18.700 - LINEAR ALGEBRA, DAY 22
GENERALIZED EIGENSPACE DECOMPOSITION
JORDAN CANONICAL FORM, TRACE

SAM SCHIAVONE
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[. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the Cayley-Hamilton theorem.

(2) Students will learn the definition of Jordan basis and Jordan canonical form.

(3) Students will learn the definition of trace.

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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(0:00) II. LESSON PLAN

II.1. Last time.

e Defined generalized eigenvectors.
e Defined generalized eigenspaces: for T € L(V),

GA(T) ={v e V: (T —AD)*(v) = 0for some k € Z~¢}
= ker((T — AI)4m(V)y
e Proved the generalized eigenspace decomposition theorem:
V=0G)(T)®- - @Gy, (T)

where Ay, ..., A, are the distinct eigenvalues of T.
e Defined geometric and algebraic (aka generalized) multiplicities of an eigenvalue
A:

geometric multiplicity of A = dim(E,(T))
algebraic multiplicity of A = dim(G,(T)).
e Defined the characteristic polynomial:
charpoly(T) := (z — Ay)% -+ - (z — Ay
where Ay, ..., Ay, are the distinct eigenvalues of T, and A; has algebraic multiplicity

d;.

I1.2. 8B: Generalized eigenspace decomposition, cont. Let V be a nonzero finite-dimensional
vector space.
Proposition 1. Suppose F = Cand T € L(V). Then

(a) charpoly(T) has degree dim(V'); and

(b) the zeroes of charpoly(T) are exactly the eigenvalues of T.
Proof. (a) Recall that the algebraic multiplicity of Ay is dim(G, (T)). Since

V=G\& DGy,
where Ay, ..., Ay are the distinct eigenvalues of T, then
dim(V) = dim(Gy,) + - - - + dim(G,,,) = deg(charpoly(T)).
(b) Immediate from the definition.

g

Theorem 2 (Cayley-Hamilton). Suppose F = C. Suppose T € L(V') and let g = charpoly(T).
Then q(T) = 0 (i.e., the zero linear map).

Proof. Let Aq,..., Ay be the distinct eigenvalues of T, and let di := dim(G,,) be the al-
gebraic multiplicity of Ay fork = 1,...,m. For each k, we have seen that (T — Al )|GM< is

nilpotent, so
(T = MeD) g, -
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By the generalized eigenspace decomposition, each vector v € V can be written as v =
01+ -+ - + vy with v € Gy, for each k. Thus to show that q(T) = 0, it suffices to show
q(T)\GAk = 0 for each k.

Fixk € {1,...,m}. We have
q(T) = (T = A D)% - (T = Ay L)

Recall that polynomials in T commute, so we can change the order of the factors above.
Thus

9(T)lg, = (T = MD™ -+ (T = A1) (T = Agyq) - (T = AuD) ™|, (T = AD)%|g,
—
=0.
0
Proposition 3. Suppose F = C and T € L(V'). Then minpoly(T) divides charpoly(T), i.e.,

charpoly(T) = minpoly(T) f(z)
for some f(z) € P(F).

Proof. Letting q := charpoly(T), then q(T) = 0. By a previous result, then minpoly(T)
must divide g. U

Proposition 4. Suppose F = C and T € L(V). Let B be a basis of V such that [T|g is upper
triangular. For each eigenvalue A of T, then number of times that A appears on the diagonal of
[T is equal to the algebraic multiplicity of A.

Proof. Let A := [T]g. [Write out A with its entries in the k" column. Recall that [T]z has
columns [T(v;)]g.] Then for each k we have

Uk
T(vk) = €101 + - - - + Ck_10k_1 +AkV,
where 1y € span(vy,...,vx_1). Thusif Ay # 0, then T(vy) is not a linear combination of
T(v1),...,T(vk_1) € span(vy,...,vk_1). (These only involve the vectors vy, ...,v;_1.) By

the Linear Dependence Lemma, then the collection of T(vy) such that Ay # 0 is linearly
independent.

Let d be the number of indices k € {1,...,n} such that Ay = 0. By the above, then
n—d < dim(img(T)) = dim(V) — dim(ker(T)) = n — dim(ker(T))

by Rank-Nullity. Then dim(ker(T)) < d.

