18.700 - LINEAR ALGEBRA, DAY 19 ISOMETRIES, UNITARY OPERATORS, AND MATRIX FACTORIZATIONS SINGULAR VALUE DECOMPOSITION

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 7D: Isometries, Unitary Operators, and Matrix Factorizat	ions 2
II.3. 7E: Singular Value Decomposition (SVD)	4
II.4. Worksheet	7

I. Pre-class Planning

I.1. Goals for lesson.

- (1) Students will learn the defintion of isometries and unitary operators.
- (2) Students will learn QR Decomposition.
- (3) Students will learn Singular Value Decomposition.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

(0:00)

II.1. Last time.

ullet Proved the Spectral Theorem over \mathbb{R} .

Theorem 1 (Spectral Theorem over \mathbb{R}). *Suppose* $\mathbb{F} = \mathbb{R}$ *and* $T \in \mathcal{L}(V)$. *TFAE*.

- (i) T is self-adjoint.
- (ii) There is an orthonormal basis of V of eigenvectors of T.
- Defined positive linear operators.
- Proved properties of positive linear operators.
- Defined of isometries and unitary operators.

II.2. **7D: Isometries, Unitary Operators, and Matrix Factorizations.** Throughout today, let *V* and *W* be nonzero finite-dimensional inner product spaces.

Definition 2. A linear map $S \in \mathcal{L}(V, W)$ is an *isometry* if

$$||S(v)|| = ||v||$$

for all $v \in V$.

Theorem 3. Let $S \in \mathcal{L}(V, W)$, and let $\mathcal{E} := (e_1, \dots, e_n)$ and $\mathcal{F} := (f_1, \dots, f_m)$ be orthonormal bases for V and W, respectively. TFAE.

- (a) S is an isometry.
- (b) $S^*S = I$.
- (c) S preserves inner products, i.e.,

$$\langle S(u), S(v) \rangle = \langle u, v \rangle$$

for all $u, v \in V$.

- (d) $S(e_1), \ldots, S(e_n)$ is an orthonormal list in W.
- (e) The columns of $_{\mathcal{F}}[S]_{\mathcal{E}}$ form an orthonormal list in \mathbb{F}^m with respect to the usual inner product.

Lemma 4. Let $T \in \mathcal{L}(V)$ be self-adjoint. If $\langle T(v), v \rangle = 0$ for all $v \in V$, then T = 0.

Proof. Given $v \in V$, let u = v + T(v). Then

$$0 = \langle T(u), u \rangle = \langle T(v + T(v)), v + T(v) \rangle = \langle T(v) + T^{2}(v), v + T(v) \rangle$$

$$= \langle T(v), v \rangle + \langle T(v), T(v) \rangle + \langle T^{2}(v), v \rangle + \langle T^{2}(v), T(v) \rangle$$

$$= \langle T(v), T(v) \rangle + \langle T(v), T(v) \rangle + \langle T(T(v)), T(v) \rangle = 2 ||T(v)||^{2}.$$

Thus T(v) = 0. Since v was arbitrary, then T = 0.

Proof of Theorem. (a) \implies (b): Assume *S* is an isometry. Given $v \in V$, then

$$\langle (I - S^*S)(v), v \rangle = \langle v, v \rangle - \langle S^*S(v), v \rangle = ||v||^2 - \langle S(v), S(v) \rangle = ||v||^2 - ||S(v)||^2$$
$$= ||v||^2 - ||v||^2 = 0.$$

By the lemma, then $I - S^*S = 0$, so $S^*S = I$.

(b) \implies (c): Assume $S^*S = I$. Given $u, v \in V$, then

$$\langle S(u), S(v) \rangle = \langle S^*S(u), v \rangle = \langle I(u), v \rangle = \langle u, v \rangle.$$

(c) \Longrightarrow (d): Assume $\langle S(u), S(v) \rangle = \langle u, v \rangle$ for all $u, v \in V$. Then

$$\langle S(e_j), S(e_k) \rangle = \langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{otherwise} \end{cases}$$

for each $j, k \in \{1, ..., n\}$.

