18.700 - LINEAR ALGEBRA, DAY 21
GENERALIZED EIGENVECTORS
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[. PRE-CLASS PLANNING

I1.1. Goals for lesson.

(1) Students will learn the definition of generalized eigenvector.
(2) Students will learn the definition of a generalized eigenspace.

(3) Students will learn the general eigenspace decomposition theorem.

(4) Students will learn the Cayley-Hamilton theorem.

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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II. LESSON PLAN

IL.1. Last time.
¢ Defined Singular Value Decomposition.
e Learned how to compute an SVD of a matrix.

I1.2. 8A: Generalized Eigenvectors, cont.

I1.2.1. Generalized eigenvectors. Recall that T is diagonalizable iff
V=Vi& oV, (1)

where V; = span(v;) is a 1-dimensional T-invariant subspace for each i = 1,...,n. But
we know that not every linear operator T is diagonalizable: e.g., V = F?and T = L, for

01
()
But what if we allow for T-invariant subspaces of larger dimension in (I)? This leads

to the following notion.

Definition 2. Suppose T € L(V) and A is an eigenvalue of T. A vector v € V is a
generalized eigenvector of T associated to A if v # 0 and

(T — AD¥(v) =0
for some k € Z~.

Theorem 3. Suppose F = C and T € L(V). Then there is a basis of V consisting of generalized
eigenvectors of T.

Proof. Let n := dim(V). By strong induction on 7.
Base case: n = 1. Then every nonzero vector is an eigenvector of T.
Inductive step: Suppose n > 2 and the result holds for all k < n. Since F = C, then
there exists an eigenvalue A of T. Recall then that
V =ker(T — AI)" @img(T — AI)".
Case 1: ker(T — AI)" = V. Then every nonzero vector in V is a generalized eigenvector
of T, so the result holds.

Case 2: ker(T — AI)" # V. Then img(T — AI)" # {0}. Since A is an eigenvalue of T,
then dim(ker(T — AI)") > 1. Thus

0 < dim(img(T — AI)") < n.

Let U := img(T — AI)". Then U is a nonzero T-invariant subspace of dimension < n. By
the inductive hypothesis applied to the restriction T, there is a basis of U consisting of
generalized eigenvectors of T|y;. Adjoin this basis to a basis of ker(T — AI)". Since

V =ker(T — AI)" @img(T — AI)",

then the result is a basis of V consisting of generalized eigenvectors of T. u

Lemma 4. Suppose T € L(V). Then each generalized eigenvector of T corresponds to a unique

eigenvalue of T.
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Proof. Exercise. U

Proposition 5. Suppose T € L(V'). Then every list of generalized eigenvectors of T correspond-
ing to distinct eigenvalues is linearly independent.

Proof. Exercise. Similar to the proof for eigenvectors. 4
I1.2.2. Nilpotent operators.

Definition 6. An operator T € L(V) is nilpotent if T" = 0 for some m € Z>y.

Example 7. Let V = IF2. The operator T := L4 with

-G

Proposition 8. Suppose T € L(V) is nilpotent. Then minpoly(T) = z™ for some m <
dim(V).

is nilpotent.

Proof. Since T is nilpotent, then TX = 0 for some k € Z . Then minpoly(T) divides z* so

z¥ = minpoly(T) f(z)
for some f € P(FF). By unique factorization, then minpoly(T) = z" for some m € Z>.
Moreover, we know that deg(minpoly(T)) < dim(V), so m < dim(V). O

Proposition 9. Let n := dim(V') and suppose T € L(V) is nilpotent. Then T" = 0.

Proof. By the above, minpoly(T) = z™ for some m < n. Then
T =T""T" = T""" 00 =0.

O
Proposition 10. Suppose T € L(V).
(a) If T is nilpotent, then 0 is an eigenvalue of T and T has no other eigenvalues.
(b) If F = C and 0 is the only eigenvalue of T, then T is nilpotent.
Proof.  (a) By the previous proposition, minpoly(T) = T™ for some m. The eigenvalues

of T are exactly the roots of minpoly(T).
(b) Since F = C, then minpoly(T) splits into degree 1 factors. Then minpoly(T) = z
for some m € Z>p,so T" = 0.

m

l

Proposition 11. Suppose T € L(V). TFAE.

