18.700 - LINEAR ALGEBRA, DAY 22 GENERALIZED EIGENSPACE DECOMPOSITION JORDAN CANONICAL FORM, TRACE

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 8B: Generalized eigenspace decomposition, cont.	2
II.3. 8C: Jordan form	4
II.4. 8D: Trace	7

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the Cayley-Hamilton theorem.
- (2) Students will learn the definition of Jordan basis and Jordan canonical form.
- (3) Students will learn the definition of trace.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

II.1. Last time.

- Defined generalized eigenvectors.
- Defined generalized eigenspaces: for $T \in \mathcal{L}(V)$,

$$G_{\lambda}(T) = \{ v \in V : (T - \lambda I)^{k}(v) = 0 \text{ for some } k \in \mathbb{Z}_{\geq 0} \}$$
$$= \ker((T - \lambda I)^{\dim(V)}).$$

• Proved the generalized eigenspace decomposition theorem:

 $V = G_{\lambda_1}(T) \oplus \cdots \oplus G_{\lambda_m}(T)$

where $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of *T*.

 Defined geometric and algebraic (aka generalized) multiplicities of an eigenvalue λ:

geometric multiplicity of $\lambda = \dim(E_{\lambda}(T))$

algebraic multiplicity of $\lambda = \dim(G_{\lambda}(T))$.

• Defined the characteristic polynomial:

charpoly
$$(T) := (z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}$$

where $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of *T*, and λ_i has algebraic multiplicity d_i .

II.2. **8B: Generalized eigenspace decomposition, cont.** Let *V* be a nonzero finite-dimensional vector space.

Proposition 1. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then

- (a) charpoly(T) has degree dim(V); and
- (b) the zeroes of charpoly(T) are exactly the eigenvalues of T.

Proof. (a) Recall that the algebraic multiplicity of λ_k is dim($G_{\lambda_k}(T)$). Since

 $V = G_{\lambda_1} \oplus \cdots \oplus G_{\lambda_m}$,

where $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of *T*, then

$$\dim(V) = \dim(G_{\lambda_1}) + \cdots + \dim(G_{\lambda_m}) = \deg(\operatorname{charpoly}(T)).$$

(b) Immediate from the definition.

Theorem 2 (Cayley-Hamilton). Suppose $\mathbb{F} = \mathbb{C}$. Suppose $T \in \mathcal{L}(V)$ and let q = charpoly(T). Then q(T) = 0 (i.e., the zero linear map).

Proof. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T, and let $d_k := \dim(G_{\lambda_k})$ be the algebraic multiplicity of λ_k for $k = 1, \ldots, m$. For each k, we have seen that $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent, so

$$\frac{(T-\lambda_k I)^{d_k}|_{G_{\lambda_k}}}{2}.$$

(0:00)

By the generalized eigenspace decomposition, each vector $v \in V$ can be written as $v = v_1 + \cdots + v_m$ with $v_k \in G_{\lambda_k}$ for each k. Thus to show that q(T) = 0, it suffices to show $q(T)|_{G_{\lambda_k}} = 0$ for each k.

Fix $k \in \{1, \ldots, m\}$. We have

$$q(T) = (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_m I)^{d_m}.$$

Recall that polynomials in *T* commute, so we can change the order of the factors above. Thus

$$q(T)|_{G_k} = (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_{k-1})^{d_{k-1}} (T - \lambda_{k+1})^{d_{k+1}} \cdots (T - \lambda_m I)^{d_m}|_{G_k} \underbrace{(T - \lambda_k I)^{d_k}|_{G_k}}_{0} = 0.$$

Proposition 3. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then minpoly(*T*) divides charpoly(*T*), *i.e.*,

$$charpoly(T) = minpoly(T) f(z)$$

for some $f(z) \in \mathcal{P}(\mathbb{F})$.

Proof. Letting q := charpoly(T), then q(T) = 0. By a previous result, then minpoly(T) must divide q.

Proposition 4. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let \mathcal{B} be a basis of V such that $[T]_{\mathcal{B}}$ is upper triangular. For each eigenvalue λ of T, then number of times that λ appears on the diagonal of $[T]_{\mathcal{B}}$ is equal to the algebraic multiplicity of λ .

