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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will observe the algebraic properties of Rn and Cn.
(2) Students will learn the definition of an abstract vector space.
(3) Students will see some examples of often-used vector spaces.
(4) Students will start or continue learning how to write proofs.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN(0:00)
Announcements: • First pset due tomorrow. • Second pset posted later today.

II.1. Last time.
• Wrote down row reduction algorithm
• Applied algorithm to solve examples of linear systems
• Wrote solution sets in parametric form
• Characterized the possibilities for the number of solutions to linear systems (no

solutions, unique solution, infinitely many solutions) in terms of the RREF of the
corresponding augmented matrix

II.2. 1A: Rn and Cn. [Now following Axler, Chapter 1.](0:05)
The notion of a vector space was created to abstract many objects that share similar

properties. The most classical example of vector spaces are R2 and R3, thought of as the
real plane and real 3-space. We begin by generalizing these to higher dimensions.

II.2.1. Definitions.

Definition 1.
• Let n ∈ Z≥0 be a nonnegative integer. An n-tuple or list of length n is an ordered

collection of n elements.
• Two lists are equal if they have the same length and the same entries in the same

order.

Remark 1.
• Lists are usually written in the form (z1, z2, . . . , zn). Note that lists must have finite

length! The object (z1, z2, . . .) is not a list, but rather an infinite sequence.
• Unlike sets, the order and multiplicities of elements in tuples matters! So {2, 3} =
{3, 2} and {4, 4, 4} = {4}, but (2, 3) ̸= (3, 2) and (4, 4, 4) ̸= (4).

For the rest of the lecture, fix n ∈ Z>0.

Definition 2. Let Fn be the set of all n-tuples with entries in F:

Fn := {(x1, . . . , xn) : xk ∈ F for all k = 1, . . . , n} .

Given (x1, . . . , xn) ∈ Fn, its kth coordinate or entry is xk.

Remark 2. It is sometimes convenient to write elements of Fn vertically, as column vec-
tors.

Example 1. C17 = {(z1, . . . , z17) : z1, . . . , z17 ∈ C}. [Can’t visualize it, but still makes
sense algebraically.]

(0:15)
II.2.2. Algebraic properties of Fn.

(1) Addition operation
(2) 0-vector
(3) Additive inverses
(4) Scalar multiplication
(5) Commutativity of addition
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[Draw examples in R2 to illustrate geometric intuition behind (1), (3), and (4). Prove
commutativity of addition.]

(0:25)
II.3. Abstract vector spaces. Now that we’ve observed some of the algebraic properties
of Fn, we’re going to give an abstract definition of a vector space as something with
these properties, i.e.,a set equipped with addition and scalar multiplication operations
satisfying some conditions.

Definition 3. A vector space is a set V equipped with an addition operation

+ : V ×V → V
(u, v) 7→ u + v

and a scalar multiplication operation

F×V → V
(λ, v) 7→ λv

satisfying the following properties.
(1) (Associativity of addition):

(u + v) + w = u + (v + w)

for all u, v, w ∈ V.
(2) (Additive identity): There exists an element 0 ∈ V such that v + 0 = 0 + v = v for

all v ∈ V.
(3) (Additive inverses): For each v ∈ V, there exists w ∈ V such that v + w = w + v =

0.
(4) (Commutative of addition): u + v = v + u for all u, v ∈ V.
(5) (Scalar multiplicative identity): 1 v = v for all v ∈ V.
(6) (Associativity of scalar multiplication): a(bv) = (ab)v for all a, b ∈ F and v ∈ V.
(7) (Distributive laws): [ask students]

(a) a(u + v) = au + av for all a ∈ F and all u, v,∈ V.
(b) (a + b)v = av + bv for all a, b ∈ F and all v ∈ V.

Elements of a vector space are called vectors. [Tell engineer, physicist, mathematician
joke.]

Remark 3. Structures satisfying (1), (2), (3) are called groups; structures satisfying (1), (2),
(3), (4) are called abelian groups.

Remark 4. Elements of F are sometimes called scalars. When we need to specify the
underlying field, we will say that V is a vector space over F or an F-vector space.

Example 2.(0:40)
• R2 is a vector space over R.
• The zero vector space or trivial vector space is the set {0} consisting of just the zero

vector. Exercise: Check that it satisfies the axioms of a vector space.
• Let

F∞ := {(x1, x2, . . .) : xk ∈ F for all k = 1, 2, . . .} ,
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with addition and scalar multiplication defined componentwise:

(x1, x2, . . .) + (y1, y2, . . .) = · · ·
λ(x1, x2, . . .) = · · · .

