18.700 - LINEAR ALGEBRA, DAY 23 JORDAN CANONICAL FORM, TRACE BILINEAR AND MULTILINEAR FORMS

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn that every linear map has Jordan basis.
- (2) Students will learn the definition of trace.
- (3) Students will learn the definition of a multilinear form.
- (4) Students will learn the definitions of an inversion and the sign of a permutation.
- (5) Students will learn how permuting the entries affects the value of an alternating multilinear form.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON ^PLAN **(0:00)**

- II.1. **Last time.**
	- Proved the Cayley-Hamilton theorem: Let $q(z) =$ charpoly(*T*). Then $q(T) = 0$.
	- Defined Jordan basis and Jordan canonical form:

Definition 1. Let $T \in \mathcal{L}(V)$. A *Jordan basis* for *T* is a basis B of V such that

$$
[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}
$$

is block diagonal, and each block *A^k* is of the form

$$
A_k = \begin{pmatrix} \lambda_k & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_k \end{pmatrix}.
$$

We say that the matrix $[T]_B$ is in *Jordan canonical form*.

• Proved the matrix form of the Generalized Eigenspace Decomposition Theorem: there exists a basis B such that $[T]_B$ is block diagonal with upper triangular blocks.

II.2. **8C: Jordan form, cont.**

Proposition 2. *Suppose* $T \in \mathcal{L}(V)$ *is nilpotent. Then T has a Jordan basis.*

Proof. Let $n := \dim(V)$. By strong induction on *n*.

Base case: $n = 1$. Then *T* must be the 0 operator, and any basis is a Jordan basis for *T*.

Inductive step: Let $n \geq 2$ and assume the result holds for all $k < n$. As we have done several times before, we will find a *T*-invariant subspace *U* and apply the inductive hypothesis to the restriction *T*|*U*.

Let *m* be the smallest positive integer such that $T^m = 0$. Then there exists $u \in V$ such that $T^{m-1}(u) \neq 0$. Let

$$
U := \mathrm{span}(u, T(u), \ldots, T^{m-1}(u)).
$$

By Exercise 2 of Section 8A, *u*, $T(u)$, . . . , $T^{m-1}(u)$ is linearly independent. If $U = V$, then *T*^{*m*−1}(*u*), . . . , *T*(*u*), *u* is a Jordan basis for *T*.

Thus it suffices to consider the case $U \neq V$. Note that *U* is *T*-invariant: applying *T* to one of the basis vectors simply shifts us over one spot, and $T(T^{m-1}(u)) = T^m(u) = 0$. Since $U \neq V$, then by the inductive hypothesis there is a basis of *U* that is a Jordan basis for $T|_{U}$. Goal: Find a subspace *W* of *V* such that $V = U \oplus W$.

Let $\varphi: V \to \mathbb{F}$ be a linear functional such that $\varphi(T^{m-1}(u)) \neq 0$. (Such a linear functional exists: since u , $T(u)$, . . . , $T^{m-1}(u)$ is linearly independent, we can extend it to a basis for *V*. We can then freely choose the values of φ on these basis vectors.) Define

$$
W := \{ v \in V : \varphi(T^k(v)) = 0 \ \forall k = 1, \dots, m-1 \}.
$$

2

Then *W* is a subspace and is moreover *T*-invariant (exercise). Claim: $V = U \oplus W$.

(i) Suppose $v \in U$ with $v \neq 0$. We will show that $v \notin W$, so $U \cap W = \{0\}$. Since $v \in U$, then

$$
v = c_0 u + c_1 T(u) + \cdots + c_{m-1} T^{m-1}(u)
$$

for some $c_0, \ldots, c_{m-1} \in \mathbb{F}$. Let *j* be the smallest index such that $c_j \neq 0$. Applying *T ^m*−*j*−¹ kills all the terms after the *j* th one on the righthand side, so

$$
T^{m-j-1}(v) = c_j T^{m-1}(u).
$$

Now applying *φ*, we have

$$
\varphi(T^{m-j-1}(v)) = c_j \varphi(T^{m-1}(u)) \neq 0
$$

by the definition of φ and c_j . Thus $v \notin W$, so $U \cap W = \{0\}.$

(ii) Goal: $V = U + W$. Define

$$
S \to \mathbb{F}^m
$$

$$
v \mapsto (\varphi(v), \varphi(T(v)), \dots, \varphi(T^{m-1}(v))).
$$

Then $\text{ker}(S) = W$. [Recall definition of *W*.] Then $dim(W) = dim(ker(S)) = dim(V) - dim(img(S)) \ge dim(V) - dim(F^m)$

$$
= \dim(V) - m
$$

by Rank-Nullity. Then

$$
\dim(U \oplus W) = \dim(U) + \dim(W) \ge m + (\dim(V) - m) = \dim(V),
$$

so we must have equality. Thus $V = U \oplus W$.

