18.700 - LINEAR ALGEBRA, DAY 23 JORDAN CANONICAL FORM, TRACE BILINEAR AND MULTILINEAR FORMS

SAM SCHIAVONE

CONTENTS

4

1. ľ	re-class Planning	1
I.1.	Goals for lesson	1
I.2.	Methods of assessment	1
I.3.	Materials to bring	1
II.	Lesson Plan	2
II.1.	Last time	2
II.2.	8C: Jordan form, cont.	2
II.3.	8D: Trace	3
II.4.	9A, 9B: Bilinear and multilinear forms	5

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

ъ

1

D1

- (1) Students will learn that every linear map has Jordan basis.
- (2) Students will learn the definition of trace.
- (3) Students will learn the definition of a multilinear form.
- (4) Students will learn the definitions of an inversion and the sign of a permutation.
- (5) Students will learn how permuting the entries affects the value of an alternating multilinear form.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

- II.1. Last time.
 - Proved the Cayley-Hamilton theorem: Let q(z) = charpoly(T). Then q(T) = 0.
 - Defined Jordan basis and Jordan canonical form:

Definition 1. Let $T \in \mathcal{L}(V)$. A *Jordan basis* for *T* is a basis \mathcal{B} of *V* such that

$$[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

is block diagonal, and each block A_k is of the form

$$A_k = egin{pmatrix} \lambda_k & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda_k \end{pmatrix} \, ,$$

We say that the matrix $[T]_{\mathcal{B}}$ is in *Jordan canonical form*.

• Proved the matrix form of the Generalized Eigenspace Decomposition Theorem: there exists a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ is block diagonal with upper triangular blocks.

II.2. 8C: Jordan form, cont.

Proposition 2. Suppose $T \in \mathcal{L}(V)$ is nilpotent. Then T has a Jordan basis.

Proof. Let $n := \dim(V)$. By strong induction on n.

<u>Base case</u>: n = 1. Then *T* must be the 0 operator, and any basis is a Jordan basis for *T*. Inductive step: Let $n \ge 2$ and assume the result holds for all k < n. As we have

done several times before, we will find a *T*-invariant subspace *U* and apply the inductive hypothesis to the restriction $T|_U$.

Let *m* be the smallest positive integer such that $T^m = 0$. Then there exists $u \in V$ such that $T^{m-1}(u) \neq 0$. Let

$$U := \operatorname{span}(u, T(u), \dots, T^{m-1}(u))$$

By Exercise 2 of Section 8A, $u, T(u), \ldots, T^{m-1}(u)$ is linearly independent. If U = V, then $T^{m-1}(u), \ldots, T(u), u$ is a Jordan basis for *T*.

Thus it suffices to consider the case $U \neq V$. Note that U is T-invariant: applying T to one of the basis vectors simply shifts us over one spot, and $T(T^{m-1}(u)) = T^m(u) = 0$. Since $U \neq V$, then by the inductive hypothesis there is a basis of U that is a Jordan basis for $T|_U$. Goal: Find a subspace W of V such that $V = U \oplus W$.

Let $\varphi : V \to \mathbb{F}$ be a linear functional such that $\varphi(T^{m-1}(u)) \neq 0$. (Such a linear functional exists: since $u, T(u), \ldots, T^{m-1}(u)$ is linearly independent, we can extend it to a basis for *V*. We can then freely choose the values of φ on these basis vectors.) Define

$$W := \{ v \in V : \varphi(T^{k}(v)) = 0 \ \forall k = 1, \dots, m-1 \}.$$

Then *W* is a subspace and is moreover *T*-invariant (exercise). <u>Claim</u>: $V = U \oplus W$.

(0:00)

(i) Suppose $v \in U$ with $v \neq 0$. We will show that $v \notin W$, so $U \cap W = \{0\}$. Since $v \in U$, then

$$v = c_0 u + c_1 T(u) + \dots + c_{m-1} T^{m-1}(u)$$

for some $c_0, \ldots, c_{m-1} \in \mathbb{F}$. Let *j* be the smallest index such that $c_j \neq 0$. Applying T^{m-j-1} kills all the terms after the *j*th one on the righthand side, so

$$T^{m-j-1}(v) = c_j T^{m-1}(u)$$

Now applying φ , we have

$$\varphi(T^{m-j-1}(v)) = c_j \varphi(T^{m-1}(u)) \neq 0$$

by the definition of φ and c_j . Thus $v \notin W$, so $U \cap W = \{0\}$.

