18.700 - LINEAR ALGEBRA, DAY 20
SINGULAR VALUE DECOMPOSITION
GENERALIZED EIGENVECTORS
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[. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn Singular Value Decomposition.
(2) Students will learn how to compute an SVD of a matrix.
(3) Students will learn the definition of generalized eigenvector.

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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II. LESSON PLAN

II.1. Last time.

e Defined isometries and unitary operators.
e Proved QR Decomposition exists.
e Defined singular values of a linear map.

II.2. 7E: Singular Value Decomposition (SVD), cont.

Definition 1. Let T € L(V, W). The singular values of T are the nonnegative square roots

of the eigenvalues of T*T, listed in decreasing order, and with multiplicity.

Theorem 2 (Singular Value Decomposition (SVD)). Suppose T € L(V,W). Let s4,...,s, be
the singular values of T, and let s1, . .., Sy, be the positive ones. Then there exist orthonormal lists

e1,...,eminVand fy,..., f in W such that

T(U) = 81<U,61>f1 + - +5m<vrem>fm
forallv e V.

Proof. Since T*T is positive, then by the Spectral Theorem there is an orthonormal basis

e1,...,e, of Vsuch that
T*T(e) = stex
foreachk =1,...,n. Now, foreachk =1, ...,m, define

kaZLek)-

Sk
We show that fi, ..., fi; is orthonormal:

Ui fi) = <Sle<e]->, %T<ek>> = L (T(e)), T(er)) = — (e, T"T(ex)) = Sjisk<ej,siek>

SiSk SiSk
S 0 ifj #k,
- s_l;<ef’e"> - {1 if;‘i
forall j,k € {1,...,m}. (Note that s; € R for all k.)
Note that for k > m we have
T*T(ex) = siex =0 = ¢ € ker(T*T) = ker(T) = T(e;) =0
by a previous result. Given v € V, since ey, ... ., e, is orthonormal, then
T(v) =T({v,e1)e1 + - (v, en)en = (v,e1)T(e1) + - - - (v, emT(em))
= (v,e1)s1f1+ -+ (0, em)Smfm -

Proposition 3 (SVD of adjoint). Suppose T € L(V,W)andsy,...,Sm,e1,...,eém, and f1,..

are as before, so
T(v) =s1{v,e1)f1+ -+ 5m(v,em) fmn
forallv € V. Then
T"(w) = sl<w,f1>612+ ot Sm (0, em)em -

l
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Definition 4. Let A € My, (FF). Ais (generalized) diagonl if Ajj=0foralli,j € {1,...,min(m,n)}
with i # j.
Theorem 5 (SVD, matrix version). Let A € My« (IF) have rank r. Then there exists
e a generalized diagonal matrix ¥ € Muxn(IF) whose diagonal entries are the positive
singular values of A;
o a unitary matrix U € My, xm(IF); and
o a unitary matrix V.€ My xn(F)
such that A = UXV"*.

Proof sketch. Let vy, ...,v, be an orthonormal basis of F" consisting of eigenvectors of
A*A. Let V be the matrix whose columns are vy, ..., v,.
Suppose A has r nonzero singular values. Then Avy, ..., Av, is an orthogonal basis for

Col(A):
<A’0,', A’U]'> = <’UZ',A*A’0]'> = <’01', )L]Z)]> = /\_]'<Ui, Z)]> =0.
Normalize this list to obtain an orthonormal basis uy, ..., u, of Col(A), where
1

U; s v;
fori =1,...,r. Extend this to a basis u, ..., u, of F™. Let U be the matrix with columns
ui, ..., Uy. We claim that

A=UXV*.

I1.3. Worksheet.
3 2
A=|2 3| = A*A:(lg 1?).
2 -2
Then minpoly(A*A) = x* — 34x 4 225 = (x — 9)(x — 25).

