18.700 - LINEAR ALGEBRA, DAY 24 BILINEAR AND MULTILINEAR FORMS DETERMINANTS

SAM SCHIAVONE

Contents

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. Worksheet	2
II.3. 9B: Multilinear forms	2
II.4. 9C: Determinants	6

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the definitions of an inversion and the sign of a permutation.
- (2) Students will learn how permuting the entries affects the value of an alternating multilinear form.
- (3) Students will learn properties of the determinant, such as multiplicativity, interpretation as product of eigenvalues, etc.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

II.1. Last time.

- Proved that every linear map has Jordan basis.
- Defined trace: $tr(A) = \sum_{i=1}^{n} A_{ii}$.
- Proved properties of trace. [Ask students about trace and eigenvalues.]
- Defined multilinear forms.

II.2. Worksheet.

m times

II.3. **9B: Multilinear forms.** Notation: $V^m = V \times \cdots \times V$. So an element of V^m is of the form (v_1, \ldots, v_m) with $v_i \in V$ for all *i*.

• An *m*-linear form on *V* is a function $\beta : V^m \to \mathbb{F}$ that is linear in each component when the others are held fixed. I.e., for each $k \in \{1, ..., m\}$ and $u_1, ..., u_m \in V$, the map

$$V \to \mathbb{F}$$

 $v \mapsto \beta(u_1, \dots, u_{k-1}, v, u_{k+1}, \dots, u_m)$

is linear.

• An *m*-linear form $\alpha \in V^{(m)}$ is *alternating* if $\alpha(v_1, \ldots, v_m) = 0$ whenever $v_j = v_k$ for some $j, k \in \{1, \ldots, m\}$ with $j \neq k$.

Lemma 1. $V^{(m)}$ is a vector space, and $V^{(m)}_{alt}$ is a subspace.

Proof. Exercise.

Lemma 2. Let $\alpha \in V_{\text{alt}}^{(m)}$. If $v_1, \ldots, v_m \in V$ is linearly dependent, then $\alpha(v_1, \ldots, v_m) = 0$.

Proof idea. Use the Linear Dependence Lemma to express v_k as a linear combination of the others. Then use multilinearity and alternating property. Details left as an exercise.

Proposition 3. Let $\alpha \in V_{alt}^{(m)}$ and $v_1, \ldots, v_m \in V$. Swapping the vectors in any two slots of $\alpha(v_1, \ldots, v_m)$ changes the value by a factor of -1.

Proof idea. For simplicity, suppose m = 2. Then

$$0 = \alpha(v + w, v + w) = \underline{\alpha(v, v)}^{0} + \alpha(v, w) + \alpha(w, v) + \underline{\alpha(w, w)}^{0}.$$

The proof is virtually the same for $m \ge 2$.

<u>Q</u>: What if we perform multiple swaps? For example, suppose that $\alpha \in V_{alt}^{(3)}$ and $v_1, v_2, v_3 \in V$. Then

$$\alpha(v_3, v_1, v_2) = -\alpha(v_1, v_3, v_2) = \alpha(v_1, v_2, v_3).$$

This leads us to investigate more general permutations.

Definition 4. Let $m \in \mathbb{Z}_{>0}$.

(0:00)

- A *permutation* of (1, ..., m) is a rearrangement of (1, ..., m), i.e., a list $(j_1, ..., j_m)$ that contains each of 1, ..., m exactly once.
- Denote the set of all permutations of (1, ..., m) by perm(m) or S_m . (The *symmetric group* on 1, ..., m.)

Example 5. $(2, 1, 4, 3) \in \text{perm}(4)$.

Definition 6. Suppose $(j_1, \ldots, j_m) \in \text{perm}(m)$.

- An *inversion* of (j_1, \ldots, j_m) is a pair of integers (k, ℓ) with $k, \ell \in \{1, \ldots, m\}$ such that $k < \ell$ and k appears *after* ℓ in the list (j_1, \ldots, j_m) .
- Let *N* be the number of inversions of (j_1, \ldots, j_m) . The *sign* of (j_1, \ldots, j_m) is

$$\operatorname{sgn}(j_1,\ldots,j_m) := (-1)^N$$

Example 7.

- Consider (2, 1, 3, 4) ∈ perm(4). It has exactly one inversion, namely (1, 2), so it has sign (-1)¹ = -1.
- The permutation (1, ..., m) has no inversions (the numbers are all in increasing order), so it has sign $(-1)^0 = 1$.
- Consider the permutation (2, 3, ..., *m*, 1). Its inversions are

$$(1,2), (1,3), \ldots, (1,m)$$

so it has sign $(-1)^{m-1}$.

