18.700 - LINEAR ALGEBRA, DAY 3 VECTOR SPACES

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will observe the algebraic properties of \mathbb{R}^n and \mathbb{C}^n .
- (2) Students will learn the definition of an abstract vector space.
- (3) Students will see some examples of often-used vector spaces.
- (4) Students will start or continue learning how to write proofs.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • First pset due tomorrow. • Second pset posted later today.

II.1. **Last time.**

- Wrote down row reduction algorithm
- Applied algorithm to solve examples of linear systems
- Wrote solution sets in parametric form
- Characterized the possibilities for the number of solutions to linear systems (no solutions, unique solution, infinitely many solutions) in terms of the RREF of the corresponding augmented matrix

(0:05) II.2. **1A:** \mathbb{R}^n and \mathbb{C}^n . [Now following Axler, Chapter 1.]

The notion of a vector space was created to abstract many objects that share similar properties. The most classical example of vector spaces are **R** 2 and **R** 3 , thought of as the real plane and real 3-space. We begin by generalizing these to higher dimensions.

II.2.1. *Definitions.*

Definition 1.

- Let *n* ∈ **Z**≥⁰ be a nonnegative integer. An *n-tuple* or *list* of *length n* is an ordered collection of *n* elements.
- Two lists are equal if they have the same length and the same entries in the same order.

Remark 1.

- Lists are usually written in the form (z_1, z_2, \ldots, z_n) . Note that lists must have **finite length**! The object $(z_1, z_2, ...)$ is not a list, but rather an infinite sequence.
- Unlike sets, the order and multiplicities of elements in tuples matters! So $\{2,3\}$ = $\{3,2\}$ and $\{4,4,4\} = \{4\}$, but $(2,3) \neq (3,2)$ and $(4,4,4) \neq (4)$.

For the rest of the lecture, fix $n \in \mathbb{Z}_{>0}$.

Definition 2. Let \mathbb{F}^n be the set of all *n*-tuples with entries in \mathbb{F} :

$$
\mathbb{F}^n := \left\{ (x_1, \ldots, x_n) : x_k \in \mathbb{F} \text{ for all } k = 1, \ldots, n \right\}.
$$

Given $(x_1, \ldots, x_n) \in \mathbb{F}^n$, its k^{th} coordinate or entry is x_k .

Remark 2. It is sometimes convenient to write elements of \mathbb{F}^n vertically, as column vectors.

Example 1. $\mathbb{C}^{17} = \{(z_1, ..., z_{17}) : z_1, ..., z_{17} \in \mathbb{C}\}$. [Can't visualize it, but still makes sense algebraically.]

(0:15)

II.2.2. *Algebraic properties of* \mathbb{F}^n *.*

- (1) Addition operation
- (2) 0-vector
- (3) Additive inverses
- (4) Scalar multiplication
- (5) Commutativity of addition

[Draw examples in \mathbb{R}^2 to illustrate geometric intuition behind (1), (3), and (4). Prove commutativity of addition.]

(0:25)

II.3. **Abstract vector spaces.** Now that we've observed some of the algebraic properties of \mathbb{F}^n , we're going to give an abstract definition of a vector space as something with these properties, i.e.,a set equipped with addition and scalar multiplication operations satisfying some conditions.

Definition 3. A *vector space* is a set *V* equipped with an addition operation

$$
+ : V \times V \to V
$$

$$
(u, v) \mapsto u + v
$$

and a scalar multiplication operation

$$
\mathbb{F} \times V \to V
$$

$$
(\lambda, v) \mapsto \lambda v
$$

satisfying the following properties.

(1) (Associativity of addition):

$$
(u+v)+w=u+(v+w)
$$

for all $u, v, w \in V$.

- (2) (Additive identity): There exists an element $0 \in V$ such that $v + 0 = 0 + v = v$ for all $v \in V$.
- (3) (Additive inverses): For each $v \in V$, there exists $w \in V$ such that $v + w = w + v =$ Ω .
- (4) (Commutative of addition): $u + v = v + u$ for all $u, v \in V$.
- (5) (Scalar multiplicative identity): $1 v = v$ for all $v \in V$.
- (6) (Associativity of scalar multiplication): $a(bv) = (ab)v$ for all $a, b \in \mathbb{F}$ and $v \in V$.
- (7) (Distributive laws): [ask students]
	- (a) $a(u + v) = au + av$ for all $a \in \mathbb{F}$ and all $u, v \in V$.
	- (b) $(a + b)v = av + bv$ for all $a, b \in F$ and all $v \in V$.

Elements of a vector space are called *vectors*. [Tell engineer, physicist, mathematician joke.]

Remark 3. Structures satisfying (1), (2), (3) are called *groups*; structures satisfying (1), (2), (3), (4) are called *abelian groups*.

Remark 4. Elements of **F** are sometimes called *scalars*. When we need to specify the underlying field, we will say that *V* is a *vector space over* **F** or an **F***-vector space*.

(0:40) Example 2.

- **R** 2 is a vector space over **R**.
- The *zero vector space* or *trivial vector space* is the set {0} consisting of just the zero vector. Exercise: Check that it satisfies the axioms of a vector space.
- Let

$$
\mathbb{F}^{\infty} := \{ (x_1, x_2, \ldots) : x_k \in \mathbb{F} \text{ for all } k = 1, 2, \ldots \},
$$

with addition and scalar multiplication defined componentwise:

$$
(x_1, x_2, \ldots) + (y_1, y_2, \ldots) = \cdots
$$

$$
\lambda(x_1, x_2, \ldots) = \cdots.
$$

Exercise: Check that **F** [∞] satisfies the axioms of a vector space. What is the zero vector?