□

We can extend the previous result to all operators by using the generalized eigenspace decomposition.

Theorem 3. Let $\mathbb{F} = \mathbb{C}$ and suppose $T \in \mathcal{L}(V)$. Then T has a Jordan basis.

Proof. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. By the generalized eigenspace decomposition, we have

 $V = G_{\lambda_1} \oplus \cdots \oplus G_{\lambda_m}$

and $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent. By the previous result, then for each *k* there is a basis \mathcal{B}_k of G_{λ_k} that is a Jordan basis for $(T - \lambda_k I)|_{G_{\lambda_k}}$. Concatenating these bases produces a basis B of *V* that is a Jordan basis for *T*.

II.3. **8D: Trace.**

Definition 4. Let *A* be a square matrix with entries in \mathbb{F} . The *trace of A*, denoted $tr(A)$, is the sum of the diagonal entries of *A*. In other words, if $A \in M_{n \times n}(\mathbb{F})$, then

$$
tr(A) = \sum_{i=1}^{n} A_{ii} = A_{11} + \cdots + A_{nn}.
$$

Proposition 5. *Suppose* $A \in M_{m \times n}(\mathbb{F})$ *and* $B \in M_{n \times m}(\mathbb{F})$ *. Then*

$$
\operatorname{tr}(AB) = \operatorname{tr}(BA).
$$

Proof. Exercise. (See worksheet.) □

This fact will allow us to define the trace of a linear operator, one that is independent of the choice of basis.

Proposition 6. *Suppose* $T \in \mathcal{L}(V)$ *. Let* B and C be bases of V. Then

$$
\mathrm{tr}([T]_{\mathcal{B}})=\mathrm{tr}([T]_{\mathcal{C}}).
$$

Proof. Let $A := [T]_B$, $B := [T]_C$, and $P = C[I]_B$. Then

$$
A = [T]_{\mathcal{B}} = g[I]_{\mathcal{C}} [T]_{\mathcal{C}} c[I]_{\mathcal{B}} = P^{-1}BP,
$$

so [ask students]

$$
tr(A) = tr(P^{-1}BP) = tr((P^{-1}B)P) = tr(P(P^{-1}B) = tr(B)
$$

by the previous result. \Box

Definition 7. Let $T \in \mathcal{L}(V)$. The *trace of T*, denoted $tr(T)$, is defined to be

 $tr(T) := tr([T]_B)$

where β is any basis of V .

Remark 8. By the previous result, $tr(T)$ is well-defined.

The trace has an interesting relationship with eigenvalues: it is their sum.

Proposition 9. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Let* $\lambda_1, \ldots, \lambda_n$ *be the eigenvalues of* T, with *each repeated as many times as its algebraic multiplicity. Then*

$$
\operatorname{tr}(T)=\lambda_1+\cdots+\lambda_n.
$$

Proof. By a previous result, there exists a basis B of V such that $[T]_B$ is upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$ (again, repeated with algebraic multiplicity). Then

$$
\operatorname{tr}(T)=\operatorname{tr}([T]_{\mathcal{B}})=\lambda_1+\cdots+\lambda_n.
$$

□

□

The trace also has an interpretation in terms of the characteristic polynomial.

Proposition 10. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Let* $n := \dim(V)$ *. Then* $\text{tr}(T)$ *equals negative the coefficient of zn*−¹ *in the characteristic polynomial of T. I.e., wiriting*

$$
charpoly(T) = zn + an-1zn-1 + \cdots + a_1z + a_0,
$$

then $tr(T) = -a_{n-1}$ *.*

Proof. [Skip, if necessary.] Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of *T*, with each repeated as many times as its algebraic multiplicity. Then

$$
charpoly(T) = (z - \lambda_1) \cdots (z - \lambda_n).
$$

(Instead of writing $(z - \lambda_k)^{d_k}$, we're just writing $(z - \lambda_k) d_k$ times.) Multiplying this expression out [explain about choosing *n* − 1 factors of *z*], we have

$$
charpoly(T) = zn - (\lambda_1 + \cdots + \lambda_n)z^{n-1} + \cdots + (-1)^n(\lambda_1 \cdots \lambda_n).
$$

