18.700 - LINEAR ALGEBRA, DAY 17 ADJOINT, SELF-ADJOINT, AND NORMAL OPERATORS THE SPECTRAL THEOREM

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn properties of the adjoint of a linear operator.
- (2) Students will learn the definition of self-adjoint and normal operators.
- (3) Students will learn the statements of the real and complex Spectral Theorems.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON ^PLAN **(0:00)**

Announcements: • Midterm Exam 2: Wednesday, November 13th in class • Extra office hours: Friday, November 8th, 1 - 2pm. • Exam review session: Nov 12 (Tue) 19:00 - 21:00, 2-361

II.1. **Last time.**

- Proved properties of orthogonal complements.
- Defined orthogonal projection onto a subspace.
- Showed that, given a vector *v*, the closest point of a subspace *U* to *v* is $proj_U(v)$.
- Defined linear functionals.
- Proved the Riesz Representation Theorem.
- Defined the adjoint of a linear operator.

II.2. **7A: Adjoint, Self-Adjoint, and Normal Operators, cont.** For today, let *V* and *W* be nonzero finite-dimensional inner product spaces over **F**.

Definition 1. Given $T \in \mathcal{L}(V, W)$, the *adjoint of* T is the unique linear map $T^* \in \mathcal{L}(W, V)$ such that

$$
\langle T(v), w \rangle = \langle v, T^*(w) \rangle \tag{*}
$$

for all $v \in V$ and all $w \in W$.

Proposition 2. *Suppose* $T \in \mathcal{L}(V, W)$ *.*

- *(i)* $(S+T)^* = S^* + T^*$ *for all* $S \in \mathcal{L}(V, W)$ *.*
- *(ii)* $(\lambda T)^* = \overline{\lambda} T^*$ *for all* $\lambda \in \mathbb{F}$ *.*
- *(iii)* $(T^*)^* = T$.
- *(iv)* Let U be a finite-dimensional inner product space. Then $(ST)^* = T^*S^*$ for all $S \in$ $\mathcal{L}(W,U)$.
- (v) $I^* = I$.
- (*vi*) If T is invertible, then T^* is also invertible, and $(T^*)^{-1} = (T^{-1})^*$.

Proof. Suppose $v \in v$, $w \in W$, and $\lambda \in \mathbb{F}$.

(i) By definition,

$$
\langle (S+T)(v),w\rangle = \langle v, (S+T)^*(w)\rangle.
$$

Now

$$
\langle (S+T)(v), w \rangle = \langle S(v), w \rangle + \langle T(v), w \rangle = \langle v, S^*(w) \rangle + \langle v, T^*(w) \rangle
$$

= $\langle v, S^*(w) + T^*(w) \rangle = \langle v, (S^* + T^*)(w) \rangle$.

(ii) Similar.

 (iii)

$$
\langle T^*(w), v \rangle = \overline{\langle v, T^*(w) \rangle} = \overline{\langle T(v), w \rangle} = \langle w, T(v) \rangle.
$$

(iv) Given *S* \in *L*(*W*, *U*) and *u* \in *U*, then

$$
\langle (ST)(v),u\rangle = \langle S(T(v)),u\rangle = \langle T(v),S^*(u)\rangle = \langle v,T^*(S^*(u))\rangle.
$$

(v) Exercise.

(vi) Apply $*$ to the equations $T^{-1}T = I$ and $TT^{-1} = I$ and then apply the two previous parts.

□

Proposition 3. *Suppose* $T \in \mathcal{L}(V, W)$ *. Then*

- (i) ker $(T^*) = (img(T))^{\perp}$;
- (iii) img (T^*) = ker $(T)^{\perp}$;
- $(iii) \ \text{ker}(T) = (\text{img}(T^*))^{\perp}$;
- (iv) img(*T*) = (ker(*T*^{*}))[⊥].
- *Proof.* (i) (⊆): Given $w \in \text{ker}(T^*)$, then $0 = T^*(w)$. Given $x \in \text{img}(T)$, then $x = T(v)$ for some $v \in V$. Then

$$
\langle x,w\rangle=\langle T(v),w\rangle=\langle v,T^*(w)\rangle=\langle v,0\rangle=0.
$$

Thus $w \in (\text{img}(T))^{\perp}$. (⊇): Similar.

- (ii) Replace T by T^* in the previous part.
- (iii) Take the orthogonal complement of (i).
- (iv) Take the orthogonal complement of (ii).

Q: After having chosen bases, how does the matrix of T^* relate to the matrix of T ?