Proof. Let $A := [T]_{\mathcal{B}}$. [Write out A with its entries in the k^{th} column. Recall that $[T]_{\mathcal{B}}$ has columns $[T(v_i)]_{\mathcal{B}}$.] Then for each k we have

$$T(v_k) = \overbrace{c_1v_1 + \cdots + c_{k-1}v_{k-1}}^{u_k} + \lambda_k v_k,$$

where $u_k \in \text{span}(v_1, \ldots, v_{k-1})$. Thus if $\lambda_k \neq 0$, then $T(v_k)$ is not a linear combination of $T(v_1), \ldots, T(v_{k-1}) \in \text{span}(v_1, \ldots, v_{k-1})$. (These only involve the vectors v_1, \ldots, v_{k-1} .) By the Linear Dependence Lemma, then the collection of $T(v_k)$ such that $\lambda_k \neq 0$ is linearly independent.

Let *d* be the number of indices $k \in \{1, ..., n\}$ such that $\lambda_k = 0$. By the above, then

$$n-d \le \dim(\operatorname{img}(T)) = \dim(V) - \dim(\ker(T)) = n - \dim(\ker(T))$$

by Rank-Nullity. Then dim $(\ker(T)) \leq d$.

Now, note that $[T^n]_{\mathcal{B}} = [T]_{\mathcal{B}}^n = A^n$. Moreover, the diagonal entries of A^n are $\lambda_1^n, \ldots, \lambda_n^n$. Since $\lambda_k^n = 0$ iff $\lambda_k = 0$, then 0 appears on the diagonal of $A^n d$ times, too. Thus the reasoning above applies just as well to T^n , so we have

$$\dim(\ker(T^n)) \le d. \tag{5}$$

For each eigenvalue λ of *T*, let m_{λ} denote the algebraic multiplicity of λ , and let d_{λ} be the number of times λ appears on the diagonal of *A*. Replacing *T* with $T - \lambda I$ in (5), then

$$m_{\lambda} \leq d_{\lambda} \tag{6}$$

for each eigenvalue λ of *T*. Summing over all eigenvalues λ , we have [start in middle]

$$n = \dim(V) = \sum_{\lambda} m_{\lambda} \le \sum_{\lambda} d_{\lambda} = n$$

where the second equality follows from the generalized eigenspace decomposition, and the last equality from the fact that the diagonal of *A* consists of *n* entries.

Thus the inequality in (6) must in fact be an equality for all eigenvalues λ .

Definition 7. A *block diagonal matrix* is a square matrix of the form

$$\begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

where A_1, \ldots, A_m are square matrices (of possibly different sizes) lying on the diagonal, and all other entres are 0.

Example 8 (Give example. 2×2 , 1×1 and 3×3 together.).

Proposition 9. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T, with algebraic multiplicities d_1, \ldots, d_m . Then there is a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is block diagonal

$$[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

where each A_k is a $d_k \times d_k$ upper triangular matrix of the form

$$A_k := egin{pmatrix} \lambda_k & st & \ & \ddots & \ & 0 & & \lambda_k \end{pmatrix} \,.$$

Proof. By a previous result, $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent for each k. Thus for each k we can choose a basis \mathcal{B}_k such that $[(T - \lambda_k I)|_{G_{\lambda_k}}]_{\mathcal{B}_k}$ is strictly upper triangular. [Draw picture.] Now,

$$T|_{G_{\lambda_k}} = (T - \lambda_k I)|_{G_{\lambda_k}} + \lambda_k I|_{G_{\lambda_k}}$$

so

$$[T|_{G_{\lambda_k}}]_{\mathcal{B}} = [(T - \lambda_k I)|_{G_{\lambda_k}}]_{\mathcal{B}} + [\lambda_k I|_{G_{\lambda_k}}]_{\mathcal{B}}$$

[draw picture below].

This deals with a single block. Now concatenate the bases $\mathcal{B}_1, \ldots, \mathcal{B}_m$ to form a basis \mathcal{B} of *V*. Then $[T]_{\mathcal{B}}$ is of the desired form.

II.3. **8C:** Jordan form. We have seen that, for $\mathbb{F} = \mathbb{C}$, for every linear operator $T \in \mathcal{L}(V)$ there is a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ is upper triangular. And even more: we can find a basis such that $[T]_{\mathcal{B}}$ is a block diagonal matrix whose blocks are upper triangular. We'll now see that we can do even better: we can find a basis \mathcal{B} such that the only nonzero entries of $[T]_c alB$ possibly occur on the diagonal and the super-diagonal (i.e., the line directly above the diagonal). [Draw picture.]