Now, note that [T"|g = [T]3 = A". Moreover, the diagonal entries of A" are A}, ..., A}.
Since A} = 0 iff Ay = 0, then 0 appears on the diagonal of A" d times, too. Thus the
reasoning above applies just as well to T", so we have

dim(ker(T")) <d. 5)

For each eigenvalue A of T, let m, denote the algebraic multiplicity of A, and let d, be
the number of times A appears on the diagonal of A. Replacing T with T — Al in (5), then

my <dy (6)
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for each eigenvalue A of T. Summing over all eigenvalues A, we have [start in middle]
n=dim(V)=) my <) dy=n
A A

where the second equality follows from the generalized eigenspace decomposition, and
the last equality from the fact that the diagonal of A consists of n entries.
Thus the inequality in (p) must in fact be an equality for all eigenvalues A. g

Definition 7. A block diagonal matrix is a square matrix of the form
Aq 0

0 Ap
where Ay, ..., Ay are square matrices (of possibly different sizes) lying on the diagonal,
and all other entres are 0.

Example 8 (Give example. 2 x 2,1 x 1 and 3 x 3 together.).

Proposition 9. Suppose F = Cand T € L(V). Let Aq,..., Ay, be the distinct eigenvalues of
T, with algebraic multiplicities dy, . ..,dy,. Then there is a basis B of V such that [T]p is block
diagonal

Aq 0
[T]s = -
0 Am
where each Ay is a dy X dy upper triangular matrix of the form
A *
Ay = .
0 A

Proof. By a previous result, (T — Al )|G/\k is nilpotent for each k. Thus for each k we can
choose a basis By such that [(T — AxI) |G)‘k] B, is strictly upper triangular. [Draw picture.]
Now,
Tlg, = (T=Ad)lc, +AMdlc,
SO
[Tley, Js = (T =MDy, I8 + [Akllc, 15
[draw picture below].

This deals with a single block. Now concatenate the bases Bj, . .., By, to form a basis B
of V. Then [T|p is of the desired form. O

I1.3. 8C: Jordan form. We have seen that, for IF = C, for every linear operator T € L(V)
there is a basis BB such that [T is upper triangular. And even more: we can find a basis
such that [T]p is a block diagonal matrix whose blocks are upper triangular. We’ll now
see that we can do even better: we can find a basis B such that the only nonzero entries of
[T]calB possibly occur on the diagonal and the super-diagonal (i.e., the line directly above

the diagonal). [Draw picture.]
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Example 10. Let T € £(V) be defined by T(v) = Av where

000
A=|10 0].
010

Then T° = 0so T is nilpotent. Since A has 2 pivots, we see that dim(Ey(T)) = dim(ker(T)) =
1. We can see that v; := (0,0,1) is an eigenvector with eigenvalue 0. Now we want to
tind the generalized eigenvectors with eigenvalue 0 that are not eigenvectors. One way

to do this: find v, such that T(v;) = v1. Then T?(v;) = T(v;) = 0. Solving this system by
row reducing the augmented matrix (A|v;), we find that

-6 -

for any ¢ € F. Taking ¢ = 0, we have v, = (0,1,0). We now repeat this process and search
for a vector v3 such that T(v3) = v. Row reducing (A|v;), we find v3 = (1,0,0). Letting
B be the basis

v1,v2,03 = T?(03), T(v3), 3

010
[T]B(001).
000

Remark 11. In general, there may be several eigenvectors, and one will have to work
backwards from each eigenvector to obtain a basis of generalized eigenvectors. Consider
the matrix

then

S O OO
OO O
(NN Nl
o= OO

for example.

Definition 12. Let T € L(V). A Jordan basis for T is a basis B of V such that

Aq 0
Tz = 3
0 Am
is block diagonal, and each block Ay is of the form
Ae 1 0
Ay =
0 Ak

We say that the matrix [Tz is in Jordan canonical form.

Proposition 13. Suppose T € L(V) is nilpotent. Then T has a Jordan basis.
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Proof. Let n := dim(V). By strong induction on 7.

Base case: n = 1. Then T must be the 0 operator, and any basis is a Jordan basis for T.

Inductive step: Let n > 2 and assume the result holds for all k < n. As we have
done several times before, we will find a T-invariant subspace U and apply the inductive
hypothesis to the restriction T'|y;.

Let m be the smallest positive integer such that 7" = 0. Then there exists u € V such
that T" 1 (u) # 0. Let

U := span(u, T(u),..., T" Y (u)).
By Exercise 2 of Section 8A, u, T(u), ..., 71 (u) is linearly independent. If U = V, then
T" Y(u),...,T(u),u is a Jordan basis for T.
Thus it suffices to consider the case U # V. Note that U is T-invariant: applying T to

one of the basis vectors simply shifts us over one spot, and T(T" !(u)) = T™"(u) = 0.
Since U # V, then by the inductive hypothesis there is a basis of U that is a Jordan basis
for T|i;. Goal: Find a subspace W of V such that V =U & W.

