18.700 - LINEAR ALGEBRA, DAY 22 GENERALIZED EIGENSPACE DECOMPOSITION JORDAN CANONICAL FORM, TRACE

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the Cayley-Hamilton theorem.
- (2) Students will learn the definition of Jordan basis and Jordan canonical form.
- (3) Students will learn the definition of trace.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON ^PLAN **(0:00)**

II.1. **Last time.**

- Defined generalized eigenvectors.
- Defined generalized eigenspaces: for $T \in \mathcal{L}(V)$,

$$
G_{\lambda}(T) = \{ v \in V : (T - \lambda I)^{k}(v) = 0 \text{ for some } k \in \mathbb{Z}_{\geq 0} \}
$$

= ker $((T - \lambda I)^{\dim(V)})$.

• Proved the generalized eigenspace decomposition theorem:

 $V = G_{\lambda_1}(T) \oplus \cdots \oplus G_{\lambda_m}(T)$

where $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of *T*.

• Defined geometric and algebraic (aka generalized) multiplicities of an eigenvalue *λ*:

geometric multiplicity of $\lambda = \dim(E_\lambda(T))$

algebraic multiplicity of $\lambda = \dim(G_\lambda(T))$.

• Defined the characteristic polynomial:

$$
charpoly(T) := (z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}
$$

where $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of T, and λ_i has algebraic multiplicity *di* .

II.2. **8B: Generalized eigenspace decomposition, cont.** Let *V* be a nonzero finite-dimensional vector space.

Proposition 1. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Then*

- *(a)* charpoly(*T*) *has degree* dim(*V*)*; and*
- *(b) the zeroes of* charpoly(*T*) *are exactly the eigenvalues of T.*

Proof. (a) Recall that the algebraic multiplicity of λ_k is $dim(G_{\lambda_k}(T))$. Since

 $V = G_{\lambda_1} \oplus \cdots \oplus G_{\lambda_m}$

where $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of *T*, then

$$
\dim(V) = \dim(G_{\lambda_1}) + \cdots + \dim(G_{\lambda_m}) = \deg(\text{charpoly}(T)).
$$

(b) Immediate from the definition.

Theorem 2 (Cayley-Hamilton). *Suppose* $\mathbb{F} = \mathbb{C}$ *. Suppose* $T \in \mathcal{L}(V)$ *and let* $q = \text{charpoly}(T)$ *. Then* $q(T) = 0$ *(i.e., the zero linear map).*

Proof. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*, and let $d_k := \dim(G_{\lambda_K})$ be the algebraic multiplicity of λ_k for $k = 1, ..., m$. For each *k*, we have seen that $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent, so

$$
\frac{(T-\lambda_k I)^{d_k}|_{G_{\lambda_k}}}{2}.
$$

□

By the generalized eigenspace decomposition, each vector $v \in V$ can be written as $v =$ $v_1 + \cdots + v_m$ with $v_k \in G_{\lambda_k}$ for each *k*. Thus to show that $q(T) = 0$, it suffices to show $q(T)|_{G_{\lambda_k}} = 0$ for each *k*.

Fix $k \in \{1, \ldots, m\}$. We have

$$
q(T)=(T-\lambda_1I)^{d_1}\cdots(T-\lambda_mI)^{d_m}.
$$

Recall that polynomials in *T* commute, so we can change the order of the factors above. Thus

$$
q(T)|_{G_k} = (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_{k-1})^{d_{k-1}} (T - \lambda_{k+1})^{d_{k+1}} \cdots (T - \lambda_m I)^{d_m} |_{G_k} \underbrace{(T - \lambda_k I)^{d_k}}_0
$$

= 0.

Proposition 3. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Then* minpoly(*T*) *divides* charpoly(*T*), *i.e.*,

$$
charpoly(T) = minpoly(T) f(z)
$$

for some $f(z) \in \mathcal{P}(\mathbb{F})$ *.*

Proof. Letting $q :=$ charpoly(*T*), then $q(T) = 0$. By a previous result, then minpoly(*T*) must divide *q*. □

Proposition 4. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Let* B *be a basis of* V *such that* $[T]_B$ *is upper triangular. For each eigenvalue λ of T, then number of times that λ appears on the diagonal of* $[T]$ _B is equal to the algebraic multiplicity of λ .

