18.700 - LINEAR ALGEBRA, DAY 17 ADJOINT, SELF-ADJOINT, AND NORMAL OPERATORS THE SPECTRAL THEOREM

SAM SCHIAVONE

Contents

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 7A: Adjoint, Self-Adjoint, and Normal Operators, cont.	2
II.3. 7B The Spectral Theorem	6

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn properties of the adjoint of a linear operator.
- (2) Students will learn the definition of self-adjoint and normal operators.
- (3) Students will learn the statements of the real and complex Spectral Theorems.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

<u>Announcements</u>: • Midterm Exam 2: Wednesday, November 13th in class • Extra office hours: Friday, November 8th, 1 - 2pm. • Exam review session: Nov 12 (Tue) 19:00 - 21:00, 2-361

II.1. Last time.

- Proved properties of orthogonal complements.
- Defined orthogonal projection onto a subspace.
- Showed that, given a vector v, the closest point of a subspace U to v is $\text{proj}_{U}(v)$.
- Defined linear functionals.
- Proved the Riesz Representation Theorem.
- Defined the adjoint of a linear operator.

II.2. **7A:** Adjoint, Self-Adjoint, and Normal Operators, cont. For today, let V and W be nonzero finite-dimensional inner product spaces over \mathbb{F} .

Definition 1. Given $T \in \mathcal{L}(V, W)$, the *adjoint of* T is the unique linear map $T^* \in \mathcal{L}(W, V)$ such that

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle \tag{(*)}$$

for all $v \in V$ and all $w \in W$.

Proposition 2. Suppose $T \in \mathcal{L}(V, W)$.

- (*i*) $(S+T)^* = S^* + T^*$ for all $S \in \mathcal{L}(V, W)$.
- (*ii*) $(\lambda T)^* = \overline{\lambda} T^*$ for all $\lambda \in \mathbb{F}$.
- (*iii*) $(T^*)^* = T$.
- (iv) Let U be a finite-dimensional inner product space. Then $(ST)^* = T^*S^*$ for all $S \in \mathcal{L}(W, U)$.
- (v) $I^* = I$.
- (vi) If T is invertible, then T^* is also invertible, and $(T^*)^{-1} = (T^{-1})^*$.

Proof. Suppose $v \in v$, $w \in W$, and $\lambda \in \mathbb{F}$.

(i) By definition,

$$\langle (S+T)(v), w \rangle = \langle v, (S+T)^*(w) \rangle.$$

Now

$$\langle (S+T)(v), w \rangle = \langle S(v), w \rangle + \langle T(v), w \rangle = \langle v, S^*(w) \rangle + \langle v, T^*(w) \rangle$$

= $\langle v, S^*(w) + T^*(w) \rangle = \langle v, (S^* + T^*)(w) \rangle.$

(ii) Similar.

(iii)

$$\langle T^*(w), v \rangle = \overline{\langle v, T^*(w) \rangle} = \overline{\langle T(v), w \rangle} = \langle w, T(v) \rangle.$$

(iv) Given $S \in \mathcal{L}(W, U)$ and $u \in U$, then

$$\langle (ST)(v), u \rangle = \langle S(T(v)), u \rangle = \langle T(v), S^*(u) \rangle = \langle v, T^*(S^*(u)) \rangle$$

(v) Exercise.

(vi) Apply * to the equations $T^{-1}T = I$ and $TT^{-1} = I$ and then apply the two previous parts.

(0:00)

Proposition 3. Suppose $T \in \mathcal{L}(V, W)$. Then

- (*i*) $\ker(T^*) = (\operatorname{img}(T))^{\perp}$; (*ii*) $\operatorname{img}(T^*) = \ker(T)^{\perp}$;
- (*iii*) $\operatorname{ker}(T) = (\operatorname{img}(T^*))^{\perp}$;
- $(m) \operatorname{ker}(I) = (\operatorname{img}(I));$
- (iv) $\operatorname{img}(T) = (\operatorname{ker}(T^*))^{\perp}$.
- *Proof.* (i) (\subseteq): Given $w \in \text{ker}(T^*)$, then $0 = T^*(w)$. Given $x \in \text{img}(T)$, then x = T(v) for some $v \in V$. Then

$$\langle x,w\rangle = \langle T(v),w\rangle = \langle v,T^*(w)\rangle = \langle v,0\rangle = 0.$$

Thus $w \in (\operatorname{img}(T))^{\perp}$. (\supseteq): Similar.

