18.700 - LINEAR ALGEBRA, DAY 20 SINGULAR VALUE DECOMPOSITION GENERALIZED EIGENVECTORS

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 7E: Singular Value Decomposition (SVD), cont.	2
II.3. Worksheet	3
II.4. 8A: Generalized Eigenvectors	4

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn Singular Value Decomposition.
- (2) Students will learn how to compute an SVD of a matrix.
- (3) Students will learn the definition of generalized eigenvector.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

II.1. Last time.

- Defined isometries and unitary operators.
- Proved QR Decomposition exists.
- Defined singular values of a linear map.

II.2. 7E: Singular Value Decomposition (SVD), cont.

Definition 1. Let $T \in \mathcal{L}(V, W)$. The *singular values* of *T* are the nonnegative square roots of the eigenvalues of T^*T , listed in decreasing order, and with multiplicity.

Theorem 2 (Singular Value Decomposition (SVD)). Suppose $T \in \mathcal{L}(V, W)$. Let s_1, \ldots, s_n be the singular values of T, and let s_1, \ldots, s_m be the positive ones. Then there exist orthonormal lists e_1, \ldots, e_m in V and f_1, \ldots, f_m in W such that

$$\Gamma(v) = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$$

for all $v \in V$.

Proof. Since T^*T is positive, then by the Spectral Theorem there is an orthonormal basis e_1, \ldots, e_n of *V* such that

for each
$$k = 1, ..., n$$
. Now, for each $k = 1, ..., m$, define
 $f_k := \frac{T(e_k)}{s_k}$.

We show that f_1, \ldots, f_m is orthonormal:

$$\langle f_j, f_k \rangle = \left\langle \frac{1}{s_j} T(e_j), \frac{1}{s_k} T(e_k) \right\rangle = \frac{1}{s_j s_k} \langle T(e_j), T(e_k) \rangle = \frac{1}{s_j s_k} \langle e_j, T^* T(e_k) \rangle = \frac{1}{s_j s_k} \langle e_j, s_k^2 e_k \rangle$$
$$= \frac{s_k}{s_j} \langle e_j, e_k \rangle = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k \end{cases}$$

for all $j, k \in \{1, ..., m\}$. (Note that $s_k \in \mathbb{R}$ for all k.)

Note that for k > m we have

$$T^*T(e_k) = s_k^2 e_k = 0 \implies e_k \in \ker(T^*T) = \ker(T) \implies T(e_k) = 0$$

by a previous result. Given $v \in V$, since e_1, \ldots, e_n is orthonormal, then

$$T(v) = T(\langle v, e_1 \rangle e_1 + \dots \langle v, e_n \rangle e_n = \langle v, e_1 \rangle T(e_1) + \dots \langle v, e_m T(e_m) \rangle$$

= $\langle v, e_1 \rangle s_1 f_1 + \dots + \langle v, e_m \rangle s_m f_m.$

 \square

Proposition 3 (SVD of adjoint). Suppose $T \in \mathcal{L}(V, W)$ and $s_1, \ldots, s_m, e_1, \ldots, e_m$, and f_1, \ldots, f_m are as before, so

$$T(v) = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$$

for all $v \in V$. Then

$$T^*(w) = s_1 \langle w, f_1 \rangle e_1 + \dots + s_m \langle v, e_m \rangle e_m$$

(0:00)

Definition 4. Let $A \in M_{m \times n}(\mathbb{F})$. *A* is (generalized) diagonl if $A_{ij} = 0$ for all $i, j \in \{1, ..., \min(m, n)\}$ with $i \neq j$.

Theorem 5 (SVD, matrix version). Let $A \in M_{m \times n}(\mathbb{F})$ have rank r. Then there exists

- a generalized diagonal matrix $\Sigma \in M_{\mathfrak{m} \times n}(\mathbb{F})$ whose diagonal entries are the positive singular values of A;
- a unitary matrix $U \in M_{m \times m}(\mathbb{F})$; and
- a unitary matrix $V \in M_{n \times n}(\mathbb{F})$

such that $A = U\Sigma V^*$.

Proof sketch. Let v_1, \ldots, v_n be an orthonormal basis of \mathbb{F}^n consisting of eigenvectors of A^*A . Let *V* be the matrix whose columns are v_1, \ldots, v_n .

