18.700 - LINEAR ALGEBRA, DAY 21 GENERALIZED EIGENVECTORS GENERALIZED EIGENSPACE DECOMPOSITION

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 8A: Generalized Eigenvectors, cont.	2
II.3. Generalized eigenspace decomposition	4

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the definition of generalized eigenvector.
- (2) Students will learn the definition of a generalized eigenspace.
- (3) Students will learn the general eigenspace decomposition theorem.
- (4) Students will learn the Cayley-Hamilton theorem.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

II.1. Last time.

- Defined Singular Value Decomposition.
- Learned how to compute an SVD of a matrix.

II.2. 8A: Generalized Eigenvectors, cont.

II.2.1. Generalized eigenvectors. Recall that T is diagonalizable iff

$$V = V_1 \oplus \dots \oplus V_n \tag{1}$$

 \square

where $V_i = \text{span}(v_i)$ is a 1-dimensional *T*-invariant subspace for each i = 1, ..., n. But we know that not every linear operator *T* is diagonalizable: e.g., $V = \mathbb{F}^2$ and $T = L_A$ for

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \,.$$

But what if we allow for *T*-invariant subspaces of larger dimension in (1)? This leads to the following notion.

Definition 2. Suppose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a *generalized eigenvector* of T associated to λ if $v \neq 0$ and

$$(T - \lambda I)^k(v) = 0$$

for some $k \in \mathbb{Z}_{>0}$.

Theorem 3. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then there is a basis of *V* consisting of generalized eigenvectors of *T*.

Proof. Let $n := \dim(V)$. By strong induction on n.

<u>Base case</u>: n = 1. Then every nonzero vector is an eigenvector of *T*.

Inductive step: Suppose $n \ge 2$ and the result holds for all k < n. Since $\mathbb{F} = \mathbb{C}$, then there exists an eigenvalue λ of *T*. Recall then that

$$V = \ker(T - \lambda I)^n \oplus \operatorname{img}(T - \lambda I)^n$$

<u>Case 1</u>: $ker(T - \lambda I)^n = V$. Then every nonzero vector in *V* is a generalized eigenvector of *T*, so the result holds.

<u>Case 2</u>: ker $(T - \lambda I)^n \neq V$. Then img $(T - \lambda I)^n \neq \{0\}$. Since λ is an eigenvalue of T, then dim $(\text{ker}(T - \lambda I)^n) \geq 1$. Thus

$$0 < \dim(\operatorname{img}(T - \lambda I)^n) < n.$$

Let $U := img(T - \lambda I)^n$. Then U is a nonzero T-invariant subspace of dimension < n. By the inductive hypothesis applied to the restriction $T|_U$, there is a basis of U consisting of generalized eigenvectors of $T|_U$. Adjoin this basis to a basis of ker $(T - \lambda I)^n$. Since

$$V = \ker(T - \lambda I)^n \oplus \operatorname{img}(T - \lambda I)^n$$
,

then the result is a basis of *V* consisting of generalized eigenvectors of *T*.

Lemma 4. Suppose $T \in \mathcal{L}(V)$. Then each generalized eigenvector of T corresponds to a unique eigenvalue of T.

(0:00)

Proof. Exercise.

Proposition 5. Suppose $T \in \mathcal{L}(V)$. Then every list of generalized eigenvectors of T corresponding to distinct eigenvalues is linearly independent.

Proof. Exercise. Similar to the proof for eigenvectors.

II.2.2. Nilpotent operators.

Definition 6. An operator $T \in \mathcal{L}(V)$ is *nilpotent* if $T^m = 0$ for some $m \in \mathbb{Z}_{\geq 0}$.

Example 7. Let $V = \mathbb{F}^2$. The operator $T := L_A$ with

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

is nilpotent.

Proposition 8. Suppose $T \in \mathcal{L}(V)$ is nilpotent. Then minpoly $(T) = z^m$ for some $m \leq \dim(V)$.

Proof. Since *T* is nilpotent, then $T^k = 0$ for some $k \in \mathbb{Z}_{\geq 0}$. Then minpoly(*T*) divides z^k so $z^k = \text{minpoly}(T)f(z)$

for some $f \in \mathcal{P}(\mathbb{F})$. By unique factorization, then minpoly $(T) = z^m$ for some $m \in \mathbb{Z}_{\geq 0}$. Moreover, we know that deg(minpoly(T)) $\leq \dim(V)$, so $m \leq \dim(V)$.