- (ii) Replace T by T^* in the previous part.
- (iii) Take the orthogonal complement of (i).
- (iv) Take the orthogonal complement of (ii).

Q: After having chosen bases, how does the matrix of T^* relate to the matrix of T?

Definition 4. Let $A \in M_{m \times n}(\mathbb{F})$. The *conjugate transpose of A*, denoted A^* , is defined by

$$(A^*)_{ij} = \overline{(A^t)_{ij}} = \overline{A_{ji}}.$$

Proposition 5. Let $T \in \mathcal{L}(V, W)$, let $\mathcal{E} := (e_1, \ldots, e_n)$, and $\mathcal{F} := (f_1, \ldots, f_m)$ be orthonormal bases for V and W, respectively. Then

$$_{\mathcal{E}}[T^*]_{\mathcal{F}} = (_{\mathcal{F}}[T]_{\mathcal{E}})^*$$

Proof. Recall that the k^{th} column of $_{\mathcal{F}}[T]_{\mathcal{E}}$ is $[T(e_k)]_{\mathcal{F}}$. Since \mathcal{F} is orthonormal, we have

$$T(e_k) = \langle T(e_k), f_1 \rangle f_1 + \cdots \langle T(e_k), f_m \rangle f_m$$

so

$$[T(e_k)]_{\mathcal{F}} = \begin{pmatrix} \langle T(e_k), f_1 \rangle \\ \vdots \\ \langle T(e_k), f_1 \rangle \end{pmatrix}.$$

Thus

$$(\mathcal{F}[T]_{\mathcal{E}})_{jk} = \langle T(e_k), f_j \rangle.$$

Similarly

$$(\mathcal{E}[T^*]_{\mathcal{F}})_{jk} = \langle T^*(f_k), e_j \rangle = \langle f_k, T(e_j) \rangle = \langle T(e_j), f_k \rangle.$$

Thus

$$(\mathcal{E}[T^*]_{\mathcal{F}})_{jk} = \overline{(\mathcal{F}[T]_{\mathcal{E}})_{kj}} = (\mathcal{F}[T]_{\mathcal{E}})_{jk}^t.$$

II.2.1. Self-adjoint operators.

Definition 6. An operator $T \in \mathcal{L}(V)$ is *self-adjoint* if $T = T^*$.

Lemma 7. If \mathcal{E} is an orthonormal basis for V, then T is self-adjoint iff $[T^*]_{\mathcal{E}} = ([T]_{\mathcal{E}})^*$.

Example 8. Let $T \in \mathcal{L}(\mathbb{F}^2)$ be the linear operator such that

$$[T]_{\mathcal{E}} = \begin{pmatrix} 2 & i \\ -i & 7 \end{pmatrix}$$

T is self-adjoint.

Remark 9. The adjoint of a linear operator is analogous to the complex conjugate of a complex number.

Proposition 10. Let $T \in \mathcal{L}(V)$ be self-adjoint. Then every eigenvalue of T is real.

Proof. Suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T*, so $T(v) = \lambda v$ for some $0 \neq v \in V$. Then

Since $v \neq 0$, then $||v||^2 \neq 0$, so $\overline{\lambda} = \lambda$. Thus $\lambda \in \mathbb{R}$.

Proposition 11. Suppose V is an inner product space over \mathbb{C} and $T \in \mathcal{L}(V)$. Then T is selfadjoint iff $\langle T(v), v \rangle \in \mathbb{R}$ for all $v \in V$.

Proof. (\Rightarrow): Assume *T* is self-adjoint, so *T* = *T*^{*}. Given *v* \in *V*, then

$$\langle T^*(v), v \rangle = \overline{\langle v, T^*(v) \rangle} = \overline{\langle T(v), v \rangle}.$$

Then

$$0 = \langle 0(v), v \rangle = \langle (T - T^*)(v), v \rangle = \langle T(v), v \rangle - \langle T^*(v), v \rangle = \langle T(v), v \rangle - \overline{\langle T(v), v \rangle}.$$

Thus $\langle T(v), v \rangle$ is real.

 (\Leftarrow) : Exercise. (Similar.)

II.2.2. Normal operators.