Suppose *A* has *r* nonzero singular values. Then Av_1, \ldots, Av_r is an orthogonal basis for Col(A):

$$\langle Av_i, Av_j \rangle = \langle v_i, A^*Av_j \rangle = \langle v_i, \lambda_j v_j \rangle = \overline{\lambda_j} \langle v_i, v_j \rangle = 0.$$

Normalize this list to obtain an orthonormal basis u_1, \ldots, u_r of Col(A), where

$$u_i := \frac{1}{s_i} A v_i$$

for i = 1, ..., r. Extend this to a basis $u_1, ..., u_m$ of \mathbb{F}^m . Let U be the matrix with columns $u_1, ..., u_m$. We claim that

$$A = U\Sigma V^*$$
.

II.3. Worksheet.

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \implies A^*A = \begin{pmatrix} 17 & 8 \\ 8 & 17 \end{pmatrix}.$$

Then minpoly $(A^*A) = x^2 - 34x + 225 = (x - 9)(x - 25).$

$$V = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$
$$Av_1 = \begin{pmatrix} 5/\sqrt{2} \\ 5/\sqrt{2} \\ 0 \end{pmatrix} \qquad Av_2 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 2\sqrt{2} \end{pmatrix}$$
$$u_1 = \frac{1}{5}Av_1$$
$$u_2 = \frac{1}{3}Av_2$$
$$u_3 = \begin{pmatrix} -2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$$

-		-
L		
ь.		_

https://sagecell.sagemath.org/?z=eJxtj0FugzAQRfdI3MFL2x0g2M2uqQQ3oBVsLLeyEpqgNqEFy-X4H vZ_M_MnIztyNrZrBloUoJQEAUKDEiAhElqzMMgQyWLbmUv_2fY1xa_-1H7TDEX-3-PZ1c3RDYOn-GF4RKYo1A6DN 5Q05IHh9qS5mnXYqoqz2k0qT_6iwVDMgsxzh0rEPRDfWbkLt0oQXq6m9f5VJwQ18_q5UNKxTloiBNtnzsOSaSoxI E6DdmC1Avf33Fvzf6dTrM2sNFsauaBuTP3T05v1mHsBwcyiHY=&lang=sage&interacts=eJyLjgUAARUAuQ=

Applications of SVD:

• Low-rank approximations of linear maps. Let

$$T(v) = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$$

be a singular value decomposition for *T*. Define $T_k \in \mathcal{L}(V, W)$ as the truncation

$$T_k(v) = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_k \langle v, e_k \rangle f_k.$$

One can show that T_k is the "best" rank k approximation of T. This idea is used in image compression.

• Principal component analysis (PCA). Suppose that we have some multivariate data from *n* observations, stored as column vectors $X_1, \ldots, X_n \in \mathbb{R}^m$. Let *X* be the $m \times n$ matrix with columns X_1, \ldots, X_n . We want to find an orthonormal basis v_1, \ldots, v_n such that most of the variation of the data occurs in the directions of $v_1, v_2, \cdots v_n$. This is usual done by computing a SVD $X = U\Sigma V^*$: the vectors v_1, \ldots, v_n that are the columns of *V* (which are also the eigenvectors of X^*X) are the desired basis.

See section 7F for more applications of SVD.

II.4. 8A: Generalized Eigenvectors. Throughout this section, let V be a nonzero finitedimensional \mathbb{F} -vector space.

II.4.1. Preliminaries.

Lemma 6. Let $T \in \mathcal{L}(V)$. Then we have an ascending chain

$$\{0\} = \ker(T^0) \subseteq \ker(T) \subseteq \ker(T^2) \subseteq \dots \subseteq \ker(T^k) \subseteq \ker(T^{k+1}) \subseteq \dots$$
(7)

Proof. [Skip, if necessary.] Suppose $k \in \mathbb{Z}_{\geq 0}$. Given $v \in \ker(T^k)$, then $T^k(v) = 0$. Then

$$T^{k+1}(v) = T(T^k(v)) = T(0) = 0$$

so $v \in \ker(T^{k+1})$.

Proposition 8. Suppose $T \in \mathcal{L}(V)$. If

$$\ker(T^m) = \ker(T^{m+1})$$

for some $m \in \mathbb{Z}_{>0}$, then

$$\ker(T^m) = \ker(T^{m+1}) = \ker(T^{m+2}) = \ker(T^{m+3}) = \cdots$$

Proof. [Skip, if necessary.] We want to show that $\ker(T^{m+k}) = \ker(T^{m+k+1})$ for all $k \in \mathbb{Z}_{\geq 0}$. Suppose $k \in \mathbb{Z}_{\geq 0}$.