Proposition 9. Let $n := \dim(V)$ and suppose $T \in \mathcal{L}(V)$ is nilpotent. Then $T^n = 0$.

Proof. By the above, minpoly(T) = z^m for some $m \le n$. Then

$$T^n = T^{n-m}T^m = T^{n-m} \circ 0 = 0.$$

Proposition 10. Suppose $T \in \mathcal{L}(V)$.

- (a) If T is nilpotent, then 0 is an eigenvalue of T and T has no other eigenvalues.
- (b) If $\mathbb{F} = \mathbb{C}$ and 0 is the only eigenvalue of *T*, then *T* is nilpotent.
- *Proof.* (a) By the previous proposition, minpoly $(T) = T^m$ for some m. The eigenvalues of T are exactly the roots of minpoly(T).
 - (b) Since $\mathbb{F} = \mathbb{C}$, then minpoly(*T*) splits into degree 1 factors. Then minpoly(*T*) = z^m for some $m \in \mathbb{Z}_{>0}$, so $T^m = 0$.

Proposition 11. Suppose $T \in \mathcal{L}(V)$. TFAE.

- (*a*) *T* is nilpotent.
- (b) minpoly(T) = z^m for some $m \in \mathbb{Z}_{\geq 0}$.
- (c) There is a basis \mathcal{B} of V such that

$$[T]_{\mathcal{B}} = \begin{pmatrix} 0 & & * \\ \vdots & \ddots & \\ 0 & \cdots & 0 \end{pmatrix}$$

where all entries on and below the diagonal are 0.

Proof. (a) \implies (b): Already done.

(b) \implies (c): Since minpoly(T) = z^m splits into degree 1 factors, then there is a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is upper triangular. Its diagonal entries are exactly the eigenvalues of T, namely 0, so we obtain a matrix of the desired form.

(c) \implies (a): A direct calculation shows that $([T]_{\mathcal{B}})^n = 0$.

II.3. Generalized eigenspace decomposition.

Definition 12. Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The *generalized eigenspace* of *T* corresponding to λ , denoted $G_{\lambda}(T)$ or G_{λ} , is

$$G_{\lambda}(T) := \{ v \in V : (T - \lambda I)^{k}(v) = 0 \text{ for some } k \in \mathbb{Z}_{>0} \}.$$

In other words, G_{λ} is the set of generalized eigenvectors of *T* corresponding to λ , together with the 0 vector.

Proposition 13. Let $n := \dim(V)$. Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Then $G_{\lambda}(T) = \ker(T - \lambda I)^n$.

Proof. (\supseteq): Given $v \in \ker(T - \lambda I)^n$, then $v \in G_{\lambda}(T)$. (Just take k = n in the definition.) (\subseteq): Given $v \in G_{\lambda}(T)$, then $v \in \ker(T - \lambda I)^k$ for some k, so $(T - \lambda I)^k(v) = 0$. <u>Case 1</u>: $k \le n$. Then

$$(T - \lambda I)^{n}(v) = (T - \lambda I)^{n-k}(T - \lambda I)^{k}(v) = (T - \lambda I)^{n-k}(0) = 0,$$

so $v \in \ker(T - \lambda I)^n$.

<u>Case 2</u>: k > n. By a previous result, we have

$$\ker(T-\lambda I)^n = \ker(T-\lambda I)^{n+1} = \ker(T-\lambda I)^{n+2} = \dots = \ker(T-\lambda I)^k = \dots$$

Thus $v \in \ker(T - \lambda I)^k = \ker(T - \lambda I)^k$.

Proposition 14 (Generalized eigenspace decomposition). Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T. Then

- (a) $G_{\lambda_k}(T)$ is T-invariant for all k = 1, ..., m;
- (b) $(T \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent for all k = 1, ..., m;
- (c) $V = G_{\lambda_1} \oplus \cdots \oplus G_{\lambda_m}$.

Proof. Let $n = \dim(V)$.