Definition 12. An operator $T \in \mathcal{L}(V)$ is *normal* if *T* commutes with its adjoint, i.e.,

$$TT^* = T^*T.$$

Example 13. Let $T \in \mathcal{L}(\mathbb{F}^2)$ whose matrix with respect to the standard basis is

$$\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix} \cdot$$

Since its matrix with respect to the standard basis (which is orthonormal) is not symmetric, then *T* is not self-adjoint. However, *T* is normal. [Compute TT^* and T^*T .]

Proposition 14. Suppose $T \in \mathcal{L}(V)$. Then T is normal iff $||T(v)|| = ||T^*(v)||$ for all $v \in V$.

 \square

Proof. Suppose *T* is normal. Then $T^*T = TT^*$, so given $v \in V$,

$$\langle TT^*(v), v \rangle = \langle T^*(v), T^*(v) \rangle = ||T^*(v)||^2$$
$$\langle T^*T(v), v \rangle = \langle T(v), T(v) \rangle = ||T(v)||^2.$$

One can show that each of these steps is reversible, so the reverse implication is also true. $\hfill \Box$

Proposition 15. *Suppose* $T \in \mathcal{L}(V)$ *is normal. Then*

(i) $\ker(T) = \ker(T^*);$ (ii) $\operatorname{img}(T) = \operatorname{img}(T^*);$ (iii) $V = \ker(T) \oplus \operatorname{img}(T);$ (iv) $\mathbb{T} - \lambda I$ is normal for all $\lambda \in \mathbb{F};$ (v) if $v \in V$ and $\lambda \in \mathbb{F}$, then $T(v) = \lambda v$ iff $T^*(v) = \overline{\lambda} v.$

Proof. (i) Given $v \in V$, then

$$v \in \ker(T) \iff ||T(v)|| = 0 \iff ||T^*(v)|| = 0 \iff v \in \ker(T^*)$$

where the middle equality holds by the previous proposition.

(ii) By a previous result, $\operatorname{img}(T) = (\operatorname{ker}(T^*))^{\perp}$ and $(\operatorname{ker}(T))^{\perp} = \operatorname{img}(T^*)$. Then

$$\operatorname{img}(T) = (\operatorname{ker}(T^*))^{\perp} = (\operatorname{ker}(T))^{\perp} = \operatorname{img}(T^*)$$

by part (i).

(iii) We have

$$V = (\ker(T)) \oplus (\ker(T))^{\perp} = \ker(T) \oplus \operatorname{img}(T^*) = \ker(T) \oplus \operatorname{img}(T)$$

(iv) Exercise.

(v) [Leave as exercise if necessary.] Suppose $v \in V$ and $\lambda \in \mathbb{F}$. By the previous part,

$$\|(T - \lambda I)(v)\| = \|(T - \lambda I)^*(v)\| = \|(T^* - \overline{\lambda}I)(v)\|$$

Thus $T(v) = \lambda v$ iff $T^*(v) = \overline{\lambda} v$.

Proposition 16. Suppose $T \in \mathcal{L}(V)$ is normal. Then the eigenvectors of T with distinct eigenvalues are orthogonal.

Proof. [Leave as exercise if necessary.] Suppose $\alpha \neq \beta$ are eigenvalues of *T* with corresponding eigenvectors *u* and *v*, so $T(u) = \alpha u$ and $T(v) = \beta v$. Then

$$0 = \langle T(u), v \rangle - \langle T(u), v \rangle = \langle T(u), v \rangle - \langle u, T^*(v) \rangle = \langle \alpha u, v \rangle - \langle u, \overline{\beta} v \rangle$$

= $\alpha \langle u, v \rangle - \beta \langle u, v \rangle = (\alpha - \beta) \langle u, v \rangle.$

Since $\alpha - \beta \neq 0$, then $\langle u, v \rangle = 0$.

II.3. **7B The Spectral Theorem.** Let *V* be a finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$.

- There exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is upper triangular.
- If *T* is diagonalizable, then there exists a basis \mathcal{B} of *V* such that $[T]_{\mathcal{B}}$ is diagonal. In this case, \mathcal{B} consists of eigenvectors of *T*.

<u>Q</u>: Now let *V* be a finite-dimensional inner product space. When does *V* have an *orthonormal* basis \mathcal{E} consisting of eigenvectors of *T*?

<u>A</u>:

- For $\mathbb{F} = \mathbb{C}$, when *T* is normal.
- For $\mathbb{F} = \mathbb{R}$, when *T* is self-adjoint.