 (\subseteq) : Follows from previous lemma.

(⊇): Given $v \in \ker(T^{m+k+1})$, then

$$T^{m+1}(T^k(v)) = T^{m+k+1}(v) = 0$$
 ,

so $T^k(v) \in \ker(T^{m+1}) = \ker(T^m)$. Then

$$T^{m+k}(v) = T^m(T^k(v)) = 0$$

so $v \in \ker(T^{m+k})$.

Proposition 9. Suppose $T \in \mathcal{L}(V)$. The chain in (7) stabilizes:

$$\operatorname{ker}(T^n) = \operatorname{ker}(T^{n+1}) = \operatorname{ker}(T^{n+2}) = \cdots,$$

where $n := \dim(V)$.

Proof. For contradiction, suppose ker $(T^n) \neq$ ker (T^{n+1}) . This means that no two terms in the chain are equal at or before the $(n + 1)^{st}$ step by the previous result:

$$\{0\} = \ker(T^0) \subsetneq \ker(T) \subsetneq \cdots \subsetneq \ker(T^n) \subsetneq \ker(T^{n+1})$$

with strict containments. At each strict inclusion, the dimension must increase by at least 1, so dim $(\text{ker}(T^k)) \ge k$ for each k = 1, ..., n + 1. But then

$$\dim(\ker(T^{n+1})) \ge n+1 > n = \dim(V)$$
,

contradiction.

It's not true that $V = \ker(T) \oplus \operatorname{img}(T)$ for every $T \in \mathcal{L}(V)$. (Consider $V = \mathbb{F}^3$ and $T := L_A$ where

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

`		
1	۱	
4	,	

Proposition 10. Suppose $T \in \mathcal{L}(V)$. Letting $n := \dim(V)$, then

 $V = \ker(T^n) \oplus \operatorname{img}(T^n).$

Proof. [Skip, if necessary.] Given $v \in \text{ker}(T^n) \cap \text{img}(T^n)$, then $T^n(v) = 0$ and $v = T^n(u)$ for some $u \in V$. Then

$$T^{2n}(u) = T^n(T^n(u)) = T^n(v) = 0$$
,

so $u \in \ker(T^{2n}) = \ker(T^n)$. Then

$$0=T^n(u)=v.$$

Thus $\ker(T^n) \cap \operatorname{img}(T^n) = \{0\}.$

By Rank-Nullity, we have

$$\dim(V) = \dim(\ker(T^n)) + \dim(\operatorname{img}(T^n)) = \dim(\ker(T^n) \oplus \operatorname{img}(T^n)),$$

hence $V = \ker(T^n) \oplus \operatorname{img}(T^n)$.

II.4.2. Generalized eigenvectors. Note that v is an eigenvector of $T \in \mathcal{L}(V)$ iff span(v) is a (1-dimensional) T-invariant subspace. So T is diagonalizable iff

$$V = V_1 \oplus \dots \oplus V_n \tag{11}$$

where $V_i = \text{span}(v_i)$ is a 1-dimensional *T*-invariant subspace for each i = 1, ..., n. But we know that not every linear operator *T* is diagonalizable: e.g., $V = \mathbb{F}^2$ and $T = L_A$ for

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

But what if we allow for *T*-invariant subspaces of larger dimension in (11)? This leads to the following notion.

Definition 12. Suppose $T \in \mathcal{L}(V)$ and λ is an eigenvalue of T. A vector $v \in V$ is a *generalized eigenvector* of *T* associated to λ if $v \neq 0$ and

$$(T - \lambda I)^k(v) = 0$$

for some $k \in \mathbb{Z}_{>0}$.

Theorem 13. Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Then there is a basis of V consisting of generalized eigenvectors of T.

Proof. Let $n := \dim(V)$. By strong induction on n.

<u>Base case</u>: n = 1. Then every nonzero vector is an eigenvector of *T*.

Inductive step: Suppose $n \ge 2$ and the result holds for all k < n. Since $\mathbb{F} = \mathbb{C}$, then there exists an eigenvalue λ of *T*. Recall then that

$$V = \ker(T - \lambda I)^n \oplus \operatorname{img}(T - \lambda I)^n$$

Case 1: ker $(T - \lambda I)^n = V$. Then every nonzero vector in V is a generalized eigenvector of *T*, so the result holds.