V_<1/\f2 1/\f2>
S \1/V2 —1/V2

5/2 1/V2
Avy = 5/\/§ Avy = —1/\/5
0

2v2
1
uy = gAUl
1
=-A
Un 3 (0]

—2/3
Uz = 2/3
1/3

3



https://sagecell.sagemath.org/?z=eJxt jOFugzAQRfdI3MFL2x0g2M2uqQQ30BVsLLeyEpqgNqEFy-X4k
vZ_M_MnIztyNrZrBloUoJQEAUKDEiAhE1qzMMgQyWLbmUv_2fY1xa_-1H7TDEX-3-PZ1c3RDYOn-GF4RKYolA6D]I
5Q05IHh9qSbmnXYqoqz2k0qT_61wVDMgsxzhOrEPRDEfWbkLt0o(Xq6m9f5VIw(18_q5UNKxT1loiBNtnzs0SaSox]
E6DAmC1AvE33FvzE6dTrM2sNFsauaBuTP3TO5vIimHsBwcyiHY=&lang=sage&interacts=eJyLjgUAARUAuQ=

Applications of SVD:
e Low-rank approximations of linear maps. Let
T(v) =s1(v,e1)fi+ -+ 5m(v, em) fm
be a singular value decomposition for T. Define Ty, € £(V, W) as the truncation

Ti(v) = s1(v,e1) f1 + -+ + sk{v, ex) fi -

One can show that T is the “best” rank k approximation of T. This idea is used in
image compression.

e Principal component analysis (PCA). Suppose that we have some multivariate
data from n observations, stored as column vectors Xi,..., X, € R™. Let X be
the m x n matrix with columns Xj, ..., X,;. We want to find an orthonormal ba-
sis v1,...,v, such that most of the variation of the data occurs in the directions
of v1,vy, - - - v,. This is usual done by computing a SVD X = UZV™: the vectors
v1,...,0, that are the columns of V (which are also the eigenvectors of X*X) are
the desired basis.

See section 7F for more applications of SVD.

I1.4. 8A: Generalized Eigenvectors. Throughout this section, let V' be a nonzero finite-
dimensional [F-vector space.

11.4.1. Preliminaries.
Lemma 6. Let T € L(V). Then we have an ascending chain

{0} = ker(T%) C ker(T) C ker(T?) C --- C ker(TF) C ker(T*1) C - - . (7)
Proof. [Skip, if necessary.] Suppose k € Z~g. Given v € ker(T¥), then T"(v) = 0. Then

T (v) = T(T*(v)) = T(0) = 0
so v € ker(TF1). O
Proposition 8. Suppose T € L(V). If
ker(T™) = ker(T™ 1)
for some m € Z>, then
ker(T™) = ker(T™!) = ker(T""2) = ker(T"3) = - ..

Proof. [Skip, if necessary.] We want to show that ker(T" %) = ker(T"***1) for all k €
Z>(. Suppose k € Z>.

(©): Follows from previous lemma.

(2): Given v € ker(T"*+ 1), then

Tm+1(Tk(v)) — Tm—l—k—l—l (U) =0,
4
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so TX(v) € ker(T"*!) = ker(T™). Then
" () = T"(TF(v)) = 0
so v € ker(T™K). O
Proposition 9. Suppose T € L(V). The chain in (7) stabilizes:
ker(T") = ker(T"™!) = ker(T"*?) = ...,
where n 1= dim(V).

Proof. For contradiction, suppose ker(T") # ker(T"™!). This means that no two terms in
the chain are equal at or before the (1 + 1)* step by the previous result:

{0} = ker(T°) C ker(T) C --- C ker(T") C ker(T"*1)

with strict containments. At each strict inclusion, the dimension must increase by at least
1, so dim(ker(T*)) > k for eachk = 1,...,n + 1. But then

dim(ker(T" ™)) > n4+1 > n = dim(V),
contradiction. O

It’s not true that V = ker(T) @ img(T) for every T € L(V). (Consider V = FF° and

T := L4 where
)

Proposition 10. Suppose T € L(V). Letting n := dim(V'), then

o OO
O O =
o = O

V = ker(T") ® img(T") .

Proof. [Skip, if necessary.] Given v € ker(T") Nimg(T"), then T"(v) = 0 and v = T"(u)
for some u € V. Then

T2 (u) = T"(T"(u)) = T"(v) =0,
so u € ker(T?") = ker(T"). Then
0=T"u)=ro0.

