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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the Spectral Theorem over R.
(2) Students will learn the defintion of positive linear operators.
(3) Students will learn characterization and properties of positive linear operators.
(4) Students will learn the defintion of isometries and unitary operators.
(5) Students will learn QR Decomposition.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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II. LESSON PLAN(0:00)
Announcements: • Midterm Exam 2 grades posted tonight

II.1. Last time.

• Proved properties of the adjoint of a linear operator.
• Defined self-adjoint (T∗ = T) and normal (TT∗ = T∗T) operators.
• Proved properties of self-adjoint and normal operators.
• Stated the Spectral Theorem over C.

II.2. 7B The Spectral Theorem, cont. Throughout today, let V be a finite-dimensional
inner product space over F.

Theorem 1 (Spectral Theorem over C). Suppose F = C and T ∈ L(V). TFAE.

(i) T is normal.
(ii) There is an orthonormal basis E of V such that [T]E is diagonal.

(iii) There is an orthonormal basis of V consisting of eigenvectors of T.

Proof. (i) =⇒ (ii): Last time.
(ii) =⇒ (i): Assume there is an orthonormal basis E of V such that [T]E is diagonal.

Then [T∗]E = ([T]E )∗, which is also diagonal. Since diagonal matrices commute, then

[TT∗]E = [T]E [T∗]E = [T∗]E [T]E = [T∗T]E ,

so TT∗ = T∗T. (Recall that [·]E : L(V) → Mn×n(F) is an isomorphism.) Thus T is
normal. □

Theorem 2 (Spectral Theorem over R). Suppose F = R and T ∈ L(V). TFAE.

(i) T is self-adjoint.
(ii) There is an orthonormal basis E of V such that [T]E is diagonal.

(iii) There is an orthonormal basis of V consisting of eigenvectors of T.

We’ll need some preliminary results to prove the theorem.

Lemma 3. Suppose T ∈ L(V) is self-adjoint, and b, c ∈ R with b2 − 4c < 0. Then

T2 + bT + cI

is an invertible operator.

Proof. [Skip if necessary.] Suppose 0 ̸= v ∈ V. By Cauchy-Schwarz, we have

|⟨bT(v), v⟩| ≤ ∥bT(v)∥∥v∥ = |b|∥T(v)∥∥v∥
⇐⇒ −|b|∥T(v)∥∥v∥ ≤ ⟨bT(v), v⟩ ≤ |b|∥T(v)∥∥v∥ .
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Since T is self-adjoint, then

⟨(T2 + bT + cI)(v), v⟩ = ⟨T2(v), v⟩+ b⟨T(v), v⟩+ c⟨v, v⟩
= ⟨T(v), T(v)⟩+ b⟨T(v), v⟩+ c∥v∥2

≥ ∥T(v)∥2 − |b|⟨T(v), v⟩+ c∥v∥2

=

(
∥T(v)∥ − |b|∥v∥

2

)2

− |b|2∥v∥2

4
+ c∥v∥2

=

(
∥T(v)∥ − |b|∥v∥

2

)2

︸ ︷︷ ︸
≥0

+
4c − b2

4︸ ︷︷ ︸
>0

∥v∥ > 0 .

Thus (T2 + bT + cI)(v) ̸= 0. This shows that ker(T2 + bT + cI) = {0}, so this operator is
injective. Since the domain and codomain are both V, then this implies that it is invertible.

□

Proposition 4. Suppose T ∈ L(V) is self-adjoint. Then

minpoly(T) = (z − λ1) · · · (z − λm)

for some λ1, . . . , λm ∈ R.

Proof. Case 1: F = C. Then minpoly(T) splits into degree 1 factors. Recall that the roots
of minpoly(T) are the eigenvalues of T. Since T is self-adjoint, by a previous result, all its
eigenvalues are real. Thus minpoly has the desired form.

Case 2: F = R. Then minpoly(T) factors into a product of degree 1 and degree 2
factors:

minpoly(T) = (z − λ1) · · · (z − λm)(z2 + b1z + c1) · · · (z2 + bNz + cN)

for some λ1, . . . , λm ∈ R and some b1, . . . , bN, c1, . . . , cN ∈ R with b2
k − 4ck < 0 for all

k = 1, . . . , N. Goal: N = 0. Since this is minpoly(T), then

(T − λ1) · · · (T − λm)(T2 + b1T + c1) · · · (T2 + bNT + cN) = 0 . (∗)

For contradiction, suppose N > 0. Then (T2 + bNT + cN) is invertible by the previous
result, so multiplying both sides of (∗) by its inverse, we have

(T − λ1) · · · (T − λm)(T2 + b1T + c1) · · · (T2 + bN−1T + cN−1) = 0 .

But this has degree strictly smaller than minpoly(T), contradiction. Thus N = 0. □

Proof of Spectral Theorem over R. We have already seen (b) ⇐⇒ (c).
(a) =⇒ (b): Assume T is self-adjoint. Since minpoly(T) splits into degree 1 factors by

the previous result, then there exists an orthonormal basis E of V such that [T]E is upper
triangular. Since T is self-adjoint, then

([T]E )t = ([T]E )∗ = [T∗]E = [T]E .

