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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the definition of generalized eigenvector.
(2) Students will learn the definition of a generalized eigenspace.
(3) Students will learn the general eigenspace decomposition theorem.
(4) Students will learn the Cayley-Hamilton theorem.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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II. LESSON PLAN(0:00)

II.1. Last time.
• Defined Singular Value Decomposition.
• Learned how to compute an SVD of a matrix.

II.2. 8A: Generalized Eigenvectors, cont.

II.2.1. Generalized eigenvectors. Recall that T is diagonalizable iff

V = V1 ⊕ · · · ⊕ Vn (1)

where Vi = span(vi) is a 1-dimensional T-invariant subspace for each i = 1, . . . , n. But
we know that not every linear operator T is diagonalizable: e.g., V = F2 and T = LA for

A =

(
0 1
0 0

)
.

But what if we allow for T-invariant subspaces of larger dimension in (1)? This leads
to the following notion.

Definition 2. Suppose T ∈ L(V) and λ is an eigenvalue of T. A vector v ∈ V is a
generalized eigenvector of T associated to λ if v ̸= 0 and

(T − λI)k(v) = 0

for some k ∈ Z>0.

Theorem 3. Suppose F = C and T ∈ L(V). Then there is a basis of V consisting of generalized
eigenvectors of T.

Proof. Let n := dim(V). By strong induction on n.
Base case: n = 1. Then every nonzero vector is an eigenvector of T.
Inductive step: Suppose n ≥ 2 and the result holds for all k < n. Since F = C, then

there exists an eigenvalue λ of T. Recall then that

V = ker(T − λI)n ⊕ img(T − λI)n .

Case 1: ker(T − λI)n = V. Then every nonzero vector in V is a generalized eigenvector
of T, so the result holds.

Case 2: ker(T − λI)n ̸= V. Then img(T − λI)n ̸= {0}. Since λ is an eigenvalue of T,
then dim(ker(T − λI)n) ≥ 1. Thus

0 < dim(img(T − λI)n) < n .

Let U := img(T − λI)n. Then U is a nonzero T-invariant subspace of dimension < n. By
the inductive hypothesis applied to the restriction T|U, there is a basis of U consisting of
generalized eigenvectors of T|U. Adjoin this basis to a basis of ker(T − λI)n. Since

V = ker(T − λI)n ⊕ img(T − λI)n ,

then the result is a basis of V consisting of generalized eigenvectors of T. □

Lemma 4. Suppose T ∈ L(V). Then each generalized eigenvector of T corresponds to a unique
eigenvalue of T.
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Proof. Exercise. □

Proposition 5. Suppose T ∈ L(V). Then every list of generalized eigenvectors of T correspond-
ing to distinct eigenvalues is linearly independent.

Proof. Exercise. Similar to the proof for eigenvectors. □

II.2.2. Nilpotent operators.

Definition 6. An operator T ∈ L(V) is nilpotent if Tm = 0 for some m ∈ Z≥0.

Example 7. Let V = F2. The operator T := LA with

A =

(
0 1
0 0

)
is nilpotent.

Proposition 8. Suppose T ∈ L(V) is nilpotent. Then minpoly(T) = zm for some m ≤
dim(V).

Proof. Since T is nilpotent, then Tk = 0 for some k ∈ Z≥0. Then minpoly(T) divides zk so

zk = minpoly(T) f (z)

for some f ∈ P(F). By unique factorization, then minpoly(T) = zm for some m ∈ Z≥0.
Moreover, we know that deg(minpoly(T)) ≤ dim(V), so m ≤ dim(V). □

Proposition 9. Let n := dim(V) and suppose T ∈ L(V) is nilpotent. Then Tn = 0.

Proof. By the above, minpoly(T) = zm for some m ≤ n. Then

Tn = Tn−mTm = Tn−m ◦ 0 = 0 .

□

Proposition 10. Suppose T ∈ L(V).
(a) If T is nilpotent, then 0 is an eigenvalue of T and T has no other eigenvalues.
(b) If F = C and 0 is the only eigenvalue of T, then T is nilpotent.

Proof. (a) By the previous proposition, minpoly(T) = Tm for some m. The eigenvalues
of T are exactly the roots of minpoly(T).

(b) Since F = C, then minpoly(T) splits into degree 1 factors. Then minpoly(T) = zm

for some m ∈ Z≥0, so Tm = 0.
□

Proposition 11. Suppose T ∈ L(V). TFAE.
(a) T is nilpotent.
(b) minpoly(T) = zm for some m ∈ Z≥0.
(c) There is a basis B of V such that

[T]B =

0 ∗
...