Proposition 8. *Swapping two entries in a permutation multiplies the sign of the permutation by* -1.

Proof sketch. [Shorten or skip, if necessary.] Let π be the original permutation, and π' be the permutation obtained from swapping the *i*th and *j*th entries of π . Denote the *i*th entry of π by $\pi(i)$. Then $\pi(i) < \pi(j)$ iff $\pi'(i) > \pi'(j)$, so we have either added or subtracted exactly 1 inversion so far.

Consider the entries not in between the i^{th} and j^{th} spots. For these entries, there is no change in whether they were in order or not. [Draw picture.]

Now consider $\pi(k)$ with i < k < j.

<u>Case 1</u>: $\pi(k)$ was in order with respect to both $\pi(i)$ and $\pi(j)$, i.e., $\pi(i) < \pi(k) < \pi(j)$. Then

$$\pi'(i) > \pi'(k) > \pi'(j)$$

so we have 2 more inversions, multiplying the sign by $(-1)^2 = 1$.

<u>Case 2</u>: $\pi(i) > \pi(k) > \pi(j)$. Similar.

<u>Case 3</u>: $\pi(i) < \pi(k)$ and $\pi(k) > \pi(j)$. Then

$$\pi'(i) = \pi(j) < \pi(k) = \pi'(k) \pi'(k) = \pi(k) > \pi(i) = \pi'(j)$$

so we have the same number of inversions that we started with, and the sign is unchanged.

<u>Case 4</u>: $\pi(i) > \pi(k)$ and $\pi(k) < \pi(j)$. Similar.

Thus in all cases we have an odd number of inversions, so $sign(\pi') = -sign(\pi)$. \Box

Proposition 9. Suppose $m \in \mathbb{Z}_{>0}$ and $\alpha \in V_{alt}^{(m)}$. Then

 $\alpha(v_{j_1},\ldots,v_{j_m})=\operatorname{sign}(j_1,\ldots,j_m)\alpha(v_1,\ldots,v_m)$

Proof idea. We can get from $(j_1, ..., j_m)$ to (1, ..., m) by a series of swaps. Each swap changes the sign of α by a factor of -1, and also changes the sign of the remaining permutation by a factor of -1.

Theorem 10. Let $n := \dim(V)$. Suppose e_1, \ldots, e_n is a basis of V. Suppose $v_1, \ldots, v_n \in V$. For each k, write

$$v_k = \sum_{j=1}^n b_{j,k} e_j$$

for some $b_{1,k}, \ldots, b_{n,k} \in \mathbb{F}$. Then

$$\alpha(v_1,\ldots,v_n) = \alpha(e_1,\ldots,e_n) \sum_{(j_1,\ldots,j_n)\in \operatorname{perm}(n)} \operatorname{sign}(j_1,\ldots,j_n) b_{j_1,1}\cdots b_{j_n,n}$$

for all $\alpha \in V_{\text{alt}}^{(n)}$.

Proof.

$$\begin{aligned} \alpha(v_1, \dots, v_n) &= \alpha \left(\sum_{j_1=1}^n b_{j_1,1} e_{j_1}, \dots \sum_{j_n=1}^n b_{j_n,1} e_{j_n} \right) = \sum_{j_1=1}^n \dots \sum_{j_n=1}^n b_{j_1,1} \dots b_{j_n,n} \alpha(e_{j_1}, \dots, e_{j_n}) \\ &= \sum_{\substack{(j_1, \dots, j_n) \in \text{perm}(n) \\ (j_1, \dots, j_n) \in \text{perm}(n)}} b_{j_1,1} \dots b_{j_n,n} \operatorname{sign}(j_1, \dots, j_n) \alpha(e_1, \dots, e_n) \\ &= \alpha(e_1, \dots, e_n) \sum_{\substack{(j_1, \dots, j_n) \in \text{perm}(n) \\ (j_1, \dots, j_n) \in \text{perm}(n)}} \operatorname{sign}(j_1, \dots, j_n) b_{j_1,1} \dots b_{j_n,n}, \end{aligned}$$

where the third equality holds because $\alpha(e_{j_1}, \dots, e_{j_n}) = 0$ if j_1, \dots, j_n are not distinct. \Box

