18.700 - LINEAR ALGEBRA, DAY 3 VECTOR SPACES

SAM SCHIAVONE

Contents

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 1A: \mathbb{R}^n and \mathbb{C}^n	2
II.3. Abstract vector spaces	3
II.4. Worksheet	5
II.5. Subspaces	5

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will observe the algebraic properties of \mathbb{R}^n and \mathbb{C}^n .
- (2) Students will learn the definition of an abstract vector space.
- (3) Students will see some examples of often-used vector spaces.
- (4) Students will start or continue learning how to write proofs.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

Announcements: • First pset due tomorrow. • Second pset posted later today.

II.1. Last time.

- Wrote down row reduction algorithm
- Applied algorithm to solve examples of linear systems
- Wrote solution sets in parametric form
- Characterized the possibilities for the number of solutions to linear systems (no solutions, unique solution, infinitely many solutions) in terms of the RREF of the corresponding augmented matrix

(0:05) II.2. 1A: \mathbb{R}^n and \mathbb{C}^n . [Now following Axler, Chapter 1.]

The notion of a vector space was created to abstract many objects that share similar properties. The most classical example of vector spaces are \mathbb{R}^2 and \mathbb{R}^3 , thought of as the real plane and real 3-space. We begin by generalizing these to higher dimensions.

II.2.1. Definitions.

Definition 1.

- Let *n* ∈ ℤ_{≥0} be a nonnegative integer. An *n*-tuple or list of length *n* is an ordered collection of *n* elements.
- Two lists are equal if they have the same length and the same entries in the same order.

Remark 1.

- Lists are usually written in the form (*z*₁, *z*₂, ..., *z*_n). Note that lists must have **finite** length! The object (*z*₁, *z*₂, ...) is not a list, but rather an infinite sequence.
- Unlike sets, the order and multiplicities of elements in tuples matters! So $\{2,3\} = \{3,2\}$ and $\{4,4,4\} = \{4\}$, but $(2,3) \neq (3,2)$ and $(4,4,4) \neq (4)$.

For the rest of the lecture, fix $n \in \mathbb{Z}_{>0}$.

Definition 2. Let \mathbb{F}^n be the set of all *n*-tuples with entries in \mathbb{F} :

$$\mathbb{F}^n := \{(x_1, \ldots, x_n) : x_k \in \mathbb{F} \text{ for all } k = 1, \ldots, n\}.$$

Given $(x_1, \ldots, x_n) \in \mathbb{F}^n$, its k^{th} coordinate or entry is x_k .

Remark 2. It is sometimes convenient to write elements of \mathbb{F}^n vertically, as column vectors.

Example 1. $\mathbb{C}^{17} = \{(z_1, \ldots, z_{17}) : z_1, \ldots, z_{17} \in \mathbb{C}\}$. [Can't visualize it, but still makes sense algebraically.]

(0:15)

II.2.2. Algebraic properties of \mathbb{F}^n .

- (1) Addition operation
- (2) 0-vector
- (3) Additive inverses
- (4) Scalar multiplication
- (5) Commutativity of addition

(0:00)

[Draw examples in \mathbb{R}^2 to illustrate geometric intuition behind (1), (3), and (4). Prove commutativity of addition.]

(0:25)

II.3. **Abstract vector spaces.** Now that we've observed some of the algebraic properties of \mathbb{F}^n , we're going to give an abstract definition of a vector space as something with these properties, i.e., a set equipped with addition and scalar multiplication operations satisfying some conditions.

Definition 3. A *vector space* is a set *V* equipped with an addition operation

$$\begin{aligned} +: V \times V \to V \\ (u, v) \mapsto u + v \end{aligned}$$

and a scalar multiplication operation

$$\mathbb{F} \times V \to V
(\lambda, v) \mapsto \lambda v$$

satisfying the following properties.

(1) (Associativity of addition):

$$(u+v) + w = u + (v+w)$$

for all $u, v, w \in V$.

- (2) (Additive identity): There exists an element $0 \in V$ such that v + 0 = 0 + v = v for all $v \in V$.
- (3) (Additive inverses): For each $v \in V$, there exists $w \in V$ such that v + w = w + v = 0.
- (4) (Commutative of addition): u + v = v + u for all $u, v \in V$.
- (5) (Scalar multiplicative identity): 1v = v for all $v \in V$.
- (6) (Associativity of scalar multiplication): a(bv) = (ab)v for all $a, b \in \mathbb{F}$ and $v \in V$.
- (7) (Distributive laws): [ask students]
 - (a) a(u+v) = au + av for all $a \in \mathbb{F}$ and all $u, v, \in V$.
 - (b) (a+b)v = av + bv for all $a, b \in F$ and all $v \in V$.

Elements of a vector space are called *vectors*. [Tell engineer, physicist, mathematician joke.]

Remark 3. Structures satisfying (1), (2), (3) are called *groups*; structures satisfying (1), (2), (3), (4) are called *abelian groups*.

Remark 4. Elements of \mathbb{F} are sometimes called *scalars*. When we need to specify the underlying field, we will say that *V* is a *vector space over* \mathbb{F} or an \mathbb{F} -*vector space*.

(0:40) Example 2.

- \mathbb{R}^2 is a vector space over \mathbb{R} .
- The *zero vector space* or *trivial vector space* is the set {0} consisting of just the zero vector. Exercise: Check that it satisfies the axioms of a vector space.
- Let

$$\mathbb{F}^{\infty} := \left\{ (x_1, x_2, \ldots) : x_k \in \mathbb{F} \text{ for all } k = 1, 2, \ldots \right\},\$$

with addition and scalar multiplication defined componentwise:

$$(x_1, x_2, \ldots) + (y_1, y_2, \ldots) = \cdots$$

 $\lambda(x_1, x_2, \ldots) = \cdots$

Exercise: Check that \mathbb{F}^∞ satisfies the axioms of a vector space. What is the zero vector?