Proposition 11. *The function* $\text{tr} : \mathcal{L}(V) \to \mathbb{F}$ *is linear. I.e.,* tr *is a linear functional on* $\mathcal{L}(V)$ *.*

Proof. Exercise. □

II.4. **9A, 9B: Bilinear and multilinear forms.**

Definition 12. A *bilinear form* on *V* is a function $\beta : V \times V \rightarrow \mathbb{F}$ that is linear in each component: for each $w \in V$, the maps

$$
V \to \mathbb{F}
$$

$$
v \mapsto \beta(v, w)
$$

and

 $V \rightarrow \mathbb{F}$ $v \mapsto \beta(w, v)$

are both linear. Denote the set of bilinear forms on V by $V^{(2)}.$

More concretely,

$$
\beta(cu+v,w)=c\beta(u,w)+\beta(v,w)
$$

and

$$
\beta(w, cu+v) = c\beta(w, u) + \beta(w, v)
$$

for all $u, v, w \in V$ and all $c \in \mathbb{F}$.

 ${\bf Lemma \ 13.} \ V^{(2)}$ is a vector space under pointwise addition and scalar multiplication of functions.

Proof. Exercise. □

Example 14.

- Let $\mathbb{F} = \mathbb{R}$ and *V* be an \mathbb{R} -vector space. Then every inner product $\langle \cdot, \cdot \rangle : V \times V \rightarrow$ **R** is a bilinear form.
- Given $A \in M_{n \times n}(\mathbb{R})$, define

$$
\beta: \mathbb{F}^n \times F^n \to \mathbb{F}
$$

$$
(x, y) \mapsto x^t A y.
$$

Then β is bilinear by properties of matrix multiplication.

$$
m \times m
$$

Definition 15. Fix $m \in \mathbb{Z}_{>0}$. Denote $V^m = \overbrace{V \times \cdots \times V}$.

• An *m-linear form* on *V* is a function $\beta: V^m \to \mathbb{F}$ that is linear in each component when the others are held fixed. I.e., for each $k \in \{1, \ldots, m\}$ and $u_1, \ldots, u_m \in V$, the map

$$
V \to \mathbb{F}
$$

$$
v \mapsto \beta(u_1, \ldots, u_{k-1}, v, u_{k+1}, \ldots, u_m)
$$

is linear.

• Denote by $V^{(m)}$ the set of all *m*-linear forms on *V*.

• A *multilinear form* on *V* is an *m*-linear form on *V* for some $m \in \mathbb{Z}_{>0}$.

Definition 16. Let $m \in \mathbb{Z}_{>0}$.

- An *m*-linear form $\alpha \in V^{(m)}$ is *alternating* if $\alpha(v_1, \ldots, v_m) = 0$ whenever $v_j = v_k$ for some $j, k \in \{1, \ldots, m\}$ with $j \neq k$.
- Let $V_{\text{alt}}^{(m)}$ be the set of all alternating *m*-linear forms on *V*.

Lemma 17. $V^{(m)}$ is a vector space, and $V^{(m)}_{\text{alt}}$ is a subspace.

Proof. Exercise. □

Lemma 18. Let $\alpha \in V_{\text{alt}}^{(m)}$. If $v_1, \ldots, v_m \in V$ is linearly dependent, then $\alpha(v_1,\ldots,v_m)=0$.

Proof idea. Use the Linear Dependence Lemma to express v_k as a linear combination of the others. Then use multilinearity and alternating property. Details left as an exercise.

Proposition 19. Let $\alpha \in V_{\text{alt}}^{(m)}$ and $v_1, \ldots, v_m \in V$. Swapping the vectors in any two slots of *α*(*v*1, . . . , *vm*) *changes the value by a factor of* −1*.*

Proof idea. For simplicity, suppose *m* = 2. Then

$$
0 = \alpha(v+w, v+w) = \alpha(v, v)^{-1} \alpha(v, w) + \alpha(w, v) + \alpha(w, w)^{-1}
$$

The proof is virtually the same for $m \geq 2$.