Thus ker(T") Nimg(T") = {0}.
By Rank-Nullity, we have

dim(V) = dim(ker(T")) + dim(img(T")) = dim(ker(T") & img(T")),
hence V = ker(T") @ img(T"). O



11.4.2. Generalized eigenvectors. Note that v is an eigenvector of T € L(V) iff span(v) is a
(1-dimensional) T-invariant subspace. So T is diagonalizable iff

V=Vi®---dV, (11)

where V; = span(v;) is a 1-dimensional T-invariant subspace for each i = 1,...,n. But
we know that not every linear operator T is diagonalizable: e.g., V = F? and T = L for

01
(0.
But what if we allow for T-invariant subspaces of larger dimension in (II)? This leads

to the following notion.

Definition 12. Suppose T € L(V) and A is an eigenvalue of T. A vector v € V is a
generalized eigenvector of T associated to A if v # 0 and

(T — AD¥(v) =0
for some k € Z~y.

Theorem 13. Suppose F = Cand T € L(V). Then there is a basis of V consisting of generalized
eigenvectors of T.

Proof. Let n := dim(V). By strong induction on 7.
Base case: n = 1. Then every nonzero vector is an eigenvector of T.
Inductive step: Suppose n > 2 and the result holds for all k < n. Since F = C, then

there exists an eigenvalue A of T. Recall then that
V =ker(T —AI)" @img(T — AI)".

Case 1: ker(T — AI)" = V. Then every nonzero vector in V is a generalized eigenvector
of T, so the result holds.

Case 2: ker(T — AI)" # V. Then img(T — AI)" # {0}. Since A is an eigenvalue of T,
then dim(ker(T — AI)") > 1. Thus

0 < dim(img(T — AD)") < n.

Let U := img(T — AI)". Then U is a nonzero T-invariant subspace of dimension < n. By
the inductive hypothesis applied to the restriction T, there is a basis of U consisting of
generalized eigenvectors of T|;. Adjoin this basis to a basis of ker(T — AI)". Since

V =ker(T — AI)" @img(T — AI)",

then the result is a basis of V consisting of generalized eigenvectors of T. U

Lemma 14. Suppose T € L(V). Then each generalized eigenvector of T corresponds to a unique
eigenvalue of T.

Proof. Exercise. O

Proposition 15. Suppose T € L(V'). Then every list of generalized eigenvectors of T correspond-
ing to distinct eigenvalues is linearly independent.

Proof. Exercise. Similar to the proof for eigenvectors. 4
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I1.4.3. Nilpotent operators.
Definition 16. An operator T € L(V) is nilpotent if T" = 0 for some m € Z>y.
Example 17. Let V = IF2. The operator T := L, with

-G

Proposition 18. Suppose T € L(V) is nilpotent. Then minpoly(T) = z™ for some m <
dim(V).

is nilpotent.

Proof. Since T is nilpotent, then TX = 0 for some k € Z . Then minpoly(T) divides z* so

z" = minpoly(T) f(z)

for some f € P(FF). By unique factorization, then minpoly(T) = z™ for some m € Z>.
Moreover, we know that deg(minpoly(T)) < dim(V), so m < dim(V). O

Proposition 19. Let n := dim(V') and suppose T € L(V) is nilpotent. Then T" = 0.
Proof. By the above, minpoly(T) = z" for some m < n. Then
T =T "T" = T""" 00 =0.

O
Proposition 20. Suppose T € L(V).
(a) If T is nilpotent, then 0 is an eigenvalue of T and T has no other eigenvalues.
(b) If F = C and 0 is the only eigenvalue of T, then T is nilpotent.
Proof. (a) By the previous proposition, minpoly(T) = T™ for some m. The eigenvalues

of T are exactly the roots of minpoly(T).
(b) Since F = C, then minpoly(T) splits into degree 1 factors. Then minpoly(T) = z
for some m € Z>p,so T" = 0.

m

O

Proposition 21. Suppose T € L(V). TFAE.

(a) T is nilpotent.
(b) minpoly(T) = z" for some m € Z>.
(c) There is a basis B of V such that

[T]B = 1: "
0 --- 0
where all entries on and below the diagonal are 0.
Proof. (a) = (b): Already done.
(b) = (c): Since minpoly(T) = z" splits into degree 1 factors, then there is a basis B
of V such that [T]p is upper triangular. Its diagonal entries are exactly the eigenvalues of

T, namely 0, so we obtain a matrix of the desired form.
(c) = (a): A direct calculation shows that ([T]|z)" = 0. O
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