(d) \implies (e): Assume $S(e_1), \ldots, S(e_n)$ is an orthonormal list. Let $A = \mathcal{F}[S]_{\mathcal{E}}$. Then

$$\langle A_{\cdot,j}, A_{\cdot,k} \rangle = \sum_{i=1}^{m} A_{i,j} \overline{A_{i,k}} = \left\langle \sum_{i=1}^{m} A_{i,j} f_i, \sum_{i=1}^{m} A_{i,k} f_i \right\rangle = \langle S(e_j), S(e_k) \rangle = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{otherwise} \end{cases}$$
(5)

where the second equality follows from the Pythagorean Theorem.

(e) \Longrightarrow (a): Assume the columns of $_{\mathcal{F}}[S]_{\mathcal{E}}$ form an orthonormal list. Given $v \in V$, then

$$v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$$
,

so

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2$$

by the Pythagorean Theorem. By a similar calculation to (5), then $S(e_1), \ldots, S(e_n)$ is an orthonormal list. Then

$$S(v) = S(\langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n) = \langle v, e_1 \rangle S(e_1) + \dots + \langle v, e_n \rangle S(e_n)$$

so

$$||S(v)||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_n \rangle|^2 = ||v||^2.$$

Thus ||S(v)|| = ||v||, so *S* is an isometry.

Definition 6. An operator $S \in \mathcal{L}(V)$ is *unitary* if S is an invertible isometry.

Theorem 7. Let $S \in \mathcal{L}(V)$, and let $\mathcal{E} := (e_1, \dots, e_n)$ be an orthonormal basis of V. TFAE.

- (a) S is a unitary operator.
- (b) $S^*S = SS^* = I$.
- (c) S is invertible and $S^{-1} = S^*$.
- (d) $S(e_1), \ldots, S(e_n)$ is an orthonormal basis of V.
- (e) The rows of $[S]_{\mathcal{E}}$ form an orthonormal basis of \mathbb{F}^n .
- (f) S^* is a unitary operator.

Proof. Similar to the previous theorem. See 7.53 in text for details.

Proposition 8. Let $S \in \mathcal{L}(V)$ be a unitary operator and suppose λ is an eigenvalue of S. Then $|\lambda|=1.$

Proof. Let $0 \neq v \in V$ be a corresponding eigenvector. Then

$$|\lambda|||v|| = ||\lambda v|| = ||S(v)|| = ||v||$$
.

Since $v \neq 0$, then $||v|| \neq 0$. Dividing, then $|\lambda| = 1$.

Definition 9. A matrix $Q \in M_{n \times n}(\mathbb{F})$ is *unitary* if the associated linear operator

$$L_Q: \mathbb{F}^n \to \mathbb{F}^n$$
$$v \mapsto Qv$$

is unitary. Equivalently, if the columns of Q form an orthonormal basis of \mathbb{F}^n .

Theorem 10 (QR Factorization). Suppose $A \in M_{n \times n}(\mathbb{F})$ is a square matrix with linearly independent columns. Then there exist unique matrices $Q, R \in M_{n \times n}(\mathbb{F})$ such that

- (i) Q is unitary;
- (ii) R is upper triangular with positive diagonal entries; and
- (iii) A = QR.

Proof. This follows from a matrix interpretation of the Gram-Schmidt procedure. Let v_1, \ldots, v_n be the columns of A. Let e_1, \ldots, e_n be the orthonormal list resulting from the Gram-Schmidt procedure, and let Q be the matrix whose columns are e_1, \ldots, e_n . The equations

$$f_k := v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, f_j \rangle}{\|f_j\|^2} f_j$$
 $e_k := \frac{1}{\|f_k\|} f_k$

give the entries for the upper triangular matrix R^{-1} such that $Q = AR^{-1}$. Details left as an exercise.

II.3. **7E: Singular Value Decomposition (SVD).** Given a linear map $T: V \to W$, SVD will provide orthonormal bases \mathcal{E} of V and \mathcal{F} of W such that $_{\mathcal{F}}[T]_{\mathcal{E}}$ is particularly simple.

