18.700 - LINEAR ALGEBRA, DAY 18 THE SPECTRAL THEOREM POSITIVE OPERATORS, ISOMETRIES, AND MATRIX FACTORIZATIONS

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the Spectral Theorem over **R**.
- (2) Students will learn the defintion of positive linear operators.
- (3) Students will learn characterization and properties of positive linear operators.
- (4) Students will learn the defintion of isometries and unitary operators.
- (5) Students will learn QR Decomposition.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON ^PLAN **(0:00)**

Announcements: • Midterm Exam 2 grades posted tonight

II.1. **Last time.**

- Proved properties of the adjoint of a linear operator.
- Defined self-adjoint ($T^* = T$) and normal ($T^* = T^*T$) operators.
- Proved properties of self-adjoint and normal operators.
- Stated the Spectral Theorem over **C**.

II.2. **7B The Spectral Theorem, cont.** Throughout today, let *V* be a finite-dimensional inner product space over **F**.

Theorem 1 (Spectral Theorem over \mathbb{C}). *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. TFAE.*

- *(i) T is normal.*
- *(ii)* There is an orthonormal basis $\mathcal E$ of V such that $[T]_{\mathcal E}$ is diagonal.
- *(iii) There is an orthonormal basis of V consisting of eigenvectors of T.*

Proof. (i) \implies (ii): Last time.

(ii) \implies (i): Assume there is an orthonormal basis $\mathcal E$ of *V* such that $[T]_{\mathcal E}$ is diagonal. Then $[T^*]_\mathcal{E}$ = $([T]_\mathcal{E})^*$, which is also diagonal. Since diagonal matrices commute, then

 $[TT^*]_{\mathcal{E}} = [T]_{\mathcal{E}}[T^*]_{\mathcal{E}} = [T^*]_{\mathcal{E}}[T]_{\mathcal{E}} = [T^*T]_{\mathcal{E}}$

so $TT^* = T^*T$. (Recall that $[\cdot]_{\mathcal{E}} : \mathcal{L}(V) \to M_{n \times n}(\mathbb{F})$ is an isomorphism.) Thus *T* is normal. \Box

Theorem 2 (Spectral Theorem over **R**). *Suppose* $\mathbb{F} = \mathbb{R}$ *and* $T \in \mathcal{L}(V)$ *. TFAE.*

- *(i) T is self-adjoint.*
- *(ii)* There is an orthonormal basis $\mathcal E$ of V such that $[T]_{\mathcal E}$ is diagonal.

(iii) There is an orthonormal basis of V consisting of eigenvectors of T.

We'll need some preliminary results to prove the theorem.

Lemma 3. *Suppose* $T \in \mathcal{L}(V)$ *is self-adjoint, and b, c* $\in \mathbb{R}$ *with* $b^2 - 4c < 0$ *. Then*

$$
T^2 + bT + cI
$$

is an invertible operator.

Proof. [Skip if necessary.] Suppose $0 \neq v \in V$. By Cauchy-Schwarz, we have

$$
|\langle bT(v), v \rangle| \leq ||bT(v)|| ||v|| = |b|| ||T(v)|| ||v||
$$

$$
\iff -|b|| ||T(v)|| ||v|| \leq \langle bT(v), v \rangle \leq |b|| ||T(v)|| ||v||.
$$

2

Since *T* is self-adjoint, then

$$
\langle (T^2 + bT + cI)(v), v \rangle = \langle T^2(v), v \rangle + b \langle T(v), v \rangle + c \langle v, v \rangle
$$

\n
$$
= \langle T(v), T(v) \rangle + b \langle T(v), v \rangle + c ||v||^2
$$

\n
$$
\geq ||T(v)||^2 - |b| \langle T(v), v \rangle + c ||v||^2
$$

\n
$$
= \left(||T(v)|| - \frac{|b| ||v||}{2} \right)^2 - \frac{|b|^2 ||v||^2}{4} + c ||v||^2
$$

\n
$$
= \underbrace{\left(||T(v)|| - \frac{|b| ||v||}{2} \right)^2}_{\geq 0} + \underbrace{\frac{4c - b^2}{4} ||v||}_{\geq 0} \geq 0.
$$

Thus $(T^2 + bT + cI)(v) \neq 0$. This shows that $\ker(T^2 + bT + cI) = \{0\}$, so this operator is injective. Since the domain and codomain are both *V*, then this implies that it is invertible. □

Proposition 4. *Suppose* $T \in \mathcal{L}(V)$ *is self-adjoint. Then*

$$
minpoly(T) = (z - \lambda_1) \cdots (z - \lambda_m)
$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ *.*

Proof. Case 1: $\mathbb{F} = \mathbb{C}$. Then minpoly(*T*) splits into degree 1 factors. Recall that the roots of minpoly(T) are the eigenvalues of T . Since T is self-adjoint, by a previous result, all its eigenvalues are real. Thus minpoly has the desired form.