(ii) <u>Goal</u>: V = U + W. Define

$$S \to \mathbb{F}^m$$

 $v \mapsto (\varphi(v), \varphi(T(v)), \dots, \varphi(T^{m-1}(v))).$

Then ker(S) = W. [Recall definition of W.] Then dim(W) = dim(kor(S)) = dim(W) = dim(img(S)) > dim(W) = dim(W)

$$\dim(W) = \dim(\ker(S)) = \dim(V) - \dim(\operatorname{img}(S)) \ge \dim(V) - \dim(\mathbb{F}^m)$$
$$= \dim(V) - m$$

by Rank-Nullity. Then

$$\dim(U \oplus W) = \dim(U) + \dim(W) \ge m + (\dim(V) - m) = \dim(V),$$

so we must have equality. Thus $V = U \oplus W$.

We can extend the previous result to all operators by using the generalized eigenspace decomposition.

Theorem 3. Let $\mathbb{F} = \mathbb{C}$ and suppose $T \in \mathcal{L}(V)$. Then T has a Jordan basis.

Proof. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. By the generalized eigenspace decomposition, we have

$$V = G_{\lambda_1} \oplus \cdots \oplus G_{\lambda_m}$$

and $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent. By the previous result, then for each k there is a basis \mathcal{B}_k of G_{λ_k} that is a Jordan basis for $(T - \lambda_k I)|_{G_{\lambda_k}}$. Concatenating these bases produces a basis \mathcal{B} of V that is a Jordan basis for T.

II.3. 8D: Trace.

Definition 4. Let *A* be a square matrix with entries in \mathbb{F} . The *trace of A*, denoted tr(*A*), is the sum of the diagonal entries of *A*. In other words, if $A \in M_{n \times n}(\mathbb{F})$, then

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii} = A_{11} + \dots + A_{nn}$$

Proposition 5. Suppose $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{n \times m}(\mathbb{F})$. Then

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

Proof. Exercise. (See worksheet.)

This fact will allow us to define the trace of a linear operator, one that is independent of the choice of basis.

Proposition 6. Suppose $T \in \mathcal{L}(V)$. Let \mathcal{B} and \mathcal{C} be bases of V. Then

$$\operatorname{tr}([T]_{\mathcal{B}}) = \operatorname{tr}([T]_{\mathcal{C}}).$$

Proof. Let $A := [T]_{\mathcal{B}}, B := [T]_{\mathcal{C}}$, and $P = {}_{\mathcal{C}}[I]_{\mathcal{B}}$. Then

$$A = [T]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} [T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}} = P^{-1}BP,$$

so [ask students]

$$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}BP) = \operatorname{tr}((P^{-1}B)P) = \operatorname{tr}(P(P^{-1}B) = \operatorname{tr}(B)$$

by the previous result.

Definition 7. Let $T \in \mathcal{L}(V)$. The *trace of T*, denoted tr(*T*), is defined to be

 $\operatorname{tr}(T) := \operatorname{tr}([T]_{\mathcal{B}})$

where \mathcal{B} is any basis of V.

Remark 8. By the previous result, tr(T) is well-defined.

The trace has an interesting relationship with eigenvalues: it is their sum.

Proposition 9. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of T, with each repeated as many times as its algebraic multiplicity. Then

$$\operatorname{tr}(T) = \lambda_1 + \cdots + \lambda_n$$
.

Proof. By a previous result, there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$ (again, repeated with algebraic multiplicity). Then

$$\operatorname{tr}(T) = \operatorname{tr}([T]_{\mathcal{B}}) = \lambda_1 + \cdots + \lambda_n.$$

The trace also has an interpretation in terms of the characteristic polynomial.

Proposition 10. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $n := \dim(V)$. Then $\operatorname{tr}(T)$ equals negative the coefficient of z^{n-1} in the characteristic polynomial of T. I.e., wiriting

charpoly
$$(T) = z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}$$
,

then $\operatorname{tr}(T) = -a_{n-1}$.

Proof. [Skip, if necessary.] Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of *T*, with each repeated as many times as its algebraic multiplicity. Then

charpoly
$$(T) = (z - \lambda_1) \cdots (z - \lambda_n)$$
.