Throughout today, let *V* be a finite-dimensional inner product space over \mathbb{F} .

Theorem 17 (Spectral Theorem over \mathbb{C}). *Suppose* $\mathbb{F} = \mathbb{C}$ *and* $T \in \mathcal{L}(V)$ *. TFAE.*

- (i) T is normal.
- (ii) There is an orthonormal basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is diagonal.
- *(iii) There is an orthonormal basis of V consisting of eigenvectors of T.*

Proof. We have already seen (b) \iff (c), so it remains to show (a) \iff (b).

(a) \implies (b): Assume *T* is normal. Since minpoly(*T*) splits into degree 1 factors, then there is an orthonormal basis $\mathcal{E} := (e_1, \ldots, e_n)$ of *V* such that $[T]_{\mathcal{E}}$ is upper triangular.

$$[T]_{\mathcal{E}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & & a_{nn} \end{pmatrix}.$$

Since \mathcal{E} is orthonormal, then

$$[T^*]_{\mathcal{E}} = ([T]_{\mathcal{E}})^* = \begin{pmatrix} \overline{a_{11}} & & \\ \overline{a_{12}} & \overline{a_{22}} & \\ \vdots & \vdots & \ddots \\ \overline{a_{1n}} & \overline{a_{2n}} & \cdots & \overline{a_{nn}} \end{pmatrix}$$

We will show that $[T]_{\mathcal{E}}$ is diagonal. Then

$$T(e_1) = a_{11}e_1$$

$$T^*(e_1) = \overline{a_{11}}e_1 + \overline{a_{12}}e_2 + \dots + \overline{a_{1n}}e_n.$$

Since e_1, \ldots, e_n is orthonormal, then

$$||T(e_1)||^2 = |a_{11}|^2$$

$$||T^*(e_1)||^2 = |\overline{a_{11}}|^2 + |\overline{a_{12}}|^2 + \dots + |\overline{a_{1n}}|^2$$

$$= |a_{11}|^2 + |a_{12}|^2 + \dots + |a_{1n}|^2$$

by the Pythagorean Theorem. Since *T* is normal, then these are equal by a previous result. Subtracting, then

$$0 = |a_{12}|^2 + \dots + |a_{1n}|^2$$

so $0 = a_{12} = \dots = a_{1n}$. [Update matrices for $[T]_{\mathcal{E}}$ and $[T^*]_{\mathcal{E}}$ by filling in 0s.]

Now we have

$$T(e_2) = a_{22}e_2$$
$$T^*(e_2) = \overline{a_{22}}e_2 + \cdots \overline{a_{2n}}e_n$$

so

$$||T(e_2)||^2 = |a_{22}|^2$$

$$||T^*(e_2)||^2 = |\overline{a_{22}}|^2 + |\overline{a_{23}}|^2 + \dots + |\overline{a_{2n}}|^2$$

$$= |a_{22}|^2 + |a_{23}|^2 + \dots + |a_{2n}|^2$$

By analogous reasoning, then $0 = a_{23} = \cdots = a_{2n}$. Proceeding similarly, we find that $a_{ij} = 0$ for all $i \neq j$. Thus $[T]_{\mathcal{E}}$ is diagonal.

(b) \implies (a): Assume there is an orthonormal basis \mathcal{E} of V such that $[T]_{\mathcal{E}}$ is diagonal. Then $[T^*]_{\mathcal{E}} = ([T]_{\mathcal{E}})^*$, which is also diagonal. Since diagonal matrices commute, then

$$[TT^*]_\mathcal{E} = [T]_\mathcal{E}[T^*]_\mathcal{E} = [T^*]_\mathcal{E}[T]_\mathcal{E} = [T^*T]_\mathcal{E}$$
 ,

so $TT^* = T^*T$. (Recall that $[\cdot]_{\mathcal{E}} : \mathcal{L}(V) \to M_{n \times n}(\mathbb{F})$ is an isomorphism.) Thus T is normal.

Theorem 18 (Spectral Theorem over \mathbb{R}). *Suppose* $\mathbb{F} = \mathbb{R}$ *and* $T \in \mathcal{L}(V)$. *TFAE*.

- (*i*) *T* is self-adjoint.
- (ii) There is an orthonormal basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is diagonal.

(iii) There is an orthonormal basis of V consisting of eigenvectors of T.

We'll need some preliminary results to prove the theorem.