• Let *S* be any set. Define

$$
\mathbb{F}^S := \{ f : S \to \mathbb{F} \}
$$

with addition and scalar multiplication defined pointwise, i.e., for any $f,g\in\mathbb{F}^S$ and any $\lambda \in \mathbb{F}$

$$
(f+g)(x) := f(x) + g(x)(\lambda f)(x) := \lambda f(x)
$$

for all $x \in S$.

Exercise: \mathbb{F}^S is a vector space.

Remark 5. One can view \mathbb{F}^n as \mathbb{F}^S where $S = \{1, 2, ..., n\}$.

$$
\mathbb{F}^{S} \longleftrightarrow \mathbb{F}^{n}
$$

($f : S \rightarrow \mathbb{F}$) \longmapsto ($f(1), f(2),..., f(n)$)
($g : S \rightarrow \mathbb{F}$) \longleftarrow ($x_1, x_2,..., x_n$)
 $k \mapsto x_k$

One can similarly view \mathbb{F}^{∞} as \mathbb{F}^S where $S = \mathbb{Z}_{>0} = \{1, 2, \ldots\}$. Later we'll give a more formal definition of when two vector spaces are "the same"; the precise term is *isomorphic*.

(0:50) Henceforth, unless otherwise mentioned, *V* is a vector space over **F**.

Lemma 1. *Every vector space has a* unique *additive identity.*

Proof. Let *V* be a vector space and suppose $0, 0' \in V$ are both additive identity elements. Then [start in the middle]

$$
0=0+0^{\prime }=0^{\prime };
$$

the first equality follows because $0'$ is an additive identity, and the second because 0 is. $\;\;\Box$

Lemma 2. *Every element of a vector space has a unique additive inverse.*

Proof. Worksheet. □

Since additive inverses are unique, then we can unambiguously write −*v*:

Definition 4. Given $v, w \in V$, we define:

• −*v* to be the additive inverse of *v*;

• $w - v := w + (-v)$.

Lemma 3.

- For all $v \in V$, we have $0 v = 0$.
- For all $a \in \mathbb{F}$ *, we have* $a \cdot 0 = 0$ *.*

[Remark on 0 *the scalar vs* 0 *the vector.]*

Proof. Worksheet. □

Lemma 4. For all $v \in V$, we have $(-1)v = -v$.

Proof. Given $v \in V$, then

$$
v+(-1)v=1 v+(-1)v=(1+(-1))v=0 v=0.
$$

II.4. **Worksheet.(1:00)**

II.5. **Subspaces.** Given a vector space *V*, it is often useful to consider smaller vector spaces that are contained inside *V*. We call these subspaces. [Draw picture of a line (1:10) through the origin inside \mathbb{R}^2 .]

Definition 5. A subset $U \subseteq V$ is called a *(vector) subspace* if *U* is also a vector space when considered with the same addition, scalar multiplication, and additive identity as *V*.

Remark 6.

- Also sometimes known as *linear subspaces*.
- {0} and *V* itself are always subspaces of a vector space *V*.

To check if a subset $U \subseteq V$ is a subspace, it's not necessary to check all the vector space axioms. We get some for free from knowing already that *V* is a vector space.

Proposition 1 (Subspace criterion). A subset $U \subseteq V$ is a subspace of V iff U satisfies the *following.*

- (i) 0 ∈ *U*.
- *(ii) U* is closed under addition, i.e., if $u, v \in U$, then $u + v \in U$.
- *(iii) U* is closed under scalar multiplication, i.e., if $a \in \mathbb{F}$ and $u \in U$, then au $\in U$.

Proof. Suppose $U \subseteq V$.

(⇒): Suppose *U* is a subspace. Then *U* must satisfy the 3 conditions above by the definition of a vector space.

 (\Leftarrow) : Now suppose that *U* satisfies the 3 conditions above. The conditions (ii) and (iii) ensure that the restrictions of addition and scalar multiplication give well-defined binary operations

$$
+: U \times U \to U \qquad \mathbb{F} \times U \to U.
$$

Since *V* is a vector space, then its addition is associative and commutative, so the same is true for *U* ((1) and (4)). Similarly, the distrubitive laws (7) and scalar multiplicativity (5) hold for *U*.

By (i), $0 \in U$ (2). Given $u \in U$, then

$$
(-1)u = -u \in U
$$

by (iii), so *U* has additive inverses (3). \Box

(1:20) Let's apply this criterion to some examples.

□

Example 3. • Let $V := \mathbb{F}^2$ and

$$
U := \{(x_1, x_2) \in \mathbb{F}^2 \mid 3x_1 - x_2 = 0\}
$$

[Check 3 conditions. Ask students what the zero vector is, how to start proofs of (ii) and (iii) .]

• Let

 $V := \{f : [0,1] \rightarrow \mathbb{R} \mid f \text{ is continuous}\},\$

which is a subset of $\mathbb{R}^{[0,1]}.$

• Let

 $V := \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable}\},\$

which is a subset of $\mathbb{R}^{\mathbb{R}}$.

(1:30) II.5.1. *Sums of subspaces.*

It's sometimes useful to combine two subspaces V_1 , V_2 of *V*. However, the union $V_1 \cup V_2$ is rarely itself a subspace. [Draw picture of example using **R** 2 and coordinate axes as subspaces.] We instead can define their sum.

Definition 6. Given subspaces V_1, \ldots, V_m of *V*, their *sum* is

$$
V_1 + \cdots + V_m := \{v_1 + \cdots + v_m : v_1 \in V_1, \ldots, v_m \in V_m\},
$$

i.e., the set of all possible sums of elements of V_1, \ldots, V_m .

Lemma 5. *With notation as above,* $V_1 + \cdots + V_m$ *is a subspace of V*.

Proof. Exercise. □