(a) T is nilpotent.
(b) minpoly(T) = z" for some m € Z>.
(c) There is a basis B of V such that

[T]B = 1: ",

0 --- 0

where all entries on and below the diagonal are 0.
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Proof. (a) = (b): Already done.

(b) = (c): Since minpoly(T) = z" splits into degree 1 factors, then there is a basis B
of V such that [T]p is upper triangular. Its diagonal entries are exactly the eigenvalues of
T, namely 0, so we obtain a matrix of the desired form.

() = (a): A direct calculation shows that ([T]|z)" = 0. O

II.3. Generalized eigenspace decomposition.

Definition 12. Suppose T € L(V) and A € F. The generalized eigenspace of T correspond-
ing to A, denoted G, (T) or G, is

GA(T) := {v € V: (T — AI)"(v) = 0 for some k € Z~} .

In other words, G, is the set of generalized eigenvectors of T corresponding to A, together
with the 0 vector.

Proposition 13. Let n := dim(V). Suppose T € L(V) and A € F. Then G,(T) = ker(T —
A"

Proof. (2): Given v € ker(T — AI)", then v € G,(T). (Just take k = n in the definition.)
(C): Given v € G, (T), then v € ker(T — AI)X for some k, so (T — AI)¥(v) = 0.
Case 1: k < n. Then

(T — A" (v) = (T — A)" 8T = ADK(v) = (T — AI)"%(0) =0,

sov € ker(T — AI)".
Case 2: k > n. By a previous result, we have

ker(T — AI)" = ker(T — AI)"*! = ker(T — AI)""2 = ... = ker(T —AI)f = - ...
Thus v € ker(T — AI)¥ = ker(T — AIE. O

Proposition 14 (Generalized eigenspace decomposition). Suppose F = C and T € L(V).
Let Ay, ..., Ay be the distinct eigenvalues of T. Then

(a) G5 (T) is T-invariant forallk = 1,...,m;
(b) (T — /\kI)|G/\k is nilpotent forallk =1,...,m;
() V=G @ DGy,
Proof. Let n = dim(V).
(a) Fixk € {1,..., m}. By a previous result, then
GAk(T) = ker((T - )Lkl)n) .

This is the kernel of a polynomial evaluated at T, hence is T-invariant.
(b) Fixk € {1,...,m}. Givenv € G, (T) = ker((T — A(I)"), then

(T — M) (v) =0.
Then
(T~ M)y, =0

5o (T — Agl) |GM< is nilpotent.



(c) By a previous result, there is a basis of V consisting of generalized eigenvectors of
T. Thus every vector in V can be written as a linear combination of generalized
eigenvectors, so

Gy +--+Gy, =V.
We now show the sum is direct. Suppose that
01+ +0,=0

with vy € G, foreachk =1,...,m. Since generalized eigenvectors corresponding
to distinct eigenvalues are linearly independent, then we have v; = - -+ = v, = 0.
Thus the sum is direct.

g

Definition 15. Let T € L(V).
e The geometric multiplicity of an eigenvalue A of T is

dim(E,(T)) = dim(ker(T — AI).
o The generalized multiplicity (or algebraic multiplicity) of an eigenvalue A of T is
dim(G,(T)) = dim(ker(T — AI)d™(V)
Example 16. Let

Then

which has 2 pivots, so dim(E;) = 1. Now

00 0
(A-21*=(00 o0 |,
0 0 —125

so dim(G,) = 2. Thus 2 has geometric multiplicity 1, and algebraic multiplicity 2.
Definition 17. Suppose F = C and T = L(V). Let A4,..., Ay, be the distinct eigenvalues

of T, with algebraic multiplicities dy, . . ., d,. The characteristic polynomial of T is
charpoly(T) = (z — Ay - (z — Ay)dm.

Remark 18. We will later give a formula for charpoly(T) that doesn’t require knowing
the eigenvalues of T. (It will involv determinants.)
Proposition 19. Suppose F = Cand T € L(V). Then

(a) charpoly(T) has degree dim(V); and
(b) the zeroes of charpoly(T) are exactly the eigenvalues of T.
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Proof.  (a) Recall that the algebraic multiplicity of A is dim(G,, (T)). Since
VZG)H@"'EBG/\WI,
where Ay, ..., Ay are the distinct eigenvalues of T, then
dim(V) = dim(Gy,) + - - - +dim(G,,,) -
(b) Immediate from the definition.
O

Theorem 20 (Cayley-Hamilton). Suppose F = C. Suppose T € L(V') and let g = charpoly(T).
Then q(T) = 0 (i.e., the zero linear map).