(a) Fix $k \in \{1, ..., m\}$. By a previous result, then

$$G_{\lambda_k}(T) = \operatorname{ker}((T - \lambda_k I)^n).$$

This is the kernel of a polynomial evaluated at *T*, hence is *T*-invariant. (b) Fix $k \in \{1, ..., m\}$. Given $v \in G_{\lambda_k}(T) = \ker((T - \lambda_k I)^n)$, then

$$(T - \lambda_k I)^n(v) = 0$$

Then

$$(T - \lambda_k I)^n |_{G_{\lambda_k}} = 0$$

so $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent.

(c) By a previous result, there is a basis of V consisting of generalized eigenvectors of T. Thus every vector in V can be written as a linear combination of generalized eigenvectors, so

$$G_{\lambda_1} + \cdots + G_{\lambda_m} = V$$

We now show the sum is direct. Suppose that

$$v_1 + \cdots + v_m = 0$$

with $v_k \in G_{\lambda_k}$ for each k = 1, ..., m. Since generalized eigenvectors corresponding to distinct eigenvalues are linearly independent, then we have $v_1 = \cdots = v_m = 0$. Thus the sum is direct.

Definition 15. Let $T \in \mathcal{L}(V)$.

• The *geometric multiplicity* of an eigenvalue λ of *T* is

$$\dim(E_{\lambda}(T)) = \dim(\ker(T - \lambda I)).$$

• The generalized multiplicity (or algebraic multiplicity) of an eigenvalue λ of T is

$$\dim(G_{\lambda}(T)) = \dim(\ker(T - \lambda I)^{\dim(V)}.$$

Example 16. Let

$$A := \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \,.$$

Then

$$A - 2I = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -5 \end{pmatrix} \,,$$

which has 2 pivots, so $\dim(E_2) = 1$. Now

$$(A-2I)^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -125 \end{pmatrix},$$

so dim $(G_2) = 2$. Thus 2 has geometric multiplicity 1, and algebraic multiplicity 2.

Definition 17. Suppose $\mathbb{F} = \mathbb{C}$ and $T = \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*, with algebraic multiplicities d_1, \ldots, d_m . The *characteristic polynomial of T* is

charpoly
$$(T) = (z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}$$
.

Remark 18. We will later give a formula for charpoly(T) that doesn't require knowing the eigenvalues of *T*. (It will involv determinants.)

Proposition 19. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then

- (a) charpoly(T) has degree dim(V); and
- (b) the zeroes of charpoly(T) are exactly the eigenvalues of T.

Proof. (a) Recall that the algebraic multiplicity of λ_k is dim $(G_{\lambda_k}(T))$. Since

$$V = G_{\lambda_1} \oplus \cdots \oplus G_{\lambda_m}$$
,

where $\lambda_1, \ldots, \lambda_m$ are the distinct eigenvalues of *T*, then

$$\dim(V) = \dim(G_{\lambda_1}) + \cdots + \dim(G_{\lambda_m}).$$

(b) Immediate from the definition.

Theorem 20 (Cayley-Hamilton). Suppose $\mathbb{F} = \mathbb{C}$. Suppose $T \in \mathcal{L}(V)$ and let q = charpoly(T). *Then* q(T) = 0 (*i.e., the zero linear map*).

Proof. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T, and let $d_k := \dim(G_{\lambda_k})$ be the algebraic multiplicity of λ_k for $k = 1, \ldots, m$. For each k, we have seen that $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent, so

$$(T-\lambda_k I)^{d_k}|_{G_{\lambda_k}}$$

By the generalized eigenspace decomposition, each vector $v \in V$ can be written as $v = v_1 + \cdots + v_m$ with $v_k \in G_{\lambda_k}$ for each k. Thus to show that q(T) = 0, it suffices to show $q(T)|_{G_{\lambda_k}} = 0$ for each k.

Fix $k \in \{1, \ldots, m\}$. We have

$$q(T) = (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_m I)^{d_m}.$$

Recall that polynomials in *T* commute, so we can change the order of the factors above. Thus

$$q(T)|_{G_k} = (T - \lambda_1 I)^{d_1} \cdots (T - \lambda_{k-1})^{d_{k-1}} (T - \lambda_{k+1})^{d_{k+1}} \cdots (T - \lambda_m I)^{d_m}|_{G_k} \underbrace{(T - \lambda_k I)^{d_k}|_{G_k}}_{0} = 0.$$

Proposition 21. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then minpoly(*T*) divides charpoly(*T*), *i.e.*, charpoly(*T*) = minpoly(*T*) f(z)

for some $f(z) \in \mathcal{P}(\mathbb{F})$.