(Instead of writing $(z - \lambda_k)^{d_k}$, we're just writing $(z - \lambda_k) d_k$ times.) Multiplying this expression out [explain about choosing n - 1 factors of z], we have

charpoly
$$(T) = z^n - (\lambda_1 + \dots + \lambda_n)z^{n-1} + \dots + (-1)^n(\lambda_1 \cdots \lambda_n).$$

Proposition 11. The function $\operatorname{tr} : \mathcal{L}(V) \to \mathbb{F}$ is linear. I.e., tr is a linear functional on $\mathcal{L}(V)$.

Proof. Exercise.

II.4. 9A, 9B: Bilinear and multilinear forms.

Definition 12. A *bilinear form* on *V* is a function $\beta : V \times V \rightarrow \mathbb{F}$ that is linear in each component: for each $w \in V$, the maps

$$V \to \mathbb{F}$$
$$v \mapsto \beta(v, w)$$

and

 $V \to \mathbb{F}$ $v \mapsto \beta(w, v)$

are both linear. Denote the set of bilinear forms on V by $V^{(2)}$.

More concretely,

$$\beta(cu+v,w) = c\beta(u,w) + \beta(v,w)$$

and

$$\beta(w, cu + v) = c\beta(w, u) + \beta(w, v)$$

for all $u, v, w \in V$ and all $c \in \mathbb{F}$.

Lemma 13. $V^{(2)}$ is a vector space under pointwise addition and scalar multiplication of functions.

Proof. Exercise.

Example 14.

- Let $\mathbb{F} = \mathbb{R}$ and *V* be an \mathbb{R} -vector space. Then every inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is a bilinear form.
- Given $A \in M_{n \times n}(\mathbb{R})$, define

$$\beta: \mathbb{F}^n \times F^n \to \mathbb{F}$$
$$(x, y) \mapsto x^t A y.$$

Then β is bilinear by properties of matrix multiplication.

Definition 15. Fix $m \in \mathbb{Z}_{>0}$. Denote $V^m = \overbrace{V \times \cdots \times V}^m$.

• An *m*-linear form on *V* is a function $\beta : V^m \to \mathbb{F}$ that is linear in each component when the others are held fixed. I.e., for each $k \in \{1, ..., m\}$ and $u_1, ..., u_m \in V$, the map

$$V \to \mathbb{F}$$

 $v \mapsto \beta(u_1, \ldots, u_{k-1}, v, u_{k+1}, \ldots, u_m)$

is linear.

• Denote by $V^{(m)}$ the set of all *m*-linear forms on *V*.

• A *multilinear form* on *V* is an *m*-linear form on *V* for some $m \in \mathbb{Z}_{>0}$.

Definition 16. Let $m \in \mathbb{Z}_{>0}$.

- An *m*-linear form $\alpha \in V^{(m)}$ is alternating if $\alpha(v_1, \ldots, v_m) = 0$ whenever $v_j = v_k$ for some $j, k \in \{1, \ldots, m\}$ with $j \neq k$.
- Let $V_{alt}^{(m)}$ be the set of all alternating *m*-linear forms on *V*.

Lemma 17. $V^{(m)}$ is a vector space, and $V^{(m)}_{alt}$ is a subspace.

Proof. Exercise.

Lemma 18. Let $\alpha \in V_{\text{alt}}^{(m)}$. If $v_1, \ldots, v_m \in V$ is linearly dependent, then $\alpha(v_1, \ldots, v_m) = 0$.

Proof idea. Use the Linear Dependence Lemma to express v_k as a linear combination of the others. Then use multilinearity and alternating property. Details left as an exercise.

Proposition 19. Let $\alpha \in V_{\text{alt}}^{(m)}$ and $v_1, \ldots, v_m \in V$. Swapping the vectors in any two slots of $\alpha(v_1, \ldots, v_m)$ changes the value by a factor of -1.

Proof idea. For simplicity, suppose m = 2. Then

$$0 = \alpha(v + w, v + w) = \alpha(v, v) + \alpha(v, w) + \alpha(w, v) + \alpha(w, w).$$

The proof is virtually the same for $m \ge 2$.

<u>Q</u>: What if we perform multiple swaps? For example, suppose that $\alpha \in V_{alt}^{(3)}$ and $v_1, v_2, v_3 \in V$. Then

$$\alpha(v_3, v_1, v_2) = -\alpha(v_1, v_3, v_2) = \alpha(v_1, v_2, v_3).$$

This leads us to investigate more general permutations.