Proof. Let $A := [T]_{\mathcal{B}}.$ [Write out A with its entries in the k^{th} column. Recall that $[T]_{\mathcal{B}}$ has columns $[T(v_i)]_{\mathcal{B}}$.] Then for each *k* we have

$$
T(v_k) = \overbrace{c_1v_1 + \cdots + c_{k-1}v_{k-1}}^{u_k} + \lambda_kv_k,
$$

where $u_k \in \text{span}(v_1, \ldots, v_{k-1})$. Thus if $\lambda_k \neq 0$, then $T(v_k)$ is not a linear combination of *T*(*v*₁), . . . , *T*(*v*_{*k*−1}) ∈ span(*v*₁, . . . , *v*_{*k*−1}). (These only involve the vectors *v*₁, . . . , *v*_{*k*−1}.) By the Linear Dependence Lemma, then the collection of $T(v_k)$ such that $\lambda_k \neq 0$ is linearly independent.

Let *d* be the number of indices $k \in \{1, ..., n\}$ such that $\lambda_k = 0$. By the above, then

$$
n - d \le \dim(\text{img}(T)) = \dim(V) - \dim(\text{ker}(T)) = n - \dim(\text{ker}(T))
$$

by Rank-Nullity. Then $\dim(\ker(T)) \leq d$.

Now, note that $[T^n]_{\mathcal{B}} = [T]_{\mathcal{B}}^n = A^n$. Moreover, the diagonal entries of A^n are λ_1^n λ_1^n , λ_2^n . Since $\lambda_k^n = 0$ iff $\lambda_k = 0$, then 0 appears on the diagonal of A^n *d* times, too. Thus the reasoning above applies just as well to *T n* , so we have

$$
\dim(\ker(T^n)) \le d. \tag{5}
$$

For each eigenvalue λ of *T*, let m_λ denote the algebraic multiplicity of λ , and let d_λ be the number of times λ appears on the diagonal of A . Replacing T with $T - \lambda I$ in [\(5\)](#page-2-0), then

$$
m_{\lambda} \leq d_{\lambda} \tag{6}
$$

□

for each eigenvalue *λ* of *T*. Summing over all eigenvalues *λ*, we have [start in middle]

$$
n = \dim(V) = \sum_{\lambda} m_{\lambda} \le \sum_{\lambda} d_{\lambda} = n
$$

where the second equality follows from the generalized eigenspace decomposition, and the last equality from the fact that the diagonal of *A* consists of *n* entries.

Thus the inequality in [\(6\)](#page-2-1) must in fact be an equality for all eigenvalues λ . \Box

Definition 7. A *block diagonal matrix* is a square matrix of the form

$$
\begin{pmatrix} A_1 & 0 \\ \cdot & \cdot & \\ 0 & A_m \end{pmatrix}
$$

where A_1, \ldots, A_m are square matrices (of possibly different sizes) lying on the diagonal, and all other entres are 0.

Example 8 (Give example. 2×2 , 1×1 and 3×3 together.).

Proposition 9. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Let* $\lambda_1, \ldots, \lambda_m$ *be the distinct eigenvalues of T*, with algebraic multiplicities d_1, \ldots, d_m . Then there is a basis B of V such that $[T]_B$ is block *diagonal*

$$
[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ \cdot & \cdot \\ 0 & A_m \end{pmatrix}
$$

 ω here each A_k is a $d_k\times d_k$ upper triangular matrix of the form

$$
A_k := \begin{pmatrix} \lambda_k & * & \\ & \ddots & \\ 0 & & \lambda_k \end{pmatrix}.
$$

Proof. By a previous result, $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent for each *k*. Thus for each *k* we can choose a basis \mathcal{B}_k such that $[(T - \lambda_k I)|_{G_{\lambda_k}}]_{\mathcal{B}_k}$ is strictly upper triangular. [Draw picture.] Now,

$$
T|_{G_{\lambda_k}} = (T - \lambda_k I)|_{G_{\lambda_k}} + \lambda_k I|_{G_{\lambda_k}}
$$

so

$$
[T|_{G_{\lambda_k}}]_{\mathcal{B}} = [(T - \lambda_k I)|_{G_{\lambda_k}}]_{\mathcal{B}} + [\lambda_k I|_{G_{\lambda_k}}]_{\mathcal{B}}
$$

[draw picture below].

This deals with a single block. Now concatenate the bases B_1, \ldots, B_m to form a basis B V. Then $[T]_R$ is of the desired form. of *V*. Then $[T]_B$ is of the desired form.

II.3. **8C: Jordan form.** We have seen that, for $\mathbb{F} = \mathbb{C}$, for every linear operator $T \in \mathcal{L}(V)$ there is a basis B such that $[T]_B$ is upper triangular. And even more: we can find a basis such that $[T]_B$ is a block diagonal matrix whose blocks are upper triangular. We'll now see that we can do even better: we can find a basis B such that the only nonzero entries of $[T]_c$ *alB* possibly occur on the diagonal and the super-diagonal (i.e., the line directly above the diagonal). [Draw picture.]

