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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn that every linear map has Jordan basis.
(2) Students will learn the definition of trace.
(3) Students will learn the definition of a multilinear form.
(4) Students will learn the definitions of an inversion and the sign of a permutation.
(5) Students will learn how permuting the entries affects the value of an alternating

multilinear form.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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II. LESSON PLAN(0:00)

II.1. Last time.
• Proved the Cayley-Hamilton theorem: Let q(z) = charpoly(T). Then q(T) = 0.
• Defined Jordan basis and Jordan canonical form:

Definition 1. Let T ∈ L(V). A Jordan basis for T is a basis B of V such that

[T]B =

A1 0
. . .

0 Am


is block diagonal, and each block Ak is of the form

Ak =


λk 1 0

. . . . . .
. . . 1

0 λk

 .

We say that the matrix [T]B is in Jordan canonical form.

• Proved the matrix form of the Generalized Eigenspace Decomposition Theorem:
there exists a basis B such that [T]B is block diagonal with upper triangular blocks.

II.2. 8C: Jordan form, cont.

Proposition 2. Suppose T ∈ L(V) is nilpotent. Then T has a Jordan basis.

Proof. Let n := dim(V). By strong induction on n.
Base case: n = 1. Then T must be the 0 operator, and any basis is a Jordan basis for T.
Inductive step: Let n ≥ 2 and assume the result holds for all k < n. As we have

done several times before, we will find a T-invariant subspace U and apply the inductive
hypothesis to the restriction T|U.

Let m be the smallest positive integer such that Tm = 0. Then there exists u ∈ V such
that Tm−1(u) ̸= 0. Let

U := span(u, T(u), . . . , Tm−1(u)) .
By Exercise 2 of Section 8A, u, T(u), . . . , Tm−1(u) is linearly independent. If U = V, then
Tm−1(u), . . . , T(u), u is a Jordan basis for T.

Thus it suffices to consider the case U ̸= V. Note that U is T-invariant: applying T to
one of the basis vectors simply shifts us over one spot, and T(Tm−1(u)) = Tm(u) = 0.
Since U ̸= V, then by the inductive hypothesis there is a basis of U that is a Jordan basis
for T|U. Goal: Find a subspace W of V such that V = U ⊕ W.

Let φ : V → F be a linear functional such that φ(Tm−1(u)) ̸= 0. (Such a linear func-
tional exists: since u, T(u), . . . , Tm−1(u) is linearly independent, we can extend it to a basis
for V. We can then freely choose the values of φ on these basis vectors.) Define

W := {v ∈ V : φ(Tk(v)) = 0 ∀k = 1, . . . , m − 1}.

Then W is a subspace and is moreover T-invariant (exercise). Claim: V = U ⊕ W.
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(i) Suppose v ∈ U with v ̸= 0. We will show that v /∈ W, so U ∩ W = {0}. Since
v ∈ U, then

v = c0u + c1T(u) + · · ·+ cm−1Tm−1(u)
for some c0, . . . , cm−1 ∈ F. Let j be the smallest index such that cj ̸= 0. Applying
Tm−j−1 kills all the terms after the jth one on the righthand side, so

Tm−j−1(v) = cjTm−1(u) .

Now applying φ, we have

φ(Tm−j−1(v)) = cj φ(Tm−1(u)) ̸= 0

by the definition of φ and cj. Thus v /∈ W, so U ∩ W = {0}.
(ii) Goal: V = U + W. Define

S → Fm

v 7→ (φ(v), φ(T(v)), . . . , φ(Tm−1(v))) .

Then ker(S) = W. [Recall definition of W.] Then

dim(W) = dim(ker(S)) = dim(V)− dim(img(S)) ≥ dim(V)− dim(Fm)

= dim(V)− m

by Rank-Nullity. Then

dim(U ⊕ W) = dim(U) + dim(W) ≥ m + (dim(V)− m) = dim(V) ,

so we must have equality. Thus V = U ⊕ W.
□

We can extend the previous result to all operators by using the generalized eigenspace
decomposition.

Theorem 3. Let F = C and suppose T ∈ L(V). Then T has a Jordan basis.