Corollary 11. $\dim(V_{alt}^{(n)}) = 1.$

Proof. Let $n := \dim(V)$. Suppose $\alpha, \alpha' \in V_{alt}^{(n)}$ with $\alpha \neq 0$. Then $\alpha(e_1, \ldots, e_n) \neq 0$ for some $e_1, \ldots, e_n \in V$. Then e_1, \ldots, e_n is linearly independent (contrapositive of earlier result). Let

$$c:=rac{lpha'(e_1,\ldots,e_n)}{lpha(e_1,\ldots,e_n)}\,.$$

Letting $b_{j,k}$ be as above, then

$$\begin{aligned} \alpha'(v_1,\ldots,v_n) &= \alpha'(e_1,\ldots,e_n) \sum_{\substack{(j_1,\ldots,j_n) \in \operatorname{perm}(n)}} \operatorname{sign}(j_1,\ldots,j_n) b_{j_1,1}\cdots b_{j_n,n} \\ &= c\alpha(e_1,\ldots,e_n) \sum_{\substack{(j_1,\ldots,j_n) \in \operatorname{perm}(n)}} \operatorname{sign}(j_1,\ldots,j_n) b_{j_1,1}\cdots b_{j_n,n} \\ &= c\alpha(v_1,\ldots,v_n) \,. \end{aligned}$$

Thus $\alpha' = c\alpha$. Thus $\dim(V_{\text{alt}}^{(n)}) \leq 1$.

It remains to show that $\dim(V_{\text{alt}}^{(n)}) = 1$. For details, see 9.37 in the text book. (Uses the concept of the dual basis of a basis.)

[Skip if necessary.] To prove that $\dim(V_{alt}^{(m)}) = 1$, we will need some more results on linear functionals. Recall that V^{\vee} , the dual space, is

$$V^{\vee} = \mathcal{L}(V, \mathbb{F}) = \{ \varphi : V \to \mathbb{F} \mid \varphi \text{ is linear} \}.$$

Fix $j \in \{1, \ldots, n\}$. Define

$$\varphi_j: \mathbb{F}^n \to \mathbb{F}$$
$$x_1, \ldots, x_n) \mapsto x_j$$

i.e., projection onto the j^{th} coordinate. Then φ_j is linear and

$$\varphi_j(e_k) = \begin{cases} 1 & \text{if } k = j; \\ 0 & \text{otherwise.} \end{cases}$$

We can define a similar notion in general.

Definition 12. Let $\mathcal{B} := (v_1, \ldots, v_n)$ be a basis of *V*. The *dual basis of* \mathcal{B} is the list $\mathcal{B}^{\vee} := (\varphi_1, \ldots, \varphi_n)$ in V^{\vee} , where φ_j is defined by

$$\varphi_j(v_k) = \begin{cases} 1 & \text{if } k = j; \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 13. Suppose V is finite-dimensional. Then \mathcal{B} is a basis of V^{\vee} .

Remark 14. φ_i is sometimes denoted v_i^{\vee} .

Proof, completed. Let $e_1, \ldots, e_n \in V$ be a basis and let $\varphi_1, \ldots, \varphi_n \in V^{\vee}$ be its dual basis. Define

$$\alpha(v_1,\ldots,v_n)=\sum_{(j_1,\ldots,j_n)\in \operatorname{perm}(n)}\operatorname{sign}(j_1,\ldots,j_n)\varphi_{j_1}(v_1)\cdots,\varphi_{j_n}(v_n).$$

One can show that α is *n*-linear, alternating, and nonzero. Indeed,

$$\alpha(e_1,\ldots,e_n)=1$$

since only the term corresponding to the permutation (1, ..., n) is nonzero.

Proposition 15. Let $n := \dim(V)$. Suppose $\alpha \in V_{alt}^{(n)}$ is nonzero and $e_1, \ldots, e_n \in V$. Then e_1, \ldots, e_n is linearly independent iff

$$\alpha(e_1,\ldots,e_n)\neq 0.$$

Proof. (\Leftarrow): Assume $\alpha(e_1, \ldots, e_n) \neq 0$. Then e_1, \ldots, e_n is linearly independent: this is the converse of an earlier result.