Exercise: Check that F∞ satisfies the axioms of a vector space. What is the zero
vector?
• Let S be any set. Define

FS := { f : S→ F}
with addition and scalar multiplication defined pointwise, i.e., for any f , g ∈ FS

and any λ ∈ F

( f + g)(x) := f (x) + g(x)(λ f )(x) := λ f (x)

for all x ∈ S.
Exercise: FS is a vector space.

Remark 5. One can view Fn as FS where S = {1, 2, . . . , n}.
FS ←→ Fn

( f : S→ F) 7−→ ( f (1), f (2), . . . , f (n))
(g : S→ F)←− [ (x1, x2, . . . , xn)

k 7→ xk

One can similarly view F∞ as FS where S = Z>0 = {1, 2, . . .}. Later we’ll give a more
formal definition of when two vector spaces are “the same”; the precise term is isomorphic.

Henceforth, unless otherwise mentioned, V is a vector space over F.(0:50)

Lemma 1. Every vector space has a unique additive identity.

Proof. Let V be a vector space and suppose 0, 0′ ∈ V are both additive identity elements.
Then [start in the middle]

0 = 0 + 0′ = 0′;
the first equality follows because 0′ is an additive identity, and the second because 0 is. □

Lemma 2. Every element of a vector space has a unique additive inverse.

Proof. Worksheet. □

Since additive inverses are unique, then we can unambiguously write −v:

Definition 4. Given v, w ∈ V, we define:
• −v to be the additive inverse of v;
• w− v := w + (−v).

Lemma 3.
• For all v ∈ V, we have 0 v = 0.
• For all a ∈ F, we have a · 0 = 0.

[Remark on 0 the scalar vs 0 the vector.]
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Proof. Worksheet. □

Lemma 4. For all v ∈ V, we have (−1)v = −v.

Proof. Given v ∈ V, then

v + (−1)v = 1 v + (−1)v = (1 + (−1))v = 0 v = 0 .

□

II.4. Worksheet.(1:00)

II.5. Subspaces. Given a vector space V, it is often useful to consider smaller vector
spaces that are contained inside V. We call these subspaces. [Draw picture of a line
through the origin inside R2.](1:10)

Definition 5. A subset U ⊆ V is called a (vector) subspace if U is also a vector space when
considered with the same addition, scalar multiplication, and additive identity as V.

Remark 6.
• Also sometimes known as linear subspaces.
• {0} and V itself are always subspaces of a vector space V.

To check if a subset U ⊆ V is a subspace, it’s not necessary to check all the vector space
axioms. We get some for free from knowing already that V is a vector space.

Proposition 1 (Subspace criterion). A subset U ⊆ V is a subspace of V iff U satisfies the
following.

(i) 0 ∈ U.
(ii) U is closed under addition, i.e., if u, v ∈ U, then u + v ∈ U.

(iii) U is closed under scalar multiplication, i.e., if a ∈ F and u ∈ U, then au ∈ U.

Proof. Suppose U ⊆ V.
(⇒): Suppose U is a subspace. Then U must satisfy the 3 conditions above by the

definition of a vector space.
(⇐): Now suppose that U satisfies the 3 conditions above. The conditions (ii) and (iii)

ensure that the restrictions of addition and scalar multiplication give well-defined binary
operations

+ : U ×U → U F×U → U .

Since V is a vector space, then its addition is associative and commutative, so the same is
true for U ((1) and (4)). Similarly, the distrubitive laws (7) and scalar multiplicativity (5)
hold for U.

By (i), 0 ∈ U (2). Given u ∈ U, then

(−1)u = −u ∈ U

by (iii), so U has additive inverses (3). □

Let’s apply this criterion to some examples.(1:20)
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Example 3. • Let V := F2 and

U := {(x1, x2) ∈ F2 | 3x1 − x2 = 0}
[Check 3 conditions. Ask students what the zero vector is, how to start proofs of
(ii) and (iii).]
• Let

V := { f : [0, 1]→ R | f is continuous},
which is a subset of R[0,1].
• Let

V := { f : R→ R | f is differentiable},
which is a subset of RR.

II.5.1. Sums of subspaces.(1:30)
It’s sometimes useful to combine two subspaces V1, V2 of V. However, the union V1∪V2

is rarely itself a subspace. [Draw picture of example using R2 and coordinate axes as
subspaces.] We instead can define their sum.

Definition 6. Given subspaces V1, . . . , Vm of V, their sum is

V1 + · · ·+ Vm := {v1 + · · ·+ vm : v1 ∈ V1, . . . , vm ∈ Vm} ,

i.e., the set of all possible sums of elements of V1, . . . , Vm.

Lemma 5. With notation as above, V1 + · · ·+ Vm is a subspace of V.

Proof. Exercise. □
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