Case 2: $\mathbb{F} = \mathbb{R}$. Then minpoly(*T*) factors into a product of degree 1 and degree 2 factors:

minpoly(T) =
$$
(z - \lambda_1) \cdots (z - \lambda_m) (z^2 + b_1 z + c_1) \cdots (z^2 + b_N z + c_N)
$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ and some $b_1, \ldots, b_N, c_1, \ldots, c_N \in \mathbb{R}$ with $b_k^2 - 4c_k < 0$ for all $k = 1, \ldots, N$. Goal: $N = 0$. Since this is minpoly(*T*), then

$$
(T - \lambda_1) \cdots (T - \lambda_m) (T^2 + b_1 T + c_1) \cdots (T^2 + b_N T + c_N) = 0.
$$
 (*)

For contradiction, suppose $N > 0$. Then $(T^2 + b_N T + c_N)$ is invertible by the previous result, so multiplying both sides of ([∗](#page-2-0)) by its inverse, we have

$$
(T - \lambda_1) \cdots (T - \lambda_m) (T^2 + b_1 T + c_1) \cdots (T^2 + b_{N-1} T + c_{N-1}) = 0.
$$

But this has degree strictly smaller than minpoly(*T*), contradiction. Thus $N = 0$. \Box

Proof of Spectral Theorem over **R***.* We have already seen (b) \iff (c).

(a) \implies (b): Assume *T* is self-adjoint. Since minpoly(*T*) splits into degree 1 factors by the previous result, then there exists an orthonormal basis $\mathcal E$ of *V* such that $[T]_{\mathcal E}$ is upper triangular. Since *T* is self-adjoint, then

$$
([T]_{\mathcal{E}})^t = ([T]_{\mathcal{E}})^* = [T^*]_{\mathcal{E}} = [T]_{\mathcal{E}}.
$$

 $\text{Now } ([T]_\mathcal{E})^t$ is lower triangular, so we must have that $[T]_\mathcal{E}$ is diagonal.

(b) \implies (a): Assume there exists an orthonormal basis $\mathcal E$ of *V* such that $[T]_{\mathcal E}$ is diagonal. Then

$$
[T]_{\mathcal{E}} = ([T]_{\mathcal{E}})^t = ([T]_{\mathcal{E}})^*
$$

so $T = T^*$. Thus *T* is self-adjoint. \Box

II.3. **7C: Positive Operators.** Throughout today, let *V* be an inner product space.

Definition 5. An operator $T \in \mathcal{L}(V)$ is *positive* if

- (1) *T* is self-adjoint; and
- (2) $\langle T(v), v \rangle \geq 0$ for all $v \in V$.

Remark 6. These should really be called nonnegative operators. Blame the French!

Definition 7. Let $T \in \mathcal{L}(V)$. A *square root of* T is an operator $R \in \mathcal{L}(V)$ such that $R^2 = T$. **Example 8.** Let $T \in \mathcal{L}(\mathbb{F}^3)$ be the operator whose matrix is

$$
[T]_{\mathcal{E}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

with respect to the standard basis $\mathcal{E}.$ Then the operator $R\in\mathcal{L}(\mathbb{F}^3)$ with matrix

$$
[R]_{\mathcal{E}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
$$

is a square root of *T*. (Exercise.)

Theorem 9. *Let* $T \in \mathcal{L}(V)$ *. TFAE.*

- *(a) T is a positive operator.*
- *(b) T is self-adjoint and all the eigenvalues of T are nonnegative.*
- *(c)* There exists an orthonormal basis $\mathcal E$ of V such that $[T]_\mathcal E$ is diagonal and its diagonal entries *are nonnegative.*
- *(d) T has a positive square root.*
- *(e) T has a self-adjoint square root.*
- *(f)* $T = R^*R$ for some $R \in \mathcal{L}(V)$.

Proof. (a) \implies (b): Assume *T* is positive. By definition, then *T* is self-adjoint. Suppose that *λ* is an eigenvalue of *T* and *v* is a corresponding eigenvector. Then

$$
0 \leq \langle T(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2.
$$

Since $||v||^2 \ge 0$, then $\lambda \ge 0$.