Q: What if we perform multiple swaps? For example, suppose that $\alpha \in V_{\text{alt}}^{(3)}$ and $v_1, v_2, v_3 \in V$. Then

$$
\alpha(v_3,v_1,v_2)=-\alpha(v_1,v_3,v_2)=\alpha(v_1,v_2,v_3).
$$

This leads us to investigate more general permutations.

Definition 20. Let $m \in \mathbb{Z}_{>0}$.

- A *permutation* of $(1, \ldots, m)$ is a rearrangement, i.e., a list (j_1, \ldots, j_m) that contains each of $1, \ldots, m$ exactly once.
- Denote the set of all permutations of $(1, \ldots, m)$ by perm (m) .

Example 21. $(2, 1, 4, 3) \in \text{perm}(4)$.

Definition 22. Suppose $(j_1, \ldots, j_m) \in \text{perm}(m)$.

- An *inversion* of (j_1, \ldots, j_m) is a pair of integers (k, ℓ) with $k, \ell \in \{1, \ldots, m\}$ such that $k < \ell$ and k appears *after* ℓ in the list (j_1, \ldots, j_m) .
- Let *N* be the number of inversions of (j_1, \ldots, j_m) . The *sign* of (j_1, \ldots, j_m) is

$$
\mathrm{sgn}(j_1,\ldots,j_m):=(-1)^N.
$$

Example 23.

- Consider $(2, 1, 3, 4) \in \text{perm}(4)$. It has exactly one inversion, namely $(1, 2)$, so it has sign $(-1)^{1} = -1$.
- The permutation $(1, \ldots, m)$ has no inversions (the numbers are all in increasing order), so it has sign $(-1)^0=1.$

• Consider the permutation $(2, 3, \ldots, m, 1)$. Its inversions are

$$
(1,2), (1,3), \ldots, (1,m)
$$

so it has sign (−1) *m*−1 .

Proposition 24. *Swapping two entries in a permutation multiplies the sign of the permutaiton* $by -1$.

Proof. Let π be the original position, and π' be the permutation obtained from swapping the *i*th and *j*th entries of *π*. Denote the *i*th entry of *π* by *π*(*i*). Then $\pi(i) < \pi(j)$ iff $\pi'(i) > \pi'(j)$, so we have either added or subtracted exactly 1 inversion so far.

Consider the entries not in between the ith and jth spots. For these entries, there is no change in whether they were in order or not. [Draw picture.]

Now consider $\pi(k)$ with $i < k < j$.

Case 1: $\pi(k)$ was in order with respect to both $\pi(i)$ and $\pi(j)$, i.e., $\pi(i) < \pi(k) < \pi(j)$. Then

$$
\pi'(i) > \pi'(k) > \pi'(j)
$$

so we have 2 more inversions, multiplying the sign by $(-1)^2 = 1$.

Case 2: $\pi(i) > \pi(k) > \pi(j)$. Similar. Case 3: $\pi(i) < \pi(k)$ and $\pi(k) > \pi(i)$. Then

$$
\pi'(i) = \pi(j) < \pi(k) = \pi'(k)
$$
\n
$$
\pi'(k) = \pi(k) > \pi(i) = \pi'(j)
$$

so we have the same number of inversions that we started with, and the sign is unchanged.

Case 4: $\pi(i) > \pi(k)$ and $\pi(k) < \pi(i)$. Similar.

Thus in all cases we have an odd number of inversions, so $sign(\pi') = - sign(\pi)$. \Box

Proposition 25. *Suppose m* $\in \mathbb{Z}_{>0}$ *and* $\alpha \in V_{\mathrm{alt}}^{(m)}$ *. Then* $\alpha(v_{j_1}, \ldots, v_{j_m}) = \text{sign}(j_1, \ldots, j_m) \alpha(v_1, \ldots, v_m)$

Proof idea. We can get from (j_1, \ldots, j_m) to $(1, \ldots, m)$ by a series of swaps. Each swap changes the sign of *α* by a factor of −1, and also changes the sign of the remaining permutation by a factor of -1 . \Box

Theorem 26. Let $n := \dim(V)$. Suppose e_1, \ldots, e_n is a basis of V. Suppose $v_1, \ldots, v_n \in V$. For *each k, write*

$$
v_k = \sum_{j=1}^n b_{j,k} e_j
$$

for some $b_{1,k}$, . . . , $b_{n,k} \in \mathbb{F}$ *. Then*

$$
\alpha(v_1,\ldots,v_n)=\alpha(e_1,\ldots,e_n)\sum_{(j_1,\ldots,j_n)\in \text{perm}(n)}\text{sign}(j_1,\ldots,j_n)b_{j_1,1}\cdots b_{j_n,n}
$$

for all $\alpha \in V_{\text{alt}}^{(m)}$.