(⇒): Assume e_1, \ldots, e_n is linearly independent. Since $n = \dim(V)$, then it is a basis of *V*. Since $\alpha \neq 0$ then there exist $v_1, \ldots, v_n \in V$ such that $\alpha(v_1, \ldots, v_n) \neq 0$. Since e_1, \ldots, e_n is a basis, then for each *k*,

$$v_k = \sum_{\substack{j=1\\5}}^n b_{j,k} e_j$$

for some $b_{1,k}, \ldots, b_{n,k} \in \mathbb{F}$. By an earlier result,

$$0 \neq \alpha(v_1,\ldots,v_n) = \alpha(e_1,\ldots,e_n) \sum_{(j_1,\ldots,j_n) \in \operatorname{perm}(n)} \operatorname{sign}(j_1,\ldots,j_n) b_{j_1,1} \cdots b_{j_n,n}.$$

Thus $\alpha(e_1,\ldots,e_n) \neq 0$.

II.4. 9C: Determinants. [Show 3Blue1Brown video: https://www.youtube.com/watch? v=Ip3X9L0h2dk beginning until about 5:30 or so.]

Definition 16 ("Moral" definition). Suppose $T \in \mathcal{L}(V)$. Consider the unit hypercube *C* formed by the standard basis e_1, \ldots, e_n . Then the image of *C* under *T* is a parallelotope *P*. The determinant of *T* is the signed volume of *P*, where the sign keeps track of the orientation of $T(e_1), \ldots, T(e_n)$.

Definition 17. Suppose $m \in \mathbb{Z}_{>0}$ and $T \in \mathcal{L}(V)$. Define the map

$$T^{\#}: V_{\mathrm{alt}}^{(m)} \to V_{\mathrm{alt}}^{(m)}$$

 $\alpha \mapsto T^{\#}(\alpha)$

where

$$T^{\#}(\alpha)(v_1,\ldots,v_m) := \alpha(T(v_1),\ldots,T(v_m))$$

Remark 18. The textbook instead denotes $T^{\#}(\alpha)$ by α_T .

Let $n := \dim(V)$. Recall that $V_{\text{alt}}^{(n)}$ has dimension 1. Any linear map from a 1-dimensional space to itself is multiplication by a scalar.

Definition 19.

• Let $n := \dim(V)$. Suppose $T \in \mathcal{L}(V)$. The *determinant of* T, denoted det(T), is the unique scalar in \mathbb{F} such that

$$T^{\#}(\alpha) = \det(T)\alpha$$

for all $\alpha \in V_{\text{alt}}^{(n)}$.

• Suppose $A \in M_{n \times n}(\mathbb{F})$. Define $det(A) := det(L_A)$ where L_A is the left multiplication map

$$L_A: \mathbb{F}^n \to \mathbb{F}^n$$
$$v \mapsto Av.$$

Example 20.

• Consider the identity operator *I*.

$$I^{\#}(\alpha)(v_1,\ldots,v_n)=\alpha(Iv_1,\ldots,Iv_n)=\alpha(v_1,\ldots,v_n),$$

so $I^{\#}(\alpha) = \alpha$. Thus [ask students] det(I) = 1.

• Suppose *T* is diagonalizable with a basis of eigenvectors v_1, \ldots, v_n with eigenvalues $\lambda_1, \ldots, \lambda_n$. Given $0 \neq \alpha \in V_{alt}^{(n)}$, then

 $T^{\#}(\alpha)(v_1,\ldots,v_n)=\alpha(T(v_1),\ldots,T(v_n))=\alpha(\lambda_1v_1,\cdots,\lambda_nv_n)=\lambda_1\cdots\lambda_n\alpha(v_1,\ldots,v_n).$

Thus $det(T) = \lambda_1 \cdots \lambda_n$, the product of the eigenvalues of *T*.

Theorem 21. *Suppose* $n \in \mathbb{Z}_{>0}$ *. The map*

$$\varphi: \underbrace{\mathbb{F}^n \times \cdots \times \mathbb{F}^n}_{(v_1, \dots, v_n)} \to \mathbb{F}$$
$$(v_1, \dots, v_n) \mapsto \det \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix}$$

is an alternating n-linear form on \mathbb{F}^n .

Proof. Let $\mathcal{E} := (e_1, \ldots, e_n)$ be the standard basis of \mathbb{F}^n . Suppose $v_1, \ldots, v_n \in \mathbb{F}^n$. Define $T : \mathbb{F}^n \to \mathbb{F}^n$

$$e_i \mapsto v_i$$

for each $i = 1, \ldots, n$. Then

$$[T]_{\mathcal{E}} = \begin{pmatrix} | & | \\ v_1 & \cdots & v_n \\ | & | \end{pmatrix}.$$

Let α be an alternating *n*-linear form on \mathbb{F}^n such that $\alpha(e_1, \ldots, e_n) = 1$. Then

$$\psi(v_1,\ldots,v_n) = \det \begin{pmatrix} | & | \\ v_1 & \cdots & v_n \\ | & | \end{pmatrix} = \det(T) = \det(T)\alpha(e_1,\ldots,e_n)$$
$$= \alpha(T(e_1),\ldots,T(e_n)) = \alpha(v_1,\ldots,v_n).$$

Thus $\psi = \alpha$, so the map ψ is an alternating *n*-linear form.