. . .
0 · · · 0


where all entries on and below the diagonal are 0.
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Proof. (a) =⇒ (b): Already done.
(b) =⇒ (c): Since minpoly(T) = zm splits into degree 1 factors, then there is a basis B

of V such that [T]B is upper triangular. Its diagonal entries are exactly the eigenvalues of
T, namely 0, so we obtain a matrix of the desired form.

(c) =⇒ (a): A direct calculation shows that ([T]B)n = 0. □

II.3. Generalized eigenspace decomposition.

Definition 12. Suppose T ∈ L(V) and λ ∈ F. The generalized eigenspace of T correspond-
ing to λ, denoted Gλ(T) or Gλ, is

Gλ(T) := {v ∈ V : (T − λI)k(v) = 0 for some k ∈ Z>0} .

In other words, Gλ is the set of generalized eigenvectors of T corresponding to λ, together
with the 0 vector.

Proposition 13. Let n := dim(V). Suppose T ∈ L(V) and λ ∈ F. Then Gλ(T) = ker(T −
λI)n.

Proof. (⊇): Given v ∈ ker(T − λI)n, then v ∈ Gλ(T). (Just take k = n in the definition.)
(⊆): Given v ∈ Gλ(T), then v ∈ ker(T − λI)k for some k, so (T − λI)k(v) = 0.
Case 1: k ≤ n. Then

(T − λI)n(v) = (T − λI)n−k(T − λI)k(v) = (T − λI)n−k(0) = 0 ,

so v ∈ ker(T − λI)n.
Case 2: k > n. By a previous result, we have

ker(T − λI)n = ker(T − λI)n+1 = ker(T − λI)n+2 = · · · = ker(T − λI)k = · · · .

Thus v ∈ ker(T − λI)k = ker(T − λI)k. □

Proposition 14 (Generalized eigenspace decomposition). Suppose F = C and T ∈ L(V).
Let λ1, . . . , λm be the distinct eigenvalues of T. Then

(a) Gλk(T) is T-invariant for all k = 1, . . . , m;
(b) (T − λk I)|Gλk

is nilpotent for all k = 1, . . . , m;
(c) V = Gλ1 ⊕ · · · ⊕ Gλm .

Proof. Let n = dim(V).
(a) Fix k ∈ {1, . . . , m}. By a previous result, then

Gλk(T) = ker((T − λk I)n) .

This is the kernel of a polynomial evaluated at T, hence is T-invariant.
(b) Fix k ∈ {1, . . . , m}. Given v ∈ Gλk(T) = ker((T − λk I)n), then

(T − λk I)n(v) = 0 .

Then

(T − λk I)n|Gλk
= 0

so (T − λk I)|Gλk
is nilpotent.
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(c) By a previous result, there is a basis of V consisting of generalized eigenvectors of
T. Thus every vector in V can be written as a linear combination of generalized
eigenvectors, so

Gλ1 + · · ·+ Gλm = V .

We now show the sum is direct. Suppose that

v1 + · · ·+ vm = 0

with vk ∈ Gλk for each k = 1, . . . , m. Since generalized eigenvectors corresponding
to distinct eigenvalues are linearly independent, then we have v1 = · · · = vm = 0.
Thus the sum is direct.

□

Definition 15. Let T ∈ L(V).
• The geometric multiplicity of an eigenvalue λ of T is

dim(Eλ(T)) = dim(ker(T − λI) .

• The generalized multiplicity (or algebraic multiplicity) of an eigenvalue λ of T is

dim(Gλ(T)) = dim(ker(T − λI)dim(V) .

Example 16. Let

A :=

2 1 0
0 2 0
0 0 −3

 .

Then

A − 2I =

0 1 0
0 0 0
0 0 −5

 ,

which has 2 pivots, so dim(E2) = 1. Now

(A − 2I)3 =

0 0 0
0 0 0
0 0 −125

 ,

so dim(G2) = 2. Thus 2 has geometric multiplicity 1, and algebraic multiplicity 2.

Definition 17. Suppose F = C and T = L(V). Let λ1, . . . , λm be the distinct eigenvalues
of T, with algebraic multiplicities d1, . . . , dm. The characteristic polynomial of T is

charpoly(T) = (z − λ1)
d1 · · · (z − λm)

dm .

Remark 18. We will later give a formula for charpoly(T) that doesn’t require knowing
the eigenvalues of T. (It will involv determinants.)

Proposition 19. Suppose F = C and T ∈ L(V). Then
(a) charpoly(T) has degree dim(V); and
(b) the zeroes of charpoly(T) are exactly the eigenvalues of T.
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Proof. (a) Recall that the algebraic multiplicity of λk is dim(Gλk(T)). Since

V = Gλ1 ⊕ · · · ⊕ Gλm ,

where λ1, . . . , λm are the distinct eigenvalues of T, then

dim(V) = dim(Gλ1) + · · ·+ dim(Gλm) .