Let ¢ : V — T be a linear functional such that ¢(T" (1)) # 0. (Such a linear func-

tional exists: since i, T(ut), ..., T™ 1 (u) is linearly independent, we can extend it to a basis
for V. We can then freely choose the values of ¢ on these basis vectors.) Define

W:={veV:9(Tv))=0¥=1,...,m—1}.

Then W is a subspace and is moreover T-invariant (exercise). Claim: V = U & W.

(i) Suppose v € U with v # 0. We will show thatv ¢ W, so UNW = {0}. Since
v € U, then
v=cou+c1T(u)+ -+ cp1T" (1)
for some cp, ..., c—1 € F. Let j be the smallest index such that ¢; # 0. Applying
T™~7~1 kills all the terms after the /" one on the righthand side, so

T 17 (v) = chmfl(u) :
Now applying ¢, we have
p(T" 71 (0)) = cjp(T" () #0

by the definition of ¢ and c;. Thus v ¢ W,so UNW = {0}.
(ii) Goal: V = U + W. Define

S —F"
v = (¢(v), 9(T(0)),..., p(T" " (v))).
Then ker(S) = W. [Recall definition of W.] Then
dim(W) = dim(ker(S)) = dim(V) — dim(img(S)) > dim(V) — dim(FF™)
=dim(V) —m
by Rank-Nullity. Then
dim(U & W) = dim(U) 4+ dim(W) > m + (dim(V) — m) = dim(V),
so we must have equality. Thus V =U & W.
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We can extend the previous result to all operators by using the generalized eigenspace
decomposition.

Theorem 14. Let IF = C and suppose T € L(V). Then T has a Jordan basis.

Proof. Let Ay, ..., Ay be the distinct eigenvalues of T. By the generalized eigenspace de-
composition, we have

V=G @ @Gy,
and (T — Agl)| Gy, 1s nilpotent. By the previous result, then for each k there is a basis By of
Gy, thatis a Jordan basis for (T — Ail)|g " Concatenating these bases produces a basis 3
of V that is a Jordan basis for T. [

11.4. 8D: Trace.

Definition 15. Let A be a square matrix with entries in IF. The trace of A, denoted tr(A),
is the sum of the diagonal entries of A. In other words, if A € Mpxn(F), then

n
tI‘(A) = ZAii =An+--+Am.
i=1
Proposition 16. Suppose A € My,xn(IF) and B € My xm(IF). Then
tr(AB) = tr(BA).
Proof. Exercise. (See worksheet.) 0

This fact will allow us to define the trace of a linear operator, one that is independent
of the choice of basis.

Proposition 17. Suppose T € L(V). Let I3 and C be bases of V. Then
tr([T]s) = tr([Tle) -
Proof. Let A := [T|g, B := [T|¢, and P = ¢[I]3. Then
A= [T|p = slllc [Tle c[l]s = P'BP,
so [ask students]
tr(A) = tr(P~'BP) = tr((P~'B)P) = tr(P(P~'B) = tr(B)

by the previous result. u
Definition 18. Let T € L(V). The trace of T, denoted tr(T), is defined to be

t(T) = tr([T]s)
where B is any basis of V.
Remark 19. By the previous result, tr(T) is well-defined.

The trace has an interesting relationship with eigenvalues: it is their sum.

Proposition 20. Suppose F = Cand T € L(V). Let Aq,..., Ay be the eigenvalues of T, with
each repeated as many times as its algebraic multiplicity. Then

tr(T) =AM+ -+ Ay
7



Proof. By a previous result, there exists a basis B of V such that [T]p is upper triangular
with diagonal entries A4, ..., A, (again, repeated with algebraic multiplicity). Then

t(T) = tr([T]g) = A1+ - + An.
O

The trace also has an interpretation in terms of the characteristic polynomial.

Proposition 21. Suppose F = Cand T € L(V). Let n := dim(V). Then tr(T) equals negative
the coefficient of z" 1 in the characteristic polynomial of T. Le., wiriting
charpoly(T) = 2" +a,_ 12" 1+ + a1z +ag,
then tr(T) = —a,_1.
Proof. Let Aq,..., A, be the eigenvalues of T, with each repeated as many times as its
algebraic multiplicity. Then
charpoly(T) = (z— A1) -+ (z — Ay).

(Instead of writing (z — Ay)%, we're just writing (z — Ay) di times.) Multiplying this ex-
pression out [explain about choosing n — 1 factors of z], we have

charpoly(T) = z" — (Ay + -+ An)2" T4 oo (1) (Ay -+ - Ay)
U
Proposition 22. The function tr : L(V) — [F is linear. Le., tr is a linear functional on L(V).
Proof. Exercise. U
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