. Since *W* is a subspace, then it is closed under addition, so

$$
v_1+\cdots+v_m\in W.
$$

Thus $V_1 + \cdots + V_m \subset W$.

(1:05)

II.3.2. *Direct sums.* In the example, an element of the sum $U_1 + U_2$ could be written as a sum of elements in U_1 and U_2 in infinitely many ways.

Q: Under what conditions is there only one way of writing an element of $V_1 + \cdots + V_m$ as such a sum?

Throughout this section, suppose *V*1, . . . , *V^m* are subspaces of *V*.

Definition 3. The sum $V_1 + \cdots + V_m$ is a *direct sum* if each element of $V_1 + \cdots + V_m$ can be written *uniquely* as

$$
v_1+\cdots+v_m
$$

with $v_i \in V_i$ for $i = 1, \ldots, m$. In this case, we write

$$
V_1\oplus\cdots\oplus V_m
$$

to indicate that the sum is direct.

Example 3.

• Let $V := \mathbb{F}^3$ and consider the subspaces

$$
V_1 := \{ (x, y, 0) \in \mathbb{F}^3 : x, y \in \mathbb{F} \}
$$

$$
V_2 := \{ (0, 0, z) \in \mathbb{F}^3 : z \in \mathbb{F} \}.
$$

Exercise: Show $\mathbb{F}^3 = V_1 \oplus V_2$.

• In the example from the last section, we saw that $U_1 + U_2$ is *not* a direct sum.

Lemma 3. $V_1 + \cdots + V_m$ *is a direct sum iff the only way to write*

 $0 = v_1 + \cdots + v_m$

with $v_i \in V_i$ for all *i* is by setting $v_i = 0$ for all *i*.

Proof. (\Rightarrow): Follow from the definition of direct sum, taking $v = 0$. (\Leftarrow): Given $v \in$ $V_1 + \cdots + V_m$, suppose

$$
v = v_1 + \dots + v_m
$$

$$
v = u_1 + \dots + u_m
$$

where $u_i, v_i \in V_i$ for all $i = 1, \ldots, m$. Then

$$
0 = v - v = (v_1 + \cdots + v_m) - (u_1 + \cdots + u_m) = \cdots = (v_1 - u_1) + \cdots + (v_m - u_m).
$$

But we also have $0 = 0 + \cdots + 0$, so since this expression is unique, we must have v_i − $u_i = 0$, i.e., $v_i = u_i$ for all *i*. Thus the expression for *v* is unique. □

Proposition 2. $V_1 + V_2$ *is a direct sum iff* $V_1 \cap V_2 = \{0\}.$

Proof. Exercise. □

[Ask students what $U_1 \cap U_2$ was in first example, where

$$
U_1 := \{ (s, s, t, t) \in \mathbb{F}^4 : s, t \in \mathbb{F} \}
$$

$$
U_2 := \{ (s, s, s, t) \in \mathbb{F}^4 : s, t \in \mathbb{F} \}.
$$

 \mathbf{I}

(1:20)