<u>Case 2</u>: ker $(T - \lambda I)^n \neq V$. Then img $(T - \lambda I)^n \neq \{0\}$. Since λ is an eigenvalue of T, then dim $(\ker(T - \lambda I)^n) > 1$. Thus

$$0 < \dim(\operatorname{img}(T - \lambda I)^n) < n.$$

Let $U := img(T - \lambda I)^n$. Then U is a nonzero T-invariant subspace of dimension < n. By the inductive hypothesis applied to the restriction $T|_{U}$, there is a basis of U consisting of generalized eigenvectors of $T|_U$. Adjoin this basis to a basis of ker $(T - \lambda I)^n$. Since

$$V = \ker(T - \lambda I)^n \oplus \operatorname{img}(T - \lambda I)^n$$

then the result is a basis of V consisting of generalized eigenvectors of T.

Lemma 14. Suppose $T \in \mathcal{L}(V)$. Then each generalized eigenvector of T corresponds to a unique eigenvalue of T.

Proof. Exercise.

Proposition 15. Suppose $T \in \mathcal{L}(V)$. Then every list of generalized eigenvectors of T corresponding to distinct eigenvalues is linearly independent.

Proof. Exercise. Similar to the proof for eigenvectors.

II.4.3. Nilpotent operators.

Definition 16. An operator $T \in \mathcal{L}(V)$ is *nilpotent* if $T^m = 0$ for some $m \in \mathbb{Z}_{\geq 0}$. **Example 17.** Let $V = \mathbb{F}^2$. The operator $T := L_A$ with

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

is nilpotent.

Proposition 18. Suppose $T \in \mathcal{L}(V)$ is nilpotent. Then $minpoly(T) = z^m$ for some $m \leq \dim(V)$.

Proof. Since *T* is nilpotent, then $T^k = 0$ for some $k \in \mathbb{Z}_{\geq 0}$. Then minpoly(*T*) divides z^k so $z^k = \text{minpoly}(T)f(z)$

for some $f \in \mathcal{P}(\mathbb{F})$. By unique factorization, then minpoly $(T) = z^m$ for some $m \in \mathbb{Z}_{\geq 0}$. Moreover, we know that deg(minpoly(T)) $\leq \dim(V)$, so $m \leq \dim(V)$.

Proposition 19. Let $n := \dim(V)$ and suppose $T \in \mathcal{L}(V)$ is nilpotent. Then $T^n = 0$.

Proof. By the above, minpoly(T) = z^m for some $m \le n$. Then

$$T^n = T^{n-m}T^m = T^{n-m} \circ 0 = 0.$$

Proposition 20. Suppose $T \in \mathcal{L}(V)$.

- (a) If T is nilpotent, then 0 is an eigenvalue of T and T has no other eigenvalues.
- (b) If $\mathbb{F} = \mathbb{C}$ and 0 is the only eigenvalue of *T*, then *T* is nilpotent.
- *Proof.* (a) By the previous proposition, minpoly $(T) = T^m$ for some m. The eigenvalues of T are exactly the roots of minpoly(T).
 - (b) Since $\mathbb{F} = \mathbb{C}$, then minpoly(*T*) splits into degree 1 factors. Then minpoly(*T*) = z^m for some $m \in \mathbb{Z}_{>0}$, so $T^m = 0$.

Proposition 21. Suppose $T \in \mathcal{L}(V)$. TFAE.

(*a*) *T* is nilpotent.

(b) minpoly(T) = z^m for some $m \in \mathbb{Z}_{>0}$.

(c) There is a basis \mathcal{B} of V such that

$$[T]_{\mathcal{B}} = \begin{pmatrix} 0 & & * \\ \vdots & \ddots & \\ 0 & \cdots & 0 \end{pmatrix}$$

where all entries on and below the diagonal are 0.

Proof. (a) \implies (b): Already done.

(b) \implies (c): Since minpoly(T) = z^m splits into degree 1 factors, then there is a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is upper triangular. Its diagonal entries are exactly the eigenvalues of T, namely 0, so we obtain a matrix of the desired form.

(c) \implies (a): A direct calculation shows that $([T]_{\mathcal{B}})^n = 0.$