Proof.

$$
\alpha(v_1, ..., v_n) = \alpha \left(\sum_{j_1=1}^n b_{j_1,1} e_{j_1}, ..., \sum_{j_n=1}^n b_{j_n,1} e_{j_n} \right) = \sum_{j_1=1}^n \cdots \sum_{j_n=1}^n b_{j_1,1} ... b_{j_n,n} \alpha(e_{j_1}, ..., e_{j_n})
$$

\n
$$
= \sum_{(j_1,...,j_n) \in \text{perm}(n)} b_{j_1,1} ... b_{j_n,n} \alpha(e_{j_1}, ..., e_{j_n})
$$

\n
$$
= \sum_{(j_1,...,j_n) \in \text{perm}(n)} b_{j_1,1} ... b_{j_n,n} \text{sign}(j_1, ..., j_n) \alpha(e_1, ..., e_n)
$$

\n
$$
= \alpha(e_1, ..., e_n) \sum_{(j_1,...,j_n) \in \text{perm}(n)} \text{sign}(j_1, ..., j_n) b_{j_1,1} ... b_{j_n, n},
$$

where the third equality holds because $\alpha(e_{j_1}, \ldots, e_{j_n}) = 0$ if j_1, \ldots, j_n are not distinct. \Box

Corollary 27. dim $(V_{\text{alt}}^{(n)}) = 1$.

Proof. Let $n := \dim(V)$. Suppose $\alpha, \alpha' \in V_{\text{alt}}^{(n)}$ with $\alpha \neq 0$. Then $\alpha(e_1, \ldots, e_n) \neq 0$ for some $e_1, \ldots, e_n \in V$. Then e_1, \ldots, e_n is linearly independent (contrapositive of earlier result). Let

$$
c:=\frac{\alpha'(e_1,\ldots,e_n)}{\alpha(e_1,\ldots,e_n)}.
$$

Letting $b_{j,k}$ be as above, then

$$
\alpha'(v_1,\ldots,v_n) = \alpha'(e_1,\ldots,e_n) \sum_{(j_1,\ldots,j_n)\in \text{perm}(n)} \text{sign}(j_1,\ldots,j_n)b_{j_1,1}\cdots b_{j_n,n}
$$

$$
= c\alpha(e_1,\ldots,e_n) \sum_{(j_1,\ldots,j_n)\in \text{perm}(n)} \text{sign}(j_1,\ldots,j_n)b_{j_1,1}\cdots b_{j_n,n}
$$

$$
= c\alpha(v_1,\ldots,v_n).
$$

 $Thus α' = cα. Thus dim(V_{alt}^{(n)}) ≤ 1.$

It remains to show that $dim(V_{alt}^{(m)}) = 1$. For details, see 9.37 in the text book. $\hfill \Box$

[Skip if necessary.] To prove the next result, we will need some more results on linear functionals. Recall that V^{\vee} , the dual space, is

$$
V^{\vee} = \mathcal{L}(V, \mathbb{F}) = \{ \varphi : V \to \mathbb{F} \mid \varphi \text{ is linear} \}.
$$

Fix $j \in \{1, \ldots, n\}$. Define

$$
\varphi_j : \mathbb{F}^n \to \mathbb{F}
$$

$$
(x_1, \dots, x_n) \mapsto x_j,
$$

i.e., projection onto the j^{th} coordinate. Then φ_j is linear and

$$
\varphi_j(e_k) = \begin{cases} 1 & \text{if } k = j; \\ 0 & \text{otherwise.} \end{cases}
$$

We can define a similar notion in general.

Definition 28. Let $\mathcal{B} := (v_1, \ldots, v_n)$ be a basis of *V*. The *dual basis of* \mathcal{B} is the list $\mathcal{B}^{\vee} :=$ $(\varphi_1, \ldots, \varphi_n)$ in V^{\vee} , where φ_j is defined by

$$
\varphi_j(v_k) = \begin{cases} 1 & \text{if } k = j; \\ 0 & \text{otherwise.} \end{cases}
$$

Lemma 29. Suppose V is finite-dimensional. Then $\mathcal B$ is a basis of V^\vee . **Remark 30.** φ_j is sometimes denoted v_j^{\vee} *j* .