(b) \implies (c): Assume *T* is self-adjoint and all its eigenvalues are nonnegative. By [ask students] the Spectral Theorem, then there is an orthonormal basis $\mathcal E$ of V consisting of eigenvecors of *T*. Letting $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues, then

$$
[T]_{\mathcal{E}} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.
$$

(c) \implies (d): Assume (c) holds, so there exists an orthonormal basis $\mathcal{E} := (e_1, \ldots, e_n)$ of *V* of eigenvectors of *T* such that

$$
[T]_{\mathcal{E}} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}
$$

and $\lambda_i \geq 0$ for all *i*. Define $R \in \mathcal{L}(V)$ by

$$
R(e_i) = \sqrt{\lambda_i}e_i
$$

for all $i = 1, \ldots, n$. Then (exercise) R is positive and $R^2 = T$.

(d) \implies (e): A positive operator is self-adjoint by definition.

(e) \implies (f): Assume *T* has a self-adjoint square root *R*. Since *R* is self-adjoint, then

$$
T = R^2 = RR = R^*R.
$$

(f)
$$
\implies
$$
 (a): Assume $T = R^*R$ for some $R \in \mathcal{L}(V)$. Then
\n
$$
T^* = (R^*R)^* = R^*(R^*)^* = R^*R = T
$$

so *T* is self-adjoint. Moreover, given $v \in V$, we have

$$
\langle T(v), v \rangle = \langle R^* R(v), v \rangle = \overline{\langle v, R^* R(v) \rangle} = \overline{\langle R(v), R(v) \rangle} = \langle R(v), R(v) \rangle
$$

= $||R(v)||^2 \ge 0$.

Thus *T* is positive. \Box

Proposition 10. Let $T \in \mathcal{L}(V)$ be positive. Then T has a unique positive *square root*.

Remark 11. *T* can have infinitely many (necessarily not positive) square roots! But only one is positive.

Proof of Proposition. Omitted; see 7.39 of textbook.

This allows us to specify a unique square root, namely the only positive one.

Definition 12. Let $T \in \mathcal{L}(V)$ be a positive operator. Then \sqrt{T} denotes the unique positive square root of *T*.

Remark 13. The proof of part (c) of the theorem shows how to define the positive square root of a linear operator.

Proposition 14. Suppose that $T \in \mathcal{L}(V)$ is positive and $v \in V$ with $\langle T(v), v \rangle = 0$. Then $T(v) = 0.$

Proof.

$$
0 = \langle T(v), v \rangle = \langle \sqrt{T} \sqrt{T}(v), v \rangle = \langle \sqrt{T}(v), \sqrt{T}(v) \rangle = ||\sqrt{T}(v)||^2,
$$

so $\sqrt{T}(v) = 0$. Then

$$
T(v) = \sqrt{T}\sqrt{T}(v) = \sqrt{T}(0) = 0.
$$

□

□

II.4. **7D: Isometries, Unitary Operators, and Matrix Factorizations.** An isometry is a norm-preserving map.

Definition 15. A linear map $S \in \mathcal{L}(V, W)$ is an *isometry* if

$$
||S(v)|| = ||v||
$$

for all $v \in V$.

Lemma 16. *Isometries are injective.*

Proof. Exercise. □

Theorem 17. Let $S \in \mathcal{L}(V, W)$, and let $\mathcal{E} := (e_1, \ldots, e_n)$ and $\mathcal{F} := (f_1, \ldots, f_m)$ be orthonormal *bases for V and W, respectively. TFAE.*

- *(a) S is an isometry.*
- *(b)* $S^*S = I$.
- *(c) S preserves inner products, i.e.,*

$$
\langle S(u), S(v) \rangle = \langle u, v \rangle
$$

for all $u, v \in V$.

- *(d)* $S(e_1), \ldots, S(e_n)$ *is an orthonormal list in W.*
- *(e)* The columns of $_{\mathcal{F}}[S]_{\mathcal{E}}$ form an orthonormal list in \mathbb{F}^m with respect to the usual inner *product.*

Lemma 18. Let $T \in \mathcal{L}(V)$ be self-adjoint. If $\langle T(v), v \rangle = 0$ for all $v \in V$, then $T = 0$.

Proof. Given $v \in V$, let $u = v + T(v)$. Then

$$
0 = \langle T(u), u \rangle = \langle T(v + T(v)), v + T(v) \rangle = \langle T(v) + T^2(v), v + T(v) \rangle
$$

= $\langle T(v), \overline{v} \rangle^{\bullet} \langle T(v), T(v) \rangle + \langle T^2(v), v \rangle + \langle T^2(v), T(v) \rangle$
= $\langle T(v), T(v) \rangle + \langle T(v), T(v) \rangle + \langle T(T(v)), T(v) \rangle = 2 ||T(v)||^2.$

Thus $T(v) = 0$. Since *v* was arbitrary, then $T = 0$.