Example 10. Let $T \in \mathcal{L}(V)$ be defined by T(v) = Av where

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \,.$$

Then $T^3 = 0$ so T is nilpotent. Since A has 2 pivots, we see that $\dim(E_0(T)) = \dim(\ker(T)) = 1$. We can see that $v_1 := (0, 0, 1)$ is an eigenvector with eigenvalue 0. Now we want to find the generalized eigenvectors with eigenvalue 0 that are not eigenvectors. One way to do this: find v_2 such that $T(v_2) = v_1$. Then $T^2(v_2) = T(v_1) = 0$. Solving this system by row reducing the augmented matrix $(A|v_1)$, we find that

$$v_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix} + c \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} + cv_1$$

for any $c \in \mathbb{F}$. Taking c = 0, we have $v_2 = (0, 1, 0)$. We now repeat this process and search for a vector v_3 such that $T(v_3) = v_2$. Row reducing $(A|v_2)$, we find $v_3 = (1, 0, 0)$. Letting \mathcal{B} be the basis

$$v_1, v_2, v_3 = T^2(v_3), T(v_3), v_3$$

then

$$[T]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \,.$$

Remark 11. In general, there may be several eigenvectors, and one will have to work backwards from each eigenvector to obtain a basis of generalized eigenvectors. Consider the matrix

(0	1	0	0
0	0	0	0
0	0	0	1
0/	0	0	0/

for example.

Definition 12. Let $T \in \mathcal{L}(V)$. A *Jordan basis* for *T* is a basis \mathcal{B} of *V* such that

$$[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

is block diagonal, and each block A_k is of the form

$$A_k = \begin{pmatrix} \lambda_k & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_k \end{pmatrix}$$

We say that the matrix $[T]_{\mathcal{B}}$ is in *Jordan canonical form*.

Proposition 13. Suppose $T \in \mathcal{L}(V)$ is nilpotent. Then T has a Jordan basis.

Proof. Let $n := \dim(V)$. By strong induction on n.

<u>Base case</u>: n = 1. Then *T* must be the 0 operator, and any basis is a Jordan basis for *T*.

Inductive step: Let $n \ge 2$ and assume the result holds for all k < n. As we have done several times before, we will find a *T*-invariant subspace *U* and apply the inductive hypothesis to the restriction $T|_U$.

Let *m* be the smallest positive integer such that $T^m = 0$. Then there exists $u \in V$ such that $T^{m-1}(u) \neq 0$. Let

$$U := \operatorname{span}(u, T(u), \dots, T^{m-1}(u)).$$

By Exercise 2 of Section 8A, $u, T(u), \ldots, T^{m-1}(u)$ is linearly independent. If U = V, then $T^{m-1}(u), \ldots, T(u), u$ is a Jordan basis for *T*.

Thus it suffices to consider the case $U \neq V$. Note that U is T-invariant: applying T to one of the basis vectors simply shifts us over one spot, and $T(T^{m-1}(u)) = T^m(u) = 0$. Since $U \neq V$, then by the inductive hypothesis there is a basis of U that is a Jordan basis for $T|_U$. Goal: Find a subspace W of V such that $V = U \oplus W$.

Let $\varphi : V \to \mathbb{F}$ be a linear functional such that $\varphi(T^{m-1}(u)) \neq 0$. (Such a linear functional exists: since $u, T(u), \ldots, T^{m-1}(u)$ is linearly independent, we can extend it to a basis for *V*. We can then freely choose the values of φ on these basis vectors.) Define

$$W := \{v \in V : \varphi(T^k(v)) = 0 \forall k = 1, \dots, m-1\}.$$

Then *W* is a subspace and is moreover *T*-invariant (exercise). <u>Claim</u>: $V = U \oplus W$.

(i) Suppose $v \in U$ with $v \neq 0$. We will show that $v \notin W$, so $U \cap W = \{0\}$. Since $v \in U$, then

$$v = c_0 u + c_1 T(u) + \dots + c_{m-1} T^{m-1}(u)$$

for some $c_0, \ldots, c_{m-1} \in \mathbb{F}$. Let *j* be the smallest index such that $c_j \neq 0$. Applying T^{m-j-1} kills all the terms after the *j*th one on the righthand side, so

$$T^{m-j-1}(v) = c_j T^{m-1}(u).$$

Now applying φ , we have

$$\varphi(T^{m-j-1}(v)) = c_j \varphi(T^{m-1}(u)) \neq 0$$

by the definition of φ and c_j . Thus $v \notin W$, so $U \cap W = \{0\}$.