Lemma 19. Suppose $T \in \mathcal{L}(V)$ is self-adjoint, and $b, c \in \mathbb{R}$ with $b^2 - 4c < 0$. Then

$$T^2 + bT + cI$$

is an invertible operator.

Skip if necessary. Suppose $0 \neq v \in V$. By Cauchy-Schwarz, we have

$$\begin{aligned} |\langle bT(v), v \rangle| &\leq \|bT(v)\| \|v\| = |b| \|T(v)\| \|v\| \\ &\iff -|b| \|T(v)\| \|v\| \leq \langle bT(v), v \rangle \leq |b| \|T(v)\| \|v\| \end{aligned}$$

Since *T* is self-adjoint, then

$$\langle (T^{2} + bT + cI)(v), v \rangle = \langle T^{2}(v), v \rangle + b \langle T(v), v \rangle + c \langle v, v \rangle = \langle T(v), T(v) \rangle + b \langle T(v), v \rangle + c ||v||^{2} \ge ||T(v)||^{2} - |b| \langle T(v), v \rangle + c ||v||^{2} = \left(||T(v)|| - \frac{|b|||v||}{2} \right)^{2} - \frac{|b|^{2} ||v||^{2}}{4} + c ||v||^{2} = \underbrace{\left(||T(v)|| - \frac{|b|||v||}{2} \right)^{2}}_{\ge 0} + \underbrace{\frac{4c - b^{2}}{4}}_{>0} ||v|| > 0.$$

Thus $(T^2 + bT + cI)(v) \neq 0$. This shows that ker $(T^2 + bT + cI) = \{0\}$, so this operator is injective. Since the domain and codomain are both *V*, then this implies that it is invertible.

Proposition 20. Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Then

minpoly
$$(T) = (z - \lambda_1) \cdots (z - \lambda_m)$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$.

Proof. Case 1: $\mathbb{F} = \mathbb{C}$. Then minpoly(*T*) splits into degree 1 factors. Recall that the roots of minpoly(*T*) are the eigenvalues of *T*. Since *T* is self-adjoint, by a previous result, all its eigenvalues are real. Thus minpoly has the desired form.

<u>Case 2</u>: $\mathbb{F} = \mathbb{R}$. Then minpoly(*T*) factors into a product of degree 1 and degree 2 factors:

minpoly(T) =
$$(z - \lambda_1) \cdots (z - \lambda_m)(z^2 + b_1 z + c_1) \cdots (z^2 + b_N z + c_N)$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ and some $b_1, \ldots, b_N, c_1, \ldots, c_N \in \mathbb{R}$ with $b_k^2 - 4c_k < 0$ for all $k = 1, \ldots, N$. Goal: N = 0. Since this is minpoly(*T*), then

$$(T - \lambda_1) \cdots (T - \lambda_m)(T^2 + b_1 T + c_1) \cdots (T^2 + b_N T + c_N) = 0.$$
 (*)

For contradiction, suppose N > 0. Then $(T^2 + b_N T + c_N)$ is invertible by the previous result, so multiplying both sides of (*) by its inverse, we have

$$(T - \lambda_1) \cdots (T - \lambda_m)(T^2 + b_1T + c_1) \cdots (T^2 + b_{N-1}T + c_{N-1}) = 0.$$

But this has degree strictly smaller than minpoly(*T*), contradiction. Thus N = 0.

Proof of Spectral Theorem over \mathbb{R} . We have already seen (b) \iff (c).

(a) \implies (b): Assume *T* is self-adjoint. Since minpoly(*T*) splits into degree 1 factors by the previous result, then there exists an orthonormal basis \mathcal{E} of *V* such that $[T]_{\mathcal{E}}$ is upper triangular. Since *T* is self-adjoint, then

$$([T]_{\mathcal{E}})^t = ([T]_{\mathcal{E}})^* = [T^*]_{\mathcal{E}} = [T]_{\mathcal{E}}.$$

Now $([T]_{\mathcal{E}})^t$ is lower triangular, so we must have that $[T]_{\mathcal{E}}$ is diagonal.

(b) \implies (a): Assume there exists an orthonormal basis \mathcal{E} of V such that $[T]_{\mathcal{E}}$ is diagonal. Then

$$[T]_{\mathcal{E}} = ([T]_{\mathcal{E}})^t = ([T]_{\mathcal{E}})^*$$

so $T = T^*$. Thus *T* is self-adjoint.