Proof of Theorem. (a) \implies (b): Assume *S* is an isometry. Given $v \in V$, then $\langle (I - S^*S)(v), v \rangle = \langle v, v \rangle - \langle S^*S(v), v \rangle = ||v||^2 - \langle S(v), S(v) \rangle = ||v||^2 - ||S(v)||^2 = ||v||^2 - ||v||^2 = 0.$

By the lemma, then $I - S^*S = 0$, so $S^*S = I$.

(b) \implies (c): Assume *S*^{*}*S* = *I*. Given *u*, *v* \in *V*, then

$$
\langle S(u), S(v) \rangle = \langle S^*S(u), v \rangle = \langle I(u), v \rangle = \langle u, v \rangle.
$$

(c) \implies (d): Assume $\langle S(u), S(v) \rangle = \langle u, v \rangle$ for all $u, v \in V$. Then

$$
\langle S(e_j), S(e_k) \rangle = \langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{otherwise} \end{cases}
$$

for each $j, k \in \{1, ..., n\}$.

(d) \implies (e): Assume $S(e_1), \ldots, S(e_n)$ is an orthonormal list. Let $A = \mathcal{F}[T]_{\mathcal{E}}$. Then

$$
\langle A_{\cdot,j}, A_{\cdot,k} \rangle = \sum_{i=1}^m A_{i,j} \overline{A_{i,k}} = \left\langle \sum_{i=1}^m A_{i,j} f_i, \sum_{i=1}^m A_{i,k} f_i \right\rangle = \langle S(e_j), S(e_k) = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{otherwise} \end{cases} \tag{19}
$$

where the second equality follows from the Pythagorean Theorem.

(e) \implies (a): Assume the columns of $\mathcal{F}[S]_{\mathcal{E}}$ form an orthonormal list. Given $v \in V$, then

 $v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$

so

$$
||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2
$$

by the Pythagorean Theorem. By a similar calculation to [\(19\)](#page-6-0), then $S(e_1), \ldots, S(e_n)$ is an orthonormal list. Then

$$
S(v) = S(\langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n) = \langle v, e_1 \rangle S(e_1) + \cdots + \langle v, e_n \rangle S(e_n)
$$

so

$$
||S(v)||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2 = ||v||^2.
$$

Thus $||S(v)|| = ||v||$, so *S* is an isometry. $□$

Definition 20. An operator $S \in \mathcal{L}(V)$ is *unitary* if *S* is an invertible isometry.

Theorem 21. Let $S \in \mathcal{L}(V)$, and let $\mathcal{E} := (e_1, \ldots, e_n)$ be an orthonormal basis of V. TFAE.

- *(a) S is a unitary operator.*
- (*b*) $S^*S = SS^* = I$.
- *(c) S* is invertible and $S^{-1} = S^*$.
- *(d)* $S(e_1)$, ..., $S(e_n)$ *is an orthonormal basis of V.*
- *(e)* The rows of $[S]_\mathcal{E}$ form an orthonormal basis of \mathbb{F}^n .
- *(f) S* ∗ *is a unitary operator.*

Proof. Similar to the previous theorem. See text for details. □

Proposition 22. Let $S \in \mathcal{L}(V)$ be a unitary operator and suppose λ is an eigenvalue of S. Then $|\lambda| = 1$.

Proof. Let $0 \neq v \in V$ be a corresponding eigenvector. Then

$$
|\lambda| ||v|| = ||\lambda v|| = ||S(v)|| = ||v||.
$$

Since $v \neq 0$, then $||v|| \neq 0$. Dividing, then $|\lambda| = 1$. \Box

Definition 23. A matrix $Q \in M_{n \times n}(\mathbb{F})$ is *unitary* if the associated linear operator

$$
L_Q: \mathbb{F}^n \to \mathbb{F}^n
$$

$$
v \mapsto Qv
$$

is unitary. Equivalently, if the columns of Q form an orthonormal basis of \mathbb{F}^n .

Theorem 24 (QR Factorization). Suppose $A \in M_{n \times n}(\mathbb{F})$ is a square matrix with linearly *independent columns. Then there exist unique matrices Q,* $R \in M_{n \times n}(\mathbb{F})$ *such that*

- *(i) Q is unitary;*
- *(ii) R is upper triangular with positive diagonal entries; and*

 (iii) $A = QR$.

Proof. This follows from a matrix interpretation of the Gram-Schmidt procedure. Let v_1, \ldots, v_n be the columns of *A*. Let e_1, \ldots, e_n be the orthonormal list resulting from the Gram-Schmidt procedure, and let *Q* be the matrix whose columns are *e*1, . . . ,*en*. The equations

$$
f_k := v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, f_j \rangle}{\|f_j\|^2} f_j
$$

$$
e_k := \frac{1}{\|f_k\|} f_k
$$

give the entries for the upper triangular matrix R^{-1} such that $Q = AR^{-1}$. Details left as an exercise. \Box