• Let *S* be any set. Define

$$\mathbb{F}^S := \{f : S \to \mathbb{F}\}$$

with addition and scalar multiplication defined pointwise, i.e., for any $f, g \in \mathbb{F}^S$ and any $\lambda \in \mathbb{F}$

$$(f+g)(x) := f(x) + g(x)(\lambda f)(x) := \lambda f(x)$$

for all $x \in S$.

Exercise: \mathbb{F}^{S} is a vector space.

Remark 5. One can view \mathbb{F}^n as \mathbb{F}^S where $S = \{1, 2, ..., n\}$.

$$\mathbb{F}^{S} \longleftrightarrow \mathbb{F}^{n}$$

$$(f: S \to \mathbb{F}) \longmapsto (f(1), f(2), \dots, f(n))$$

$$(g: S \to \mathbb{F}) \longleftrightarrow (x_{1}, x_{2}, \dots, x_{n})$$

$$k \mapsto x_{k}$$

One can similarly view \mathbb{F}^{∞} as \mathbb{F}^{S} where $S = \mathbb{Z}_{>0} = \{1, 2, ...\}$. Later we'll give a more formal definition of when two vector spaces are "the same"; the precise term is *isomorphic*.

(0:50) Henceforth, unless otherwise mentioned, V is a vector space over \mathbb{F} .

Lemma 1. Every vector space has a unique additive identity.

Proof. Let *V* be a vector space and suppose $0, 0' \in V$ are both additive identity elements. Then [start in the middle]

$$0 = 0 + 0' = 0';$$

the first equality follows because 0' is an additive identity, and the second because 0 is. \Box

Lemma 2. Every element of a vector space has a unique additive inverse.

Proof. Worksheet.

Since additive inverses are unique, then we can unambiguously write -v:

Definition 4. Given $v, w \in V$, we define:

• -v to be the additive inverse of v;

• w - v := w + (-v).

Lemma 3.

- For all $v \in V$, we have 0v = 0.
- For all $a \in \mathbb{F}$, we have $a \cdot 0 = 0$.

[Remark on 0 the scalar vs 0 the vector.]

Proof. Worksheet.

Lemma 4. For all $v \in V$, we have (-1)v = -v.

Proof. Given $v \in V$, then

$$v + (-1)v = 1v + (-1)v = (1 + (-1))v = 0v = 0.$$

(1:00) II.4. Worksheet.

(1:10)

II.5. **Subspaces.** Given a vector space *V*, it is often useful to consider smaller vector spaces that are contained inside *V*. We call these subspaces. [Draw picture of a line through the origin inside \mathbb{R}^2 .]

Definition 5. A subset $U \subseteq V$ is called a (*vector*) *subspace* if U is also a vector space when considered with the same addition, scalar multiplication, and additive identity as V.

Remark 6.

- Also sometimes known as *linear subspaces*.
- {0} and *V* itself are always subspaces of a vector space *V*.

To check if a subset $U \subseteq V$ is a subspace, it's not necessary to check all the vector space axioms. We get some for free from knowing already that *V* is a vector space.

Proposition 1 (Subspace criterion). A subset $U \subseteq V$ is a subspace of V iff U satisfies the following.

(*i*) $0 \in U$.

(*ii*) *U* is closed under addition, i.e., if $u, v \in U$, then $u + v \in U$.

(iii) U is closed under scalar multiplication, i.e., if $a \in \mathbb{F}$ and $u \in U$, then $au \in U$.

Proof. Suppose $U \subseteq V$.

 (\Rightarrow) : Suppose *U* is a subspace. Then *U* must satisfy the 3 conditions above by the definition of a vector space.

(\Leftarrow): Now suppose that *U* satisfies the 3 conditions above. The conditions (ii) and (iii) ensure that the restrictions of addition and scalar multiplication give well-defined binary operations

$$+: U \times U \to U \qquad \mathbb{F} \times U \to U.$$

Since *V* is a vector space, then its addition is associative and commutative, so the same is true for U ((1) and (4)). Similarly, the distrubitive laws (7) and scalar multiplicativity (5) hold for *U*.

By (i), $0 \in U$ (2). Given $u \in U$, then

$$(-1)u = -u \in U$$

by (iii), so *U* has additive inverses (3).

(1:20) Let's apply this criterion to some examples.

Example 3. • Let $V := \mathbb{F}^2$ and

$$U := \{ (x_1, x_2) \in \mathbb{F}^2 \mid 3x_1 - x_2 = 0 \}$$

[Check 3 conditions. Ask students what the zero vector is, how to start proofs of (ii) and (iii).]

• Let

 $V := \{ f : [0,1] \to \mathbb{R} \mid f \text{ is continuous} \},\$

which is a subset of $\mathbb{R}^{[0,1]}$.

• Let

 $V := \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable} \},\$

which is a subset of $\mathbb{R}^{\mathbb{R}}$.

(1:30) II.5.1. Sums of subspaces.

It's sometimes useful to combine two subspaces V_1 , V_2 of V. However, the union $V_1 \cup V_2$ is rarely itself a subspace. [Draw picture of example using \mathbb{R}^2 and coordinate axes as subspaces.] We instead can define their sum.

Definition 6. Given subspaces V_1, \ldots, V_m of V, their *sum* is

$$V_1 + \cdots + V_m := \{v_1 + \cdots + v_m : v_1 \in V_1, \dots, v_m \in V_m\},\$$

i.e., the set of all possible sums of elements of V_1, \ldots, V_m .

Lemma 5. With notation as above, $V_1 + \cdots + V_m$ is a subspace of V.

Proof. Exercise.