Proposition 11. *Let* $T \in \mathcal{L}(V, W)$ *. Then*

- (a) T^*T is positive;
- (b) $\ker(T^*T) = \ker(T)$;
- (c) $\operatorname{img}(T^*T) = \operatorname{img}(T^*);$
- (d) $\dim(\operatorname{img}(T)) = \dim(\operatorname{img}(T^*)) = \dim(\operatorname{img}(T^*T)).$

Proof. (a) [Ask students for the two conditions.] Since

$$(T^*T)^* = T^*(T^*)^* = T^*T$$
,

then T^*T is self-adjoint. Given $v \in V$, then

$$\langle T^*T(v), v \rangle = \langle T(v), T(v) \rangle = ||T(v)||^2 \ge 0$$
,

so T^*T is positive.

- (b) (\supseteq): $T(v) = 0 \implies T^*(T(v)) = T^*(0) = 0$. (\subseteq): Given $v \in \ker(T^*T)$, then $T^*T(v) = 0$. Goal: $T(v) = 0 \iff ||T(v)||^2 = 0$. $||T(v)||^2 = \langle T(v), T(v) \rangle = \langle T^*T(v), v \rangle = \langle 0, v \rangle = 0$.
- (c) Recall that $img(S) = \ker(S^*)^{\perp}$ for all $S \in \mathcal{L}(V, W)$. Since T^*T is self-adjoint, then $img(T^*T) = \ker(T^*T)^{\perp} = \ker(T)^{\perp} = img(T^*)$

where the second equality comes from part (b).

(d)

$$\dim(\operatorname{img}(T)) = \dim(\ker(T^*)^{\perp}) = \dim(W) - \dim(\ker(T^*)) = \dim(\operatorname{img}(T^*))$$
 by facts about orthogonal complements, and Rank-Nullity.

Definition 12. Let $T \in \mathcal{L}(V, W)$. The *singular values* of T are the nonnegative square roots of the eigenvalues of T^*T , listed in decreasing order, and with multiplicity.

Example 13. Defined $T \in \mathcal{L}(\mathbb{F}^4)$ by T(v) = Av where

$$A := \begin{pmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

[Compute A^* and A^*A . Should get

$$A^*A = \begin{pmatrix} 9 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9 \end{pmatrix} .$$

Thus the eigenvalues of T^*T are 9, 9, 4, 0, so the singular values of T are 3, 3, 2, 0.

Proposition 14. *Let* $T \in \mathcal{L}(V, W)$.

- (a) T is injective iff 0 is not a singular value of T.
- (b) The number of positive (i.e., nonzero) singular values of T equals $\dim(\operatorname{img}(T))$.

Proof. (a) *T* is injective iff [ask students]

$$0 = \ker(T) = \ker(T^*T)$$

iff T^*T is injective iff 0 is not an eigenvalue of T^*T iff 0 is not a singular value of T. (Here we used the previous proposition for the second equality.)

(b) Exercise.

Proposition 15. Suppose $S \in \mathcal{L}(V, W)$. Then S is an isometry iff all its singular values are 1.

Proof. (\Rightarrow): Assume *S* is an isometry. Then $S^*S = I$, so all the eigenvalues of S^*S are 1. Thus all the singular values of *S* are 1.

Theorem 16 (Singular Value Decomposition (SVD)). Suppose $T \in \mathcal{L}(V, W)$. Let s_1, \ldots, s_n be the singular values of T, and let s_1, \ldots, s_m be the positive ones. Then there exist orthonormal lists e_1, \ldots, e_m in V and f_1, \ldots, f_m in W such that

$$T(v) = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$$

for all $v \in V$.

Proof. Since T^*T is positive, then by the Spectral Theorem there is an orthonormal basis e_1, \ldots, e_n of V such that

$$T^*T(e_k) = s_k^2 e_k$$

for each k = 1, ..., n. Now, for each k = 1, ..., m, define

$$f_k := \frac{T(e_k)}{s_k}.$$

We show that f_1, \ldots, f_m is orthonormal:

$$\langle f_j, f_k \rangle = \left\langle \frac{1}{s_j} T(e_j), \frac{1}{s_k} T(e_k) \right\rangle = \frac{1}{s_j s_k} \langle T(e_j), T(e_k) \rangle = \frac{1}{s_j s_k} \langle e_j, T^* T(e_k) \rangle = \frac{1}{s_j s_k} \langle e_j, s_k^2 e_k \rangle$$

$$= \frac{s_k}{s_j} \langle e_j, e_k \rangle = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k \end{cases}$$

for all $j, k \in \{1, ..., m\}$.