Proof. Letting q := charpoly(T), then q(T) = 0. By a previous result, then minpoly(T) must divide q.

Proposition 22. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let \mathcal{B} be a basis of V such that $[T]_{\mathcal{B}}$ is upper triangular. For each eigenvalue λ of T, then number of times that λ appears on the diagonal of $[T]_{\mathcal{B}}$ is equal to the algebraic multiplicity of λ .

Proof. Let $A := [T]_{\mathcal{B}}$. [Write out A with its entries.] Then for each k we have

$$T(v_k) = \overbrace{c_1v_1 + \cdots + c_{k-1}v_{k-1}}^{u_k} + \lambda_k v_k,$$

where $u_k \in \text{span}(v_1, \ldots, v_{k-1})$. Thus if $\lambda_k \neq 0$, then $T(v_k)$ is not a linear combination of $T(v_1), \ldots, T(v_{k-1}) \in \text{span}(v_1, \ldots, v_{k-1})$. By the Linear Dependence Lemma, then the collection of $T(v_k)$ such that $\lambda_k \neq 0$ is linearly independent.

Let *d* be the number of indices $k \in \{1, ..., n\}$ such that $\lambda_k = 0$. By the above, then

$$n - d \le \dim(\operatorname{img}(T)) = \dim(V) - \dim(\ker(T)) = n - \dim(\ker(T))$$

by Rank-Nullity. Then dim $(ker(T)) \le d$.

Now, note that $[T^n]_{\mathcal{B}} = [T]_{\mathcal{B}}^n = A^n$. Moreover, the diagonal entries of A^n are $\lambda_1^n, \ldots, \lambda_n^n$. Since $\lambda_k^n = 0$ iff $\lambda_k = 0$, then 0 appears on the diagonal of $A^n d$ times, too. Thus the reasoning above applies just as well to T^n , so we have

$$\dim(\ker(T^n)) \le d. \tag{23}$$

For each eigenvalue λ of *T*, let m_{λ} denote the algebraic multiplicity of λ , and let d_{λ} be the number of times λ appears on the diagonal of *A*. Replacing *T* with *T* – λI in (23), then

$$m_{\lambda} \le d_{\lambda}$$
 (24)

for each eigenvalue λ of *T*. Summing over all eigenvalues λ , we have [start in middle]

$$n = \dim(V) = \sum_{\lambda} m_{\lambda} \le \sum_{\lambda} d_{\lambda} = n$$

where the second equality follows from the generalized eigenspace decomposition, and the last equality from the fact that the diagonal of *A* consists of *n* entries.

Thus the inequality in (24) must in fact be an equality for all eigenvalues λ .

Definition 25. A *block diagonal matrix* is a square matrix of the form

$$\begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

where A_1, \ldots, A_m are square matrices (of possibly different sizes) lying on the diagonal, and all other entres are 0.

Example 26 (Give example.).

Proposition 27. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T, with algebraic multiplicities d_1, \ldots, d_m . Then there is a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is block diagonal

$$[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

where each A_k is a $d_k \times d_k$ upper triangular matrix of the form

$$A_k := egin{pmatrix} \lambda_k & * & \ & \ddots & \ & 0 & & \lambda_k \end{pmatrix} \,.$$

Proof. By a previous result, $(T - \lambda_k I)|_{G_{\lambda_k}}$ is nilpotent for each k. Thus for each k we can choose a basis \mathcal{B}_k such that $[(T - \lambda_k I)|_{G_{\lambda_k}}]_{\mathcal{B}_k}$ is strictly upper triangular. [Draw picture.] Now,

$$T|_{G_{\lambda_k}} = (T - \lambda_k I)|_{G_{\lambda_k}} + \lambda_k I|_{G_{\lambda_k}}$$

$$[T|_{G_{\lambda_k}}]_{\mathcal{B}} = [(T - \lambda_k I)|_{G_{\lambda_k}}]_{\mathcal{B}} + [\lambda_k I|_{G_{\lambda_k}}]_{\mathcal{B}}$$

[draw picture below]. This deals with a single block. Now concatenate the bases $\mathcal{B}_1, \ldots, \mathcal{B}_m$ to form a basis \mathcal{B} of V. Then $[T]_{\mathcal{B}}$ is of the desired form.