(ii) <u>Goal</u>: V = U + W. Define

$$S \to \mathbb{F}^m$$

 $v \mapsto (\varphi(v), \varphi(T(v)), \dots, \varphi(T^{m-1}(v))).$

Then ker(S) = W. [Recall definition of W.] Then

 $\dim(W) = \dim(\ker(S)) = \dim(V) - \dim(\operatorname{img}(S)) \ge \dim(V) - \dim(\mathbb{F}^m)$ $= \dim(V) - m$

by Rank-Nullity. Then

 $\dim(U \oplus W) = \dim(U) + \dim(W) \ge m + (\dim(V) - m) = \dim(V)$, so we must have equality. Thus $V = U \oplus W$.

We can extend the previous result to all operators by using the generalized eigenspace decomposition.

Theorem 14. Let $\mathbb{F} = \mathbb{C}$ and suppose $T \in \mathcal{L}(V)$. Then T has a Jordan basis.

Proof. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. By the generalized eigenspace decomposition, we have

$$V=G_{\lambda_1}\oplus\cdots\oplus G_{\lambda_m}$$

and $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent. By the previous result, then for each k there is a basis \mathcal{B}_k of G_{λ_k} that is a Jordan basis for $(T - \lambda_k I)|_{G_{\lambda_k}}$. Concatenating these bases produces a basis \mathcal{B} of V that is a Jordan basis for T.

II.4. 8D: Trace.

Definition 15. Let *A* be a square matrix with entries in \mathbb{F} . The *trace of A*, denoted tr(*A*), is the sum of the diagonal entries of *A*. In other words, if $A \in M_{n \times n}(\mathbb{F})$, then

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii} = A_{11} + \dots + A_{nn}.$$

Proposition 16. Suppose $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{n \times m}(\mathbb{F})$. Then

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

Proof. Exercise. (See worksheet.)

This fact will allow us to define the trace of a linear operator, one that is independent of the choice of basis.

Proposition 17. Suppose $T \in \mathcal{L}(V)$. Let \mathcal{B} and \mathcal{C} be bases of V. Then $\operatorname{tr}([T]_{\mathcal{B}}) = \operatorname{tr}([T]_{\mathcal{C}})$.

Proof. Let $A := [T]_{\mathcal{B}}, B := [T]_{\mathcal{C}}$, and $P = {}_{\mathcal{C}}[I]_{\mathcal{B}}$. Then

$$A = [T]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} [T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}} = P^{-1}BP,$$

so [ask students]

$$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}BP) = \operatorname{tr}((P^{-1}B)P) = \operatorname{tr}(P(P^{-1}B) = \operatorname{tr}(B)$$

by the previous result.

Definition 18. Let $T \in \mathcal{L}(V)$. The *trace of T*, denoted tr(*T*), is defined to be

$$\operatorname{tr}(T) := \operatorname{tr}([T]_{\mathcal{B}})$$

where \mathcal{B} is any basis of V.

Remark 19. By the previous result, tr(T) is well-defined.

The trace has an interesting relationship with eigenvalues: it is their sum.

Proposition 20. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of T, with each repeated as many times as its algebraic multiplicity. Then

$$\operatorname{tr}(T) = \lambda_1 + \cdots + \lambda_n.$$

 \square

Proof. By a previous result, there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$ (again, repeated with algebraic multiplicity). Then

$$\operatorname{tr}(T) = \operatorname{tr}([T]_{\mathcal{B}}) = \lambda_1 + \cdots + \lambda_n.$$

The trace also has an interpretation in terms of the characteristic polynomial.

Proposition 21. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $n := \dim(V)$. Then $\operatorname{tr}(T)$ equals negative the coefficient of z^{n-1} in the characteristic polynomial of T. I.e., wiriting

charpoly
$$(T) = z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}$$
,

then $\operatorname{tr}(T) = -a_{n-1}$.

Proof. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of *T*, with each repeated as many times as its algebraic multiplicity. Then

charpoly
$$(T) = (z - \lambda_1) \cdots (z - \lambda_n)$$
.

(Instead of writing $(z - \lambda_k)^{d_k}$, we're just writing $(z - \lambda_k) d_k$ times.) Multiplying this expression out [explain about choosing n - 1 factors of z], we have

charpoly
$$(T) = z^n - (\lambda_1 + \dots + \lambda_n)z^{n-1} + \dots + (-1)^n(\lambda_1 \dots \lambda_n).$$

Proposition 22. The function $\text{tr} : \mathcal{L}(V) \to \mathbb{F}$ is linear. I.e., tr is a linear functional on $\mathcal{L}(V)$. *Proof.* Exercise.