Definition 4. Let $A \in M_{m \times n}(\mathbb{F})$. The *conjugate transpose of A*, denoted A^* , is defined by

$$
(A^*)_{ij} = \overline{(A^t)_{ij}} = \overline{A_{ji}}.
$$

Proposition 5. Let $T \in \mathcal{L}(V, W)$, let $\mathcal{E} := (e_1, \ldots, e_n)$, and $\mathcal{F} := (f_1, \ldots, f_m)$ be orthonormal *bases for V and W, respectively. Then*

$$
\varepsilon[T^*]_{\mathcal{F}} = (\mathcal{F}[T]_{\mathcal{E}})^*.
$$

Proof. Recall that the k^{th} column of ${}_{\mathcal{F}}[T]_{\mathcal{E}}$ is $[T(e_k)]_{\mathcal{F}}.$ Since $\mathcal F$ is orthonormal, we have

$$
T(e_k) = \langle T(e_k), f_1 \rangle f_1 + \cdots \langle T(e_k), f_m \rangle f_m,
$$

so

Thus

$$
(\mathcal{F}[T]_{\mathcal{E}})_{jk} = \langle T(e_k), f_j \rangle.
$$

Similarly

$$
(\varepsilon[T^*]_{\mathcal{F}})_{jk} = \langle T^*(f_k), e_j \rangle = \langle f_k, T(e_j) \rangle = \overline{\langle T(e_j), f_k \rangle}.
$$

Thus

$$
(\varepsilon[T^*]_{\mathcal{F}})_{jk} = \overline{(\mathcal{F}[T]_{\mathcal{E}})_{kj}} = \overline{(\mathcal{F}[T]_{\mathcal{E}})_{jk}^t}.
$$

□

Definition 6. An operator $T \in \mathcal{L}(V)$ is *self-adjoint* if $T = T^*$.

Lemma 7. If $\mathcal E$ is an orthonormal basis for V, then T is self-adjoint iff $[T^*]_{\mathcal E} = ([T]_{\mathcal E})^*$.

Example 8. Let $T \in \mathcal{L}(\mathbb{F}^2)$ be the linear operator such that

$$
[T]_{\mathcal{E}} = \begin{pmatrix} 2 & i \\ -i & 7 \end{pmatrix}
$$

.

T is self-adjoint.

Remark 9. The adjoint of a linear operator is analogous to the complex conjugate of a complex number.

Proposition 10. Let $T \in \mathcal{L}(V)$ be self-adjoint. Then every eigenvalue of T is real.

Proof. Suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T*, so $T(v) = \lambda v$ for some $0 \neq v \in V$. Then

$$
\langle T(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2
$$

$$
\langle T(v), v \rangle = \langle v, T(v) \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle = \overline{\lambda} ||v||^2.
$$

Since $v \neq 0$, then $||v||^2 \neq 0$, so $\overline{\lambda} = \lambda$. Thus $\lambda \in \mathbb{R}$.

Proposition 11. *Suppose V is an inner product space over* \mathbb{C} *and* $T \in \mathcal{L}(V)$ *. Then* T *is selfadjoint iff* $\langle T(v), v \rangle \in \mathbb{R}$ *for all* $v \in V$.

Proof. (\Rightarrow): Assume *T* is self-adjoint, so *T* = *T*^{*}. Given *v* \in *V*, then

$$
\langle T^*(v),v\rangle=\overline{\langle v,T^*(v)\rangle}=\overline{\langle T(v),v\rangle}.
$$

Then

$$
0=\langle 0(v),v\rangle=\langle (T-T^*)(v),v\rangle=\langle T(v),v\rangle-\langle T^*(v),v\rangle=\langle T(v),v\rangle-\overline{\langle T(v),v\rangle}.
$$

Thus $\langle T(v), v \rangle$ is real.

 (\Leftarrow) : Exercise. (Similar.) □

II.2.2. *Normal operators.*

Definition 12. An operator $T \in \mathcal{L}(V)$ is *normal* if *T* commutes with its adjoint, i.e.,

$$
TT^* = T^*T.
$$

Example 13. Let $T \in \mathcal{L}(\mathbb{F}^2)$ whose matrix with respect to the standard basis is

$$
\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}.
$$

Since its matrix with respect to the standard basis (which is orthonormal) is not symmetric, then *T* is not self-adjoint. However, *T* is normal. [Compute *TT*[∗] and *T* [∗]*T*.]

Proposition 14. *Suppose* $T \in \mathcal{L}(V)$ *. Then* T *is normal iff* $||T(v)|| = ||T^*(v)||$ *for all* $v \in V