Proof. Let λ1, . . . , λm be the distinct eigenvalues of T. By the generalized eigenspace de-
composition, we have

V = Gλ1 ⊕ · · · ⊕ Gλm

and (T − λk I)|Gλk
is nilpotent. By the previous result, then for each k there is a basis Bk of

Gλk that is a Jordan basis for (T − λk I)|Gλk
. Concatenating these bases produces a basis B

of V that is a Jordan basis for T. □

II.3. 8D: Trace.

Definition 4. Let A be a square matrix with entries in F. The trace of A, denoted tr(A), is
the sum of the diagonal entries of A. In other words, if A ∈ Mn×n(F), then

tr(A) =
n

∑
i=1

Aii = A11 + · · ·+ Ann .

Proposition 5. Suppose A ∈ Mm×n(F) and B ∈ Mn×m(F). Then

tr(AB) = tr(BA) .
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Proof. Exercise. (See worksheet.) □

This fact will allow us to define the trace of a linear operator, one that is independent
of the choice of basis.

Proposition 6. Suppose T ∈ L(V). Let B and C be bases of V. Then

tr([T]B) = tr([T]C) .

Proof. Let A := [T]B, B := [T]C , and P = C [I]B. Then

A = [T]B = B[I]C [T]C C [I]B = P−1BP ,

so [ask students]

tr(A) = tr(P−1BP) = tr((P−1B)P) = tr(P(P−1B) = tr(B)

by the previous result. □

Definition 7. Let T ∈ L(V). The trace of T, denoted tr(T), is defined to be

tr(T) := tr([T]B)

where B is any basis of V.

Remark 8. By the previous result, tr(T) is well-defined.

The trace has an interesting relationship with eigenvalues: it is their sum.

Proposition 9. Suppose F = C and T ∈ L(V). Let λ1, . . . , λn be the eigenvalues of T, with
each repeated as many times as its algebraic multiplicity. Then

tr(T) = λ1 + · · ·+ λn .

Proof. By a previous result, there exists a basis B of V such that [T]B is upper triangular
with diagonal entries λ1, . . . , λn (again, repeated with algebraic multiplicity). Then

tr(T) = tr([T]B) = λ1 + · · ·+ λn .

□

The trace also has an interpretation in terms of the characteristic polynomial.

Proposition 10. Suppose F = C and T ∈ L(V). Let n := dim(V). Then tr(T) equals negative
the coefficient of zn−1 in the characteristic polynomial of T. I.e., wiriting

charpoly(T) = zn + an−1zn−1 + · · ·+ a1z + a0 ,

then tr(T) = −an−1.

Proof. [Skip, if necessary.] Let λ1, . . . , λn be the eigenvalues of T, with each repeated as
many times as its algebraic multiplicity. Then

charpoly(T) = (z − λ1) · · · (z − λn) .

(Instead of writing (z − λk)
dk , we’re just writing (z − λk) dk times.) Multiplying this ex-

pression out [explain about choosing n − 1 factors of z], we have

charpoly(T) = zn − (λ1 + · · ·+ λn)zn−1 + · · ·+ (−1)n(λ1 · · · λn) .

□
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Proposition 11. The function tr : L(V) → F is linear. I.e., tr is a linear functional on L(V).

Proof. Exercise. □

II.4. 9A, 9B: Bilinear and multilinear forms.

Definition 12. A bilinear form on V is a function β : V × V → F that is linear in each
component: for each w ∈ V, the maps

V → F

v 7→ β(v, w)

and

V → F

v 7→ β(w, v)

are both linear. Denote the set of bilinear forms on V by V(2).

More concretely,

β(cu + v, w) = cβ(u, w) + β(v, w)

and

β(w, cu + v) = cβ(w, u) + β(w, v)

for all u, v, w ∈ V and all c ∈ F.

Lemma 13. V(2) is a vector space under pointwise addition and scalar multiplication of functions.

Proof. Exercise. □

Example 14.
• Let F = R and V be an R-vector space. Then every inner product ⟨·, ·⟩ : V × V →

R is a bilinear form.
• Given A ∈ Mn×n(R), define

β : Fn × Fn → F

(x, y) 7→ xt Ay .