Definition 20. Let $m \in \mathbb{Z}_{>0}$.

- A *permutation* of (1, ..., m) is a rearrangement, i.e., a list $(j_1, ..., j_m)$ that contains each of 1, ..., m exactly once.
- Denote the set of all permutations of (1, ..., m) by perm(m).

Example 21. $(2, 1, 4, 3) \in \text{perm}(4)$.

Definition 22. Suppose $(j_1, \ldots, j_m) \in \text{perm}(m)$.

- An *inversion* of (j_1, \ldots, j_m) is a pair of integers (k, ℓ) with $k, \ell \in \{1, \ldots, m\}$ such that $k < \ell$ and k appears *after* ℓ in the list (j_1, \ldots, j_m) .
- Let *N* be the number of inversions of (j_1, \ldots, j_m) . The *sign* of (j_1, \ldots, j_m) is

$$\operatorname{sgn}(j_1,\ldots,j_m):=(-1)^N$$

Example 23.

- Consider (2, 1, 3, 4) ∈ perm(4). It has exactly one inversion, namely (1, 2), so it has sign (-1)¹ = -1.
- The permutation (1, ..., m) has no inversions (the numbers are all in increasing order), so it has sign $(-1)^0 = 1$.

• Consider the permutation (2, 3, ..., *m*, 1). Its inversions are

$$(1,2), (1,3), \ldots, (1,m)$$

so it has sign $(-1)^{m-1}$.

Proposition 24. *Swapping two entries in a permutation multiplies the sign of the permutation* by -1.

Proof. Let π be the original position, and π' be the permutation obtained from swapping the *i*th and *j*th entries of π . Denote the *i*th entry of π by $\pi(i)$. Then $\pi(i) < \pi(j)$ iff $\pi'(i) > \pi'(j)$, so we have either added or subtracted exactly 1 inversion so far.

Consider the entries not in between the i^{th} and j^{th} spots. For these entries, there is no change in whether they were in order or not. [Draw picture.]

Now consider $\pi(k)$ with i < k < j.

<u>Case 1</u>: $\pi(k)$ was in order with respect to both $\pi(i)$ and $\pi(j)$, i.e., $\pi(i) < \pi(k) < \pi(j)$. Then

$$\pi'(i) > \pi'(k) > \pi'(j)$$

so we have 2 more inversions, multiplying the sign by $(-1)^2 = 1$.

<u>Case 2</u>: $\pi(i) > \pi(k) > \pi(j)$. Similar.

<u>Case 3</u>: $\pi(i) < \pi(k)$ and $\pi(k) > \pi(j)$. Then

$$\pi'(i) = \pi(j) < \pi(k) = \pi'(k) \pi'(k) = \pi(k) > \pi(i) = \pi'(j)$$

so we have the same number of inversions that we started with, and the sign is unchanged.

<u>Case 4</u>: $\pi(i) > \pi(k)$ and $\pi(k) < \pi(j)$. Similar.

Thus in all cases we have an odd number of inversions, so $sign(\pi') = -sign(\pi)$. \Box

Proposition 25. Suppose $m \in \mathbb{Z}_{>0}$ and $\alpha \in V_{alt}^{(m)}$. Then $\alpha(v_{j_1}, \ldots, v_{j_m}) = \operatorname{sign}(j_1, \ldots, j_m) \alpha(v_1, \ldots, v_m)$

Proof idea. We can get from $(j_1, ..., j_m)$ to (1, ..., m) by a series of swaps. Each swap changes the sign of α by a factor of -1, and also changes the sign of the remaining permutation by a factor of -1.

Theorem 26. Let $n := \dim(V)$. Suppose e_1, \ldots, e_n is a basis of V. Suppose $v_1, \ldots, v_n \in V$. For each k, write

$$v_k = \sum_{j=1}^n b_{j,k} e_j$$

for some $b_{1,k}, \ldots, b_{n,k} \in \mathbb{F}$. Then

$$\alpha(v_1,\ldots,v_n) = \alpha(e_1,\ldots,e_n) \sum_{(j_1,\ldots,j_n)\in \operatorname{perm}(n)} \operatorname{sign}(j_1,\ldots,j_n) b_{j_1,1}\cdots b_{j_n,n}$$

for all $\alpha \in V_{\text{alt}}^{(m)}$.