(b) Immediate from the definition.
□

Theorem 20 (Cayley-Hamilton). Suppose F = C. Suppose T ∈ L(V) and let q = charpoly(T).
Then q(T) = 0 (i.e., the zero linear map).

Proof. Let λ1, . . . , λm be the distinct eigenvalues of T, and let dk := dim(GλK) be the al-
gebraic multiplicity of λk for k = 1, . . . , m. For each k, we have seen that (T − λk I)|Gλk

is
nilpotent, so

(T − λk I)dk |Gλk
.

By the generalized eigenspace decomposition, each vector v ∈ V can be written as v =
v1 + · · ·+ vm with vk ∈ Gλk for each k. Thus to show that q(T) = 0, it suffices to show
q(T)|Gλk

= 0 for each k.
Fix k ∈ {1, . . . , m}. We have

q(T) = (T − λ1 I)d1 · · · (T − λm I)dm .

Recall that polynomials in T commute, so we can change the order of the factors above.
Thus

q(T)|Gk = (T − λ1 I)d1 · · · (T − λk−1)
dk−1(T − λk+1)

dk+1 · · · (T − λm I)dm |Gk (T − λk I)dk |Gk︸ ︷︷ ︸
0

= 0 .

□

Proposition 21. Suppose F = C and T ∈ L(V). Then minpoly(T) divides charpoly(T), i.e.,

charpoly(T) = minpoly(T) f (z)

for some f (z) ∈ P(F).

Proof. Letting q := charpoly(T), then q(T) = 0. By a previous result, then minpoly(T)
must divide q. □

Proposition 22. Suppose F = C and T ∈ L(V). Let B be a basis of V such that [T]B is upper
triangular. For each eigenvalue λ of T, then number of times that λ appears on the diagonal of
[T]B is equal to the algebraic multiplicity of λ.

Proof. Let A := [T]B. [Write out A with its entries.] Then for each k we have

T(vk) =

uk︷ ︸︸ ︷
c1v1 + · · ·+ ck−1vk−1 +λkvk ,

where uk ∈ span(v1, . . . , vk−1). Thus if λk ̸= 0, then T(vk) is not a linear combination
of T(v1), . . . , T(vk−1) ∈ span(v1, . . . , vk−1). By the Linear Dependence Lemma, then the
collection of T(vk) such that λk ̸= 0 is linearly independent.
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Let d be the number of indices k ∈ {1, . . . , n} such that λk = 0. By the above, then

n − d ≤ dim(img(T)) = dim(V)− dim(ker(T)) = n − dim(ker(T))

by Rank-Nullity. Then dim(ker(T)) ≤ d.
Now, note that [Tn]B = [T]nB = An. Moreover, the diagonal entries of An are λn

1 , . . . , λn
n.

Since λn
k = 0 iff λk = 0, then 0 appears on the diagonal of An d times, too. Thus the

reasoning above applies just as well to Tn, so we have

dim(ker(Tn)) ≤ d . (23)

For each eigenvalue λ of T, let mλ denote the algebraic multiplicity of λ, and let dλ be
the number of times λ appears on the diagonal of A. Replacing T with T − λI in (23), then

mλ ≤ dλ (24)

for each eigenvalue λ of T. Summing over all eigenvalues λ, we have [start in middle]

n = dim(V) = ∑
λ

mλ ≤ ∑
λ

dλ = n

where the second equality follows from the generalized eigenspace decomposition, and
the last equality from the fact that the diagonal of A consists of n entries.

Thus the inequality in (24) must in fact be an equality for all eigenvalues λ. □

Definition 25. A block diagonal matrix is a square matrix of the formA1 0
. . .

0 Am


where A1, . . . , Am are square matrices (of possibly different sizes) lying on the diagonal,
and all other entres are 0.

Example 26 (Give example.).

Proposition 27. Suppose F = C and T ∈ L(V). Let λ1, . . . , λm be the distinct eigenvalues of
T, with algebraic multiplicities d1, . . . , dm. Then there is a basis B of V such that [T]B is block
diagonal

[T]B =

A1 0
. . .

0 Am


where each Ak is a dk × dk upper triangular matrix of the form

Ak :=

λk ∗
. . .

0 λk

 .

Proof. By a previous result, (T − λk I)|Gλk
is nilpotent for each k. Thus for each k we can

choose a basis Bk such that [(T − λk I)|Gλk
]Bk is strictly upper triangular. [Draw picture.]

Now,
T|Gλk

= (T − λk I)|Gλk
+ λk I|Gλk
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so
[T|Gλk

]B = [(T − λk I)|Gλk
]B + [λk I|Gλk

]B

[draw picture below].
This deals with a single block. Now concatenate the bases B1, . . . ,Bm to form a basis B

of V. Then [T]B is of the desired form. □
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