Then β is bilinear by properties of matrix multiplication.

Definition 15. Fix m ∈ Z>0. Denote Vm =

m times︷ ︸︸ ︷
V × · · · × V.

• An m-linear form on V is a function β : Vm → F that is linear in each component
when the others are held fixed. I.e., for each k ∈ {1, . . . , m} and u1, . . . , um ∈ V,
the map

V → F

v 7→ β(u1, . . . , uk−1, v, uk+1, . . . , um)

is linear.
• Denote by V(m) the set of all m-linear forms on V.
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• A multilinear form on V is an m-linear form on V for some m ∈ Z>0.

Definition 16. Let m ∈ Z>0.
• An m-linear form α ∈ V(m) is alternating if α(v1, . . . , vm) = 0 whenever vj = vk for

some j, k ∈ {1, . . . , m} with j ̸= k.
• Let V(m)

alt be the set of all alternating m-linear forms on V.

Lemma 17. V(m) is a vector space, and V(m)
alt is a subspace.

Proof. Exercise. □

Lemma 18. Let α ∈ V(m)
alt . If v1, . . . , vm ∈ V is linearly dependent, then

α(v1, . . . , vm) = 0 .

Proof idea. Use the Linear Dependence Lemma to express vk as a linear combination of the
others. Then use multilinearity and alternating property. Details left as an exercise. □

Proposition 19. Let α ∈ V(m)
alt and v1, . . . , vm ∈ V. Swapping the vectors in any two slots of

α(v1, . . . , vm) changes the value by a factor of −1.

Proof idea. For simplicity, suppose m = 2. Then

0 = α(v + w, v + w) =�����:0
α(v, v) + α(v, w) + α(w, v) +�����:0

α(w, w) .

The proof is virtually the same for m ≥ 2. □

Q: What if we perform multiple swaps? For example, suppose that α ∈ V(3)
alt and

v1, v2, v3 ∈ V. Then

α(v3, v1, v2) = −α(v1, v3, v2) = α(v1, v2, v3) .

This leads us to investigate more general permutations.

Definition 20. Let m ∈ Z>0.
• A permutation of (1, . . . , m) is a rearrangement, i.e., a list (j1, . . . , jm) that contains

each of 1, . . . , m exactly once.
• Denote the set of all permutations of (1, . . . , m) by perm(m).

Example 21. (2, 1, 4, 3) ∈ perm(4).

Definition 22. Suppose (j1, . . . , jm) ∈ perm(m).
• An inversion of (j1, . . . , jm) is a pair of integers (k, ℓ) with k, ℓ ∈ {1, . . . , m} such

that k < ℓ and k appears after ℓ in the list (j1, . . . , jm).
• Let N be the number of inversions of (j1, . . . , jm). The sign of (j1, . . . , jm) is

sgn(j1, . . . , jm) := (−1)N .

Example 23.
• Consider (2, 1, 3, 4) ∈ perm(4). It has exactly one inversion, namely (1, 2), so it has

sign (−1)1 = −1.
• The permutation (1, . . . , m) has no inversions (the numbers are all in increasing

order), so it has sign (−1)0 = 1.
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• Consider the permutation (2, 3, . . . , m, 1). Its inversions are

(1, 2), (1, 3), . . . , (1, m)

so it has sign (−1)m−1.

Proposition 24. Swapping two entries in a permutation multiplies the sign of the permutaiton
by −1.

Proof. Let π be the original position, and π′ be the permutation obtained from swapping
the ith and jth entries of π. Denote the ith entry of π by π(i). Then π(i) < π(j) iff
π′(i) > π′(j), so we have either added or subtracted exactly 1 inversion so far.

Consider the entries not in between the ith and jth spots. For these entries, there is no
change in whether they were in order or not. [Draw picture.]

Now consider π(k) with i < k < j.
Case 1: π(k) was in order with respect to both π(i) and π(j), i.e., π(i) < π(k) < π(j).