Note that for k > m we have

$$T^*T(e_k) = s_k^2 e_k = 0 \implies e_k \in \ker(T^*T) = \ker(T) \implies T(e_k) = 0$$

by a previous result. Given $v \in V$, since e_1, \ldots, e_n is orthonormal, then

$$T(v) = T(\langle v, e_1 \rangle e_1 + \cdots \langle v, e_n \rangle e_n = \langle v, e_1 \rangle T(e_1) + \cdots \langle v, e_m T(e_m) \rangle$$

= $\langle v, e_1 \rangle s_1 f_1 + \cdots + \langle v, e_m \rangle s_m f_m$.

Proposition 17 (SVD of adjoint). *Suppose* $T \in \mathcal{L}(V, W)$ *and* s_1, \ldots, s_m , e_1, \ldots, e_m , and f_1, \ldots, f_m are as before, so

$$T(v) = s_1 \langle v, e_1 \rangle f_1 + \dots + s_m \langle v, e_m \rangle f_m$$

for all $v \in V$. Then

$$T^*(w) = s_1 \langle w, f_1 \rangle e_1 + \cdots + s_m \langle v, e_m \rangle e_m.$$

Definition 18. Let $A \in M_{m \times n}(\mathbb{F})$. A is (generalized) diagonl if $A_{ij} = 0$ for all $i, j \in \{1, ..., \min(m, n)\}$ with $i \neq j$.

Theorem 19 (SVD, matrix version). Let $A \in M_{m \times n}(\mathbb{F})$ have rank r. Then there exists

- a generalized diagonal matrix Σ whose diagonal entries are the positive singular values of A;
- a unitary matrix $U \in M_{m \times m}(\mathbb{F})$; and
- a unitary matrix $V \in M_{n \times n}(\mathbb{F})$

such that $A = U\Sigma V^t$.

Proof sketch. Let v_1, \ldots, v_n be an orthonormal basis of \mathbb{F}^n consisting of eigenvectors of A^*A . Let V be the matrix whose columns are v_1, \ldots, v_n .

Suppose A has r nonzero singular values. Then one can show that Av_1, \ldots, Av_r is an orthogonal basis for Col(A). Normalize this to obtain an orthonormal basis u_1, \ldots, u_r of Col(A), where

$$u_i := \frac{1}{s_i} A v_i$$

for i = 1, ..., r. Extend this to a basis $u_1, ..., u_m$ of \mathbb{F}^m . Let U be the matrix with columns $u_1, ..., u_m$. We claim that

$$A = U\Sigma V^*$$
.

II.4. Worksheet.

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \implies A^*A = \begin{pmatrix} 17 & 8 \\ 8 & 17 \end{pmatrix}.$$

Then minpoly(A^*A) = $x^2 - 34x + 225 = (x - 9)(x - 25)$.

$$V = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$

$$Av_1 = \begin{pmatrix} 5/\sqrt{2} \\ 5/\sqrt{2} \\ 0 \end{pmatrix} \qquad Av_2 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 2\sqrt{2} \end{pmatrix}$$

$$u_1 = \frac{1}{5}Av_1$$
$$u_2 = \frac{1}{3}Av_2$$

$$u_3 = \begin{pmatrix} -2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$$

https://sagecell.sagemath.org/?z=eJxtj0FugzAQRfdI3MFL2x0g2M2uqQQ3oBVsLLeyEpqgNqEFy-X4HvZ_M_MnIztyNrZrBloUoJQEAUKDEiAhElqzMMgQyWLbmUv_2fY1xa_-1H7TDEX-3-PZ1c3RDYOn-GF4RKYolA6DN5Q05IHh9qS5mnXYqoqz2k0qT_6iwVDMgsxzhOrEPRDfWbkLt0oQXq6m9f5VJwQ18_q5UNKxTloiBNtnzsOSaSoxIE6DdmC1Avf33Fvzf6dTrM2sNFsauaBuTP3T05v1mHsBwcyiHY=&lang=sage&interacts=eJyLjgUAARUAuQ=

7