Now ([T]E )t is lower triangular, so we must have that [T]E is diagonal.
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(b) =⇒ (a): Assume there exists an orthonormal basis E of V such that [T]E is diagonal.
Then

[T]E = ([T]E )t = ([T]E )∗

so T = T∗. Thus T is self-adjoint. □

II.3. 7C: Positive Operators. Throughout today, let V be an inner product space.

Definition 5. An operator T ∈ L(V) is positive if
(1) T is self-adjoint; and
(2) ⟨T(v), v⟩ ≥ 0 for all v ∈ V.

Remark 6. These should really be called nonnegative operators. Blame the French!

Definition 7. Let T ∈ L(V). A square root of T is an operator R ∈ L(V) such that R2 = T.

Example 8. Let T ∈ L(F3) be the operator whose matrix is

[T]E =

0 0 1
0 0 0
0 0 0


with respect to the standard basis E . Then the operator R ∈ L(F3) with matrix

[R]E =

0 1 0
0 0 1
0 0 0


is a square root of T. (Exercise.)

Theorem 9. Let T ∈ L(V). TFAE.
(a) T is a positive operator.
(b) T is self-adjoint and all the eigenvalues of T are nonnegative.
(c) There exists an orthonormal basis E of V such that [T]E is diagonal and its diagonal entries

are nonnegative.
(d) T has a positive square root.
(e) T has a self-adjoint square root.
(f) T = R∗R for some R ∈ L(V).

Proof. (a) =⇒ (b): Assume T is positive. By definition, then T is self-adjoint. Suppose
that λ is an eigenvalue of T and v is a corresponding eigenvector. Then

0 ≤ ⟨T(v), v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩ = λ∥v∥2 .

Since ∥v∥2 ≥ 0, then λ ≥ 0.
(b) =⇒ (c): Assume T is self-adjoint and all its eigenvalues are nonnegative. By [ask

students] the Spectral Theorem, then there is an orthonormal basis E of V consisting of
eigenvecors of T. Letting λ1, . . . , λn be the corresponding eigenvalues, then

[T]E =

λ1
. . .

λn

 .
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(c) =⇒ (d): Assume (c) holds, so there exists an orthonormal basis E := (e1, . . . , en) of
V of eigenvectors of T such that

[T]E =

λ1
. . .

λn


and λi ≥ 0 for all i. Define R ∈ L(V) by

R(ei) =
√

λiei

for all i = 1, . . . , n. Then (exercise) R is positive and R2 = T.
(d) =⇒ (e): A positive operator is self-adjoint by definition.
(e) =⇒ (f): Assume T has a self-adjoint square root R. Since R is self-adjoint, then

T = R2 = RR = R∗R .

(f) =⇒ (a): Assume T = R∗R for some R ∈ L(V). Then

T∗ = (R∗R)∗ = R∗(R∗)∗ = R∗R = T

so T is self-adjoint. Moreover, given v ∈ V, we have

⟨T(v), v⟩ = ⟨R∗R(v), v⟩ = ⟨v, R∗R(v)⟩ = ⟨R(v), R(v)⟩ = ⟨R(v), R(v)⟩
= ∥R(v)∥2 ≥ 0 .

Thus T is positive. □

Proposition 10. Let T ∈ L(V) be positive. Then T has a unique positive square root.

Remark 11. T can have infinitely many (necessarily not positive) square roots! But only
one is positive.

Proof of Proposition. Omitted; see 7.39 of textbook.
□

This allows us to specify a unique square root, namely the only positive one.

Definition 12. Let T ∈ L(V) be a positive operator. Then
√

T denotes the unique positive
square root of T.

Remark 13. The proof of part (c) of the theorem shows how to define the positive square
root of a linear operator.

Proposition 14. Suppose that T ∈ L(V) is positive and v ∈ V with ⟨T(v), v⟩ = 0. Then
T(v) = 0.

Proof.

0 = ⟨T(v), v⟩ = ⟨
√

T
√

T(v), v⟩ = ⟨
√

T(v),
√

T(v)⟩ = ∥
√

T(v)∥2 ,

so
√

T(v) = 0. Then
T(v) =

√
T
√

T(v) =
√

T(0) = 0 .
□
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II.4. 7D: Isometries, Unitary Operators, and Matrix Factorizations. An isometry is a
norm-preserving map.

Definition 15. A linear map S ∈ L(V, W) is an isometry if

∥S(v)∥ = ∥v∥

for all v ∈ V.

Lemma 16. Isometries are injective.

Proof. Exercise. □

Theorem 17. Let S ∈ L(V, W), and let E := (e1, . . . , en) and F := ( f1, . . . , fm) be orthonormal
bases for V and W, respectively. TFAE.

(a) S is an isometry.
(b) S∗S = I.
(c) S preserves inner products, i.e.,

⟨S(u), S(v)⟩ = ⟨u, v⟩

for all u, v ∈ V.
(d) S(e1), . . . , S(en) is an orthonormal list in W.
(e) The columns of F [S]E form an orthonormal list in Fm with respect to the usual inner

product.