Proof.

$$\begin{aligned} \alpha(v_1, \dots, v_n) &= \alpha \left(\sum_{j_1=1}^n b_{j_1,1} e_{j_1}, \dots \sum_{j_n=1}^n b_{j_n,1} e_{j_n} \right) = \sum_{j_1=1}^n \dots \sum_{j_n=1}^n b_{j_1,1} \dots b_{j_n,n} \alpha(e_{j_1}, \dots, e_{j_n}) \\ &= \sum_{\substack{(j_1, \dots, j_n) \in \text{perm}(n) \\ (j_1, \dots, j_n) \in \text{perm}(n)}} b_{j_1,1} \dots b_{j_n,n} \operatorname{sign}(j_1, \dots, j_n) \alpha(e_1, \dots, e_n) \\ &= \alpha(e_1, \dots, e_n) \sum_{\substack{(j_1, \dots, j_n) \in \text{perm}(n) \\ (j_1, \dots, j_n) \in \text{perm}(n)}} \operatorname{sign}(j_1, \dots, j_n) b_{j_1,1} \dots b_{j_n,n}, \end{aligned}$$

where the third equality holds because $\alpha(e_{j_1}, \dots, e_{j_n}) = 0$ if j_1, \dots, j_n are not distinct. \Box

Corollary 27. $\dim(V_{alt}^{(n)}) = 1.$

Proof. Let $n := \dim(V)$. Suppose $\alpha, \alpha' \in V_{alt}^{(n)}$ with $\alpha \neq 0$. Then $\alpha(e_1, \ldots, e_n) \neq 0$ for some $e_1, \ldots, e_n \in V$. Then e_1, \ldots, e_n is linearly independent (contrapositive of earlier result). Let

$$c := \frac{\alpha'(e_1,\ldots,e_n)}{\alpha(e_1,\ldots,e_n)}$$

Letting $b_{i,k}$ be as above, then

$$\alpha'(v_1,\ldots,v_n) = \alpha'(e_1,\ldots,e_n) \sum_{\substack{(j_1,\ldots,j_n) \in \operatorname{perm}(n) \\ (j_1,\ldots,j_n) \in \operatorname{perm}(n)}} \operatorname{sign}(j_1,\ldots,j_n) b_{j_1,1} \cdots b_{j_n,n}$$
$$= c\alpha(v_1,\ldots,v_n) \sum_{\substack{(j_1,\ldots,j_n) \in \operatorname{perm}(n) \\ (j_1,\ldots,j_n) \in \operatorname{perm}(n)}} \operatorname{sign}(j_1,\ldots,j_n) b_{j_1,1} \cdots b_{j_n,n}$$

Thus $\alpha' = c\alpha$. Thus dim $(V_{\text{alt}}^{(n)}) \leq 1$.

It remains to show that $\dim(V_{alt}^{(m)}) = 1$. For details, see 9.37 in the text book.

[Skip if necessary.] To prove the next result, we will need some more results on linear functionals. Recall that V^{\vee} , the dual space, is

$$V^{ee} = \mathcal{L}(V, \mathbb{F}) = \{ \varphi : V o \mathbb{F} \mid \varphi ext{ is linear} \}.$$

Fix $j \in \{1, \ldots, n\}$. Define

$$\varphi_j: \mathbb{F}^n \to \mathbb{F}$$

 $(x_1, \ldots, x_n) \mapsto x_j,$

i.e., projection onto the j^{th} coordinate. Then φ_j is linear and

$$\varphi_j(e_k) = \begin{cases} 1 & \text{if } k = j; \\ 0 & \text{otherwise.} \end{cases}$$

We can define a similar notion in general.

Definition 28. Let $\mathcal{B} := (v_1, \ldots, v_n)$ be a basis of *V*. The *dual basis of* \mathcal{B} is the list $\mathcal{B}^{\vee} := (\varphi_1, \ldots, \varphi_n)$ in V^{\vee} , where φ_j is defined by

$$\varphi_j(v_k) = \begin{cases} 1 & \text{if } k = j; \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 29. Suppose V is finite-dimensional. Then \mathcal{B} is a basis of V^{\vee} . **Remark 30.** φ_j is sometimes denoted v_j^{\vee} .