Example 10. Let $T \in \mathcal{L}(V)$ be defined by $T(v) = Av$ where

$$
A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.
$$

Then $T^3 = 0$ so T is nilpotent. Since A has 2 pivots, we see that $\dim(E_0(T)) = \dim(\ker(T)) = 0$ 1. We can see that $v_1 := (0, 0, 1)$ is an eigenvector with eigenvalue 0. Now we want to find the generalized eigenvectors with eigenvalue 0 that are not eigenvectors. One way to do this: find v_2 such that $T(v_2) = v_1$. Then $T^2(v_2) = T(v_1) = 0$. Solving this system by row reducing the augmented matrix $(A|v_1)$, we find that

$$
v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c v_1
$$

for any $c \in \mathbb{F}$. Taking $c = 0$, we have $v_2 = (0, 1, 0)$. We now repeat this process and search for a vector v_3 such that $T(v_3) = v_2$. Row reducing $(A|v_2)$, we find $v_3 = (1,0,0)$. Letting B be the basis

$$
v_1, v_2, v_3 = T^2(v_3), T(v_3), v_3
$$

then

$$
[T]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Remark 11. In general, there may be several eigenvectors, and one will have to work backwards from each eigenvector to obtain a basis of generalized eigenvectors. Consider the matrix

for example.

Definition 12. Let $T \in \mathcal{L}(V)$. A *Jordan basis* for *T* is a basis *B* of *V* such that

$$
[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}
$$

is block diagonal, and each block *A^k* is of the form

$$
A_k = \begin{pmatrix} \lambda_k & 1 & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_k \end{pmatrix}
$$

.

We say that the matrix $[T]_B$ is in *Jordan canonical form*.

Proposition 13. *Suppose* $T \in \mathcal{L}(V)$ *is nilpotent. Then T has a Jordan basis.*

Proof. Let $n := \dim(V)$. By strong induction on *n*.

Base case: $n = 1$. Then *T* must be the 0 operator, and any basis is a Jordan basis for *T*.

Inductive step: Let $n \geq 2$ and assume the result holds for all $k < n$. As we have done several times before, we will find a *T*-invariant subspace *U* and apply the inductive hypothesis to the restriction $T|_{U}$.

Let *m* be the smallest positive integer such that $T^m = 0$. Then there exists $u \in V$ such that $T^{m-1}(u) \neq 0$. Let

$$
U := \mathrm{span}(u, T(u), \ldots, T^{m-1}(u)).
$$

By Exercise 2 of Section 8A, *u*, $T(u)$, . . . , $T^{m-1}(u)$ is linearly independent. If $U = V$, then *T*^{*m*−1}(*u*), . . . , *T*(*u*), *u* is a Jordan basis for *T*.

Thus it suffices to consider the case $U \neq V$. Note that *U* is *T*-invariant: applying *T* to one of the basis vectors simply shifts us over one spot, and $T(T^{m-1}(u)) = T^m(u) = 0$. Since $U \neq V$, then by the inductive hypothesis there is a basis of *U* that is a Jordan basis for $T|_{U}$. Goal: Find a subspace *W* of *V* such that $V = U \oplus W$.

Let $\varphi: V \to \mathbb{F}$ be a linear functional such that $\varphi(T^{m-1}(u)) \neq 0$. (Such a linear functional exists: since u , $T(u)$, . . . , $T^{m-1}(u)$ is linearly independent, we can extend it to a basis for *V*. We can then freely choose the values of φ on these basis vectors.) Define

$$
W := \{ v \in V : \varphi(T^k(v)) = 0 \ \forall k = 1, \dots, m-1 \}.
$$

Then *W* is a subspace and is moreover *T*-invariant (exercise). Claim: $V = U \oplus W$.

(i) Suppose $v \in U$ with $v \neq 0$. We will show that $v \notin W$, so $U \cap W = \{0\}$. Since $v \in U$, then

$$
v = c_0 u + c_1 T(u) + \dots + c_{m-1} T^{m-1}(u)
$$

for some $c_0, \ldots, c_{m-1} \in \mathbb{F}$. Let *j* be the smallest index such that $c_i \neq 0$. Applying *T ^m*−*j*−¹ kills all the terms after the *j* th one on the righthand side, so

$$
T^{m-j-1}(v) = c_j T^{m-1}(u).
$$

Now applying *φ*, we have

$$
\varphi(T^{m-j-1}(v)) = c_j \varphi(T^{m-1}(u)) \neq 0
$$

by the definition of φ and c_j . Thus $v \notin W$, so $U \cap W = \{0\}.$

(ii) Goal: $V = U + W$. Define

$$
S \to \mathbb{F}^m
$$

$$
v \mapsto (\varphi(v), \varphi(T(v)), \dots, \varphi(T^{m-1}(v))).
$$

Then $\text{ker}(S) = W$. [Recall definition of *W*.] Then

 $dim(W) = dim(ker(S)) = dim(V) - dim(img(S)) \ge dim(V) - dim(F^m)$ $=$ dim(V) – m

by Rank-Nullity. Then

 $\dim(U \oplus W) = \dim(U) + \dim(W) \geq m + (\dim(V) - m) = \dim(V)$ so we must have equality. Thus $V = U \oplus W$.