Lemma 18. Let T ∈ L(V) be self-adjoint. If ⟨T(v), v⟩ = 0 for all v ∈ V, then T = 0.

Proof. Given v ∈ V, let u = v + T(v). Then

0 = ⟨T(u), u⟩ = ⟨T(v + T(v)), v + T(v)⟩ = ⟨T(v) + T2(v), v + T(v)⟩

=������:0
⟨T(v), v⟩+ ⟨T(v), T(v)⟩+ ⟨T2(v), v⟩+ ⟨T2(v), T(v)⟩

= ⟨T(v), T(v)⟩+ ⟨T(v), T(v)⟩+
���������:0
⟨T(T(v)), T(v)⟩ = 2∥T(v)∥2 .

Thus T(v) = 0. Since v was arbitrary, then T = 0. □

Proof of Theorem. (a) =⇒ (b): Assume S is an isometry. Given v ∈ V, then

⟨(I − S∗S)(v), v⟩ = ⟨v, v⟩ − ⟨S∗S(v), v⟩ = ∥v∥2 − ⟨S(v), S(v)⟩ = ∥v∥2 − ∥S(v)∥2 = ∥v∥2 − ∥v∥2 = 0 .

By the lemma, then I − S∗S = 0, so S∗S = I.
(b) =⇒ (c): Assume S∗S = I. Given u, v ∈ V, then

⟨S(u), S(v)⟩ = ⟨S∗S(u), v⟩ = ⟨I(u), v⟩ = ⟨u, v⟩ .

(c) =⇒ (d): Assume ⟨S(u), S(v)⟩ = ⟨u, v⟩ for all u, v ∈ V. Then

⟨S(ej), S(ek)⟩ = ⟨ej, ek⟩ =
{

1 if j = k,
0 otherwise

for each j, k ∈ {1, . . . , n}.
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(d) =⇒ (e): Assume S(e1), . . . , S(en) is an orthonormal list. Let A = F [T]E . Then〈
A·,j, A·,k

〉
=

m

∑
i=1

Ai,j Ai,k =

〈
m

∑
i=1

Ai,j fi,
m

∑
i=1

Ai,k fi

〉
= ⟨S(ej), S(ek) =

{
1 if j = k,
0 otherwise

(19)

where the second equality follows from the Pythagorean Theorem.
(e) =⇒ (a): Assume the columns of F [S]E form an orthonormal list. Given v ∈ V, then

v = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en ,

so
∥v∥2 = |⟨v, e1⟩|2 + · · ·+ |⟨v, en⟩|2

by the Pythagorean Theorem. By a similar calculation to (19), then S(e1), . . . , S(en) is an
orthonormal list. Then

S(v) = S(⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en) = ⟨v, e1⟩S(e1) + · · ·+ ⟨v, en⟩S(en)

so

∥S(v)∥2 = |⟨v, e1⟩|2 + · · ·+ |⟨v, en⟩|2 = ∥v∥2 .

Thus ∥S(v)∥ = ∥v∥, so S is an isometry. □

Definition 20. An operator S ∈ L(V) is unitary if S is an invertible isometry.

Theorem 21. Let S ∈ L(V), and let E := (e1, . . . , en) be an orthonormal basis of V. TFAE.
(a) S is a unitary operator.
(b) S∗S = SS∗ = I.
(c) S is invertible and S−1 = S∗.
(d) S(e1), . . . , S(en) is an orthonormal basis of V.
(e) The rows of [S]E form an orthonormal basis of Fn.
(f) S∗ is a unitary operator.

Proof. Similar to the previous theorem. See text for details. □

Proposition 22. Let S ∈ L(V) be a unitary operator and suppose λ is an eigenvalue of S. Then
|λ| = 1.

Proof. Let 0 ̸= v ∈ V be a corresponding eigenvector. Then

|λ|∥v∥ = ∥λv∥ = ∥S(v)∥ = ∥v∥ .

Since v ̸= 0, then ∥v∥ ̸= 0. Dividing, then |λ| = 1. □

Definition 23. A matrix Q ∈ Mn×n(F) is unitary if the associated linear operator

LQ : Fn → Fn

v 7→ Qv

is unitary. Equivalently, if the columns of Q form an orthonormal basis of Fn.

Theorem 24 (QR Factorization). Suppose A ∈ Mn×n(F) is a square matrix with linearly
independent columns. Then there exist unique matrices Q, R ∈ Mn×n(F) such that

(i) Q is unitary;
(ii) R is upper triangular with positive diagonal entries; and
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(iii) A = QR.

Proof. This follows from a matrix interpretation of the Gram-Schmidt procedure. Let
v1, . . . , vn be the columns of A. Let e1, . . . , en be the orthonormal list resulting from the
Gram-Schmidt procedure, and let Q be the matrix whose columns are e1, . . . , en. The
equations

fk := vk −
k−1

∑
j=1

⟨vk, f j⟩
∥ f j∥2 f j

ek :=
1

∥ fk∥
fk

give the entries for the upper triangular matrix R−1 such that Q = AR−1. Details left as
an exercise. □
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