Proof. Let Ay, ..., Ay be the distinct eigenvalues of T, and let di := dim(G,,) be the al-
gebraic multiplicity of A, for k = 1,...,m. For each k, we have seen that (T — Al )\GAk is
nilpotent, so

(T = A,
By the generalized eigenspace decomposition, each vector v € V can be written as v =

01+ -+ - + vy with v € Gy, for each k. Thus to show that q(T) = 0, it suffices to show
q(T)\GAk = 0 for each k.

Fixk € {1,...,m}. We have
q(T) = (T =MD - (T = A D)™.

Recall that polynomials in T commute, so we can change the order of the factors above.
Thus

(Dl = (T =MD™ -+ (T = M) % 1T = Ageyr) 1+ (T = AnD) ™|, (T — M) ¥,
—
=0.
U
Proposition 21. Suppose F = C and T € L(V'). Then minpoly(T) divides charpoly(T), i.e.,

charpoly(T) = minpoly(T) f(z)
for some f(z) € P(F).

Proof. Letting g := charpoly(T), then g(T) = 0. By a previous result, then minpoly(T)
must divide g. O

Proposition 22. Suppose F = C and T € L(V). Let B be a basis of V such that [T|p is upper
triangular. For each eigenvalue A of T, then number of times that A appears on the diagonal of
[T is equal to the algebraic multiplicity of A.

Proof. Let A := [T]p. [Write out A with its entries.] Then for each k we have
U
T(vg) = €101 + - - - + ck_10k—1 +MT%,

where uy € span(vy,...,v¢_1). Thus if Ay # 0, then T(vg) is not a linear combination
of T(v1),...,T(vk_1) € span(vy,...,v¢_1). By the Linear Dependence Lemma, then the
collection of T (vy) such that Ay # 0 is linearly independent.
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Let d be the number of indices k € {1,...,n} such that Ay = 0. By the above, then
n—d < dim(img(T)) = dim(V) — dim(ker(T)) = n — dim(ker(T))

by Rank-Nullity. Then dim(ker(T)) < d.

Now, note that [T"|g = [T]j3 = A". Moreover, the diagonal entries of A" are A}, ..., Aj.
Since A} = 0 iff Ay = 0, then 0 appears on the diagonal of A" d times, too. Thus the
reasoning above applies just as well to T", so we have

dim(ker(T")) <d. (23)

For each eigenvalue A of T, let m) denote the algebraic multiplicity of A, and let d, be
the number of times A appears on the diagonal of A. Replacing T with T — Al in (23), then

my < d A (24)
for each eigenvalue A of T. Summing over all eigenvalues A, we have [start in middle]
n=dim(V)=) my <) dy=n
A A

where the second equality follows from the generalized eigenspace decomposition, and
the last equality from the fact that the diagonal of A consists of n entries.
Thus the inequality in must in fact be an equality for all eigenvalues A. 4

Definition 25. A block diagonal matrix is a square matrix of the form
Aq 0

0 Ay
where Ay, ..., Ay are square matrices (of possibly different sizes) lying on the diagonal,
and all other entres are 0.

Example 26 (Give example.).

Proposition 27. Suppose F = C and T € L(V). Let Ay, ..., Ay be the distinct eigenvalues of
T, with algebraic multiplicities dy, . ..,dy,. Then there is a basis B of V such that [T]p is block
diagonal

Aq 0
[T]s = -
0 Am
where each Ay is a dy X dy upper triangular matrix of the form
A *
Ag = .
0 Ak

Proof. By a previous result, (T — Al )|GAk is nilpotent for each k. Thus for each k we can
choose a basis By such that [(T — AxI) |GAk] B, is strictly upper triangular. [Draw picture.]

Now,
Tlg, = (T—=A)lg, +Akllc,
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SO
[Tle, 18 = (T = M), 18 + [Axllc, 18
[draw picture below].

This deals with a single block. Now concatenate the bases Bj, . . ., By, to form a basis B
of V. Then [T|g is of the desired form. O
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