Remark 22. One often considers the determinant of a square matrix *A* as a multilinear form on the columns of *A*.

 \square

Corollary 23. Suppose $n \in \mathbb{Z}_{>0}$ and $A \in M_{n \times n}(\mathbb{F})$. Then

$$\det(A) = \sum_{(j_1,\dots,j_n)\in \operatorname{perm}(n)} \operatorname{sign}(j_1,\dots,j_n) A_{j_1,1} \cdots A_{j_n,n}$$

Proof. Letting e_1, \ldots, e_n be the standard basis for \mathbb{F}^n , note that

$$\det \begin{pmatrix} | & & | \\ e_1 & \cdots & e_n \\ | & & | \end{pmatrix} = \det(I) = 1.$$

The result the follows from an earlier result on alternating *n*-linear forms on an *n*-dimensional vector space. \Box

Example 24. If *A* is 2 × 2, then perm(2) = {(1,2), (2,1)}, so [ask students] $det(A) = A_{1,1}A_{2,2} + (-1)A_{2,1}A_{1,2}.$

Remark 25. While this formula can be used for small matrices, the sum contains *n*! terms, which grows rapidly as *n* increases.

Proposition 26 (The determinant is multiplicative).

• det(ST) = det(S) det(T) for all $S, T \in \mathcal{L}(V)$.

• $\det(AB) = \det(A) \det(B)$ for all $A, B \in M_{n \times n}(\mathbb{F})$.

Proposition 27. $T \in \mathcal{L}(V)$ is invertible iff $det(T) \neq 0$. In this case, $det(T^{-1}) = \frac{1}{det(T)}$.

Proof. (\Rightarrow): Assume *T* is invertible. Then

$$1 = \det(I) = \det(TT^{-1}) = \det(T)\det(T^{-1})$$

Thus $det(T) \neq 0$.

(⇐): Exercise. (Usually proved using Cramer's rule.)

Proposition 28. Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of T iff $det(\lambda I - T) = 0$.

Proof. λ is an eigenvalue of T iff $T - \lambda I$ is not invertible iff $\lambda I - T = -(T - \lambda I)$ is not invertible iff det $(\lambda I - T) = 0$ by the previous result.

Proposition 29. Suppose $T \in \mathcal{L}(V)$ and $S : W \to V$ is an invertible linear map. Then

$$\det(S^{-1}TS) = \det(T).$$

Proof. [Skip if necessary. See 9.52 in the textbook.] Since *S* is an isomorphism, then $\dim(W) = \dim(V)$; call this common value *n*. Given $\tau \in W^{(n)}_{alt}$, let $\alpha := (S^{-1})^{\#}(\tau)$, so

$$\alpha(v_1,\ldots,v_n)=\tau(S^{-1}v_1,\ldots,S^{-1}v_n)$$

for all $v_1, \ldots, v_n \in V$. Given $w_1, \ldots, w_n \in W$, then

$$(S^{-1}TS)^{\#}(\tau)(w_{1},\ldots,w_{n}) = \tau(S^{-1}TSw_{1},\ldots,S^{-1}TSw_{n}) = \overbrace{(S^{-1})^{\#}(\tau)}^{\alpha}(TSw_{1},\ldots,TSw_{n})$$

= $T^{\#}(\alpha)(Sw_{1},\ldots,Sw_{n}) = \det(T)\alpha(Sw_{1},\ldots,Sw_{n})$
= $\det(T)S^{\#}(\alpha)(w_{1},\ldots,w_{n}) = \det(T)\tau(w_{1},\ldots,w_{n}).$