□

We can extend the previous result to all operators by using the generalized eigenspace decomposition.

Theorem 14. Let $\mathbb{F} = \mathbb{C}$ and suppose $T \in \mathcal{L}(V)$. Then T has a Jordan basis.

Proof. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. By the generalized eigenspace decomposition, we have

$$
V=G_{\lambda_1}\oplus\cdots\oplus G_{\lambda_m}
$$

and $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent. By the previous result, then for each *k* there is a basis \mathcal{B}_k of G_{λ_k} that is a Jordan basis for $(T - \lambda_k I)|_{G_{\lambda_k}}$. Concatenating these bases produces a basis B of *V* that is a Jordan basis for *T*. \Box

II.4. **8D: Trace.**

Definition 15. Let *A* be a square matrix with entries in **F**. The *trace of A*, denoted tr(*A*), is the sum of the diagonal entries of *A*. In other words, if $A \in M_{n \times n}(\mathbb{F})$, then

$$
tr(A) = \sum_{i=1}^{n} A_{ii} = A_{11} + \cdots + A_{nn}.
$$

Proposition 16. *Suppose* $A \in M_{m \times n}(\mathbb{F})$ *and* $B \in M_{n \times m}(\mathbb{F})$ *. Then*

$$
tr(AB) = tr(BA).
$$

Proof. Exercise. (See worksheet.) □

This fact will allow us to define the trace of a linear operator, one that is independent of the choice of basis.

Proposition 17. *Suppose* $T \in \mathcal{L}(V)$ *. Let* B and C be bases of V. Then

$$
\mathrm{tr}([T]_{\mathcal{B}})=\mathrm{tr}([T]_{\mathcal{C}}).
$$

Proof. Let $A := [T]_B$, $B := [T]_C$, and $P = C[I]_B$. Then

$$
A = [T]_{\mathcal{B}} = g[I]_{\mathcal{C}} [T]_{\mathcal{C}} c[I]_{\mathcal{B}} = P^{-1}BP,
$$

so [ask students]

$$
tr(A) = tr(P^{-1}BP) = tr((P^{-1}B)P) = tr(P(P^{-1}B) = tr(B)
$$

by the previous result. \Box

Definition 18. Let $T \in \mathcal{L}(V)$. The *trace of T*, denoted $tr(T)$, is defined to be

$$
\mathrm{tr}(T):=\mathrm{tr}([T]_{\mathcal{B}})
$$

where β is any basis of V .

Remark 19. By the previous result, $tr(T)$ is well-defined.

The trace has an interesting relationship with eigenvalues: it is their sum.

Proposition 20. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Let* $\lambda_1, \ldots, \lambda_n$ *be the eigenvalues of* T, with *each repeated as many times as its algebraic multiplicity. Then*

$$
tr(T) = \lambda_1 + \cdots + \lambda_n.
$$

Proof. By a previous result, there exists a basis B of *V* such that $[T]_B$ is upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$ (again, repeated with algebraic multiplicity). Then

$$
tr(T) = tr([T]_{\mathcal{B}}) = \lambda_1 + \cdots + \lambda_n.
$$

□

□

The trace also has an interpretation in terms of the characteristic polynomial.

Proposition 21. *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. Let* $n := \dim(V)$ *. Then* $\text{tr}(T)$ *equals negative the coefficient of zn*−¹ *in the characteristic polynomial of T. I.e., wiriting*

$$
charpoly(T) = zn + an-1zn-1 + \cdots + a_1z + a_0,
$$

then $tr(T) = -a_{n-1}$ *.*

Proof. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of *T*, with each repeated as many times as its algebraic multiplicity. Then

$$
charpoly(T) = (z - \lambda_1) \cdots (z - \lambda_n).
$$

(Instead of writing $(z - \lambda_k)^{d_k}$, we're just writing $(z - \lambda_k) d_k$ times.) Multiplying this expression out [explain about choosing *n* − 1 factors of *z*], we have

$$
charpoly(T) = zn - (\lambda_1 + \cdots + \lambda_n)z^{n-1} + \cdots + (-1)^n(\lambda_1 \cdots \lambda_n).
$$

Proposition 22. *The function* $\text{tr} : \mathcal{L}(V) \to \mathbb{F}$ *is linear. I.e.,* tr *is a linear functional on* $\mathcal{L}(V)$ *. Proof.* Exercise. □