Then

π′(i) > π′(k) > π′(j)

so we have 2 more inversions, multiplying the sign by (−1)2 = 1.
Case 2: π(i) > π(k) > π(j). Similar.
Case 3: π(i) < π(k) and π(k) > π(j). Then

π′(i) = π(j) < π(k) = π′(k)

π′(k) = π(k) > π(i) = π′(j)

so we have the same number of inversions that we started with, and the sign is un-
changed.

Case 4: π(i) > π(k) and π(k) < π(j). Similar.
Thus in all cases we have an odd number of inversions, so sign(π′) = − sign(π). □

Proposition 25. Suppose m ∈ Z>0 and α ∈ V(m)
alt . Then

α(vj1 , . . . , vjm) = sign(j1, . . . , jm)α(v1, . . . , vm)

Proof idea. We can get from (j1, . . . , jm) to (1, . . . , m) by a series of swaps. Each swap
changes the sign of α by a factor of −1, and also changes the sign of the remaining per-
mutation by a factor of −1. □

Theorem 26. Let n := dim(V). Suppose e1, . . . , en is a basis of V. Suppose v1, . . . , vn ∈ V. For
each k, write

vk =
n

∑
j=1

bj,kej

for some b1,k, . . . , bn,k ∈ F. Then

α(v1, . . . , vn) = α(e1, . . . , en) ∑
(j1,...,jn)∈perm(n)

sign(j1, . . . , jn)bj1,1 · · · bjn,n

for all α ∈ V(m)
alt .
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Proof.

α(v1, . . . , vn) = α

(
n

∑
j1=1

bj1,1ej1 , . . .
n

∑
jn=1

bjn,1ejn

)
=

n

∑
j1=1

· · ·
n

∑
jn=1

bj1,1 · · · bjn,nα(ej1 , . . . , ejn)

= ∑
(j1,...,jn)∈perm(n)

bj1,1 · · · bjn,nα(ej1 , . . . , ejn)

= ∑
(j1,...,jn)∈perm(n)

bj1,1 · · · bjn,n sign(j1, . . . , jn)α(e1, . . . , en)

= α(e1, . . . , en) ∑
(j1,...,jn)∈perm(n)

sign(j1, . . . , jn)bj1,1 · · · bjn,n ,

where the third equality holds because α(ej1 , . . . , ejn) = 0 if j1, . . . , jn are not distinct. □

Corollary 27. dim(V(n)
alt ) = 1.

Proof. Let n := dim(V). Suppose α, α′ ∈ V(n)
alt with α ̸= 0. Then α(e1, . . . , en) ̸= 0 for some

e1, . . . , en ∈ V. Then e1, . . . , en is linearly independent (contrapositive of earlier result).
Let

c :=
α′(e1, . . . , en)

α(e1, . . . , en)
.

Letting bj,k be as above, then

α′(v1, . . . , vn) = α′(e1, . . . , en) ∑
(j1,...,jn)∈perm(n)

sign(j1, . . . , jn)bj1,1 · · · bjn,n

= cα(e1, . . . , en) ∑
(j1,...,jn)∈perm(n)

sign(j1, . . . , jn)bj1,1 · · · bjn,n

= cα(v1, . . . , vn) .

Thus α′ = cα. Thus dim(V(n)
alt ) ≤ 1.

It remains to show that dim(V(m)
alt ) = 1. For details, see 9.37 in the text book. □

[Skip if necessary.] To prove the next result, we will need some more results on linear
functionals. Recall that V∨, the dual space, is

V∨ = L(V, F) = {φ : V → F | φ is linear} .

Fix j ∈ {1, . . . , n}. Define

φj : Fn → F

(x1, . . . , xn) 7→ xj ,

i.e., projection onto the jth coordinate. Then φj is linear and

φj(ek) =

{
1 if k = j;
0 otherwise.

We can define a similar notion in general.
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Definition 28. Let B := (v1, . . . , vn) be a basis of V. The dual basis of B is the list B∨ :=
(φ1, . . . , φn) in V∨, where φj is defined by

φj(vk) =

{
1 if k = j;
0 otherwise.

Lemma 29. Suppose V is finite-dimensional. Then B is a basis of V∨.

Remark 30. φj is sometimes denoted v∨j .
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