Proposition 30. Suppose $T \in \mathcal{L}(V)$ and $\mathcal{B} := (v_1, \ldots, v_n)$ a basis of V. Then

$$\det(T) = \det([T]_{\mathcal{B}}).$$

Proof. Let $\mathcal{E} = (e_1, \ldots, e_n)$ be the standard basis of \mathbb{F}^n , and let $S : \mathbb{F}^n \to V$ be the isomorphism that takes $S(v_i) = e_i$ for each *i*. Then $_{\mathcal{B}}[S]_{\mathcal{E}} = I$, so

$${}_{\mathcal{E}}[S^{-1}TS]_{\mathcal{B}} = {}_{\mathcal{E}}[S^{-1}]_{\mathcal{E}} [T]_{\mathcal{B}} {}_{\mathcal{B}}[S]_{\mathcal{E}} = I[T]_{\mathcal{B}}I = [T]_{\mathcal{B}}.$$

Then

$$\det(T) = \det(S^{-1}TS) = \det\left([S^{-1}TS]_{\mathcal{E}}\right) = \det\left([T]_{\mathcal{B}}\right).$$

Theorem 31 (Determinant is product of eigenvalues). Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of *T*, repeated with algebraic multiplicity. Then

$$\det(T) = \underset{8}{\lambda_1 \cdots \lambda_n}.$$

Proof. By a previous result, there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is upper triangular with the eigenvalues of T on its diagonal. Then

$$\det(T) = \det([T]_{\mathcal{B}}) = \lambda_1 \cdots \lambda_n$$

Corollary 32. Suppose $\mathbb{F} = \mathbb{C}$ and $T = \mathcal{L}(V)$. Then

det(zI - T) = charpoly(T)

considered as polynomial functions of $z \in \mathbb{C}$.

We now use this to redefine the notion of characteristic polynomial, extending the definition to operators on \mathbb{R} -vector spaces.

Definition 33. Let *V* be a finite-dimensional \mathbb{F} -vector space and $T \in \mathcal{L}(V)$. Then polynomial defined by

$$z \mapsto \det(zI - T)$$

is the characteristic polynomial of T.

Proposition 34.

- (a) Suppose A is a square matrix. Then $det(A^t) = det(A)$.
- *(b)* Suppose *V* is an inner product space and $T \in \mathcal{L}(V)$. Then

$$\det(T^*) = \overline{\det(T)} \,.$$

Proof. (a) Let $n \in \mathbb{Z}_{>0}$. Define

$$\alpha : (\mathbb{F}^n)^n \to \mathbb{F}$$
$$(v_1, \dots, v_n) \mapsto \det \begin{pmatrix} | & \dots & | \\ v_1 & \dots & v_n \\ | & \dots & | \end{pmatrix}$$

From the permutation formula for the determinant, then α is an *n*-linear form on \mathbb{F}^n .

<u>Claim</u>: α is alternating. Suppose $v_1, \ldots, v_n \in \mathbb{F}^n$ with $v_j = v_k$ for some $j \neq k$. Then the matrix

$$B := \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix}$$

has rank < n. Since row rank = column rank, then B^t has rank < n, so B^t is not invertible. Then the columns of B^t are linearly dependent, hence

$$\alpha(v_1,\ldots,v_n)=\det(B^t)=0.$$

Thus α is alternating.

Since α , det $\in V_{alt}^{(n)}$ and this space is 1-dimensional, then $\alpha = c$ det for some $c \in \mathbb{F}$. Applying α to the standard basis, we have

$$\alpha(e_1,\ldots,e_n)=\det(I^t)=\det(I)=1,$$

so c = 1 and $\alpha = \det$ (thought of as a function of the columns).

(b) Exercise.

Proposition 35. *Let A be a square matrix.*

- (a) If any two columns of A are equal, then det(A) = 0.
- (b) Let B be the matrix obtained by swapping two rows of A. Then det(B) = -det(A).
- (c) If B is obtained by multiplying a column of A by a scalar c, then det(B) = c det(A).
- (d) If B is obtained by adding a scalar multiple of one column of A to another, then det(B) = det(A).
- (e) In all the above, the word "column" may be replaced by the word "row".

Proof. Straightforward. Last statement holds because $det(A^t) = det(A)$ by the previous result. For instance,

$$\det(v_1 + cv_2, v_2, \dots, v_n) = \det(v_1, v_2, \dots, v_n) + c\det(v_2, v_2, \dots, v_n) = \det(v_1, \dots, v_n).$$

Remark 36. This provides a strategy for evaluating the determinant of a matrix *A*:

- (1) Perform row operations on *A* to obtain an upper triangular matrix, keeping track of any swaps or rescalings of rows.
- (2) The determinant of the resulting upper triangular matrix is simply the product of the diagonal entries. Multiply this by the factors from swaps and rescalings.

Example 37. Let

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \,.$$

Then $det(A) = \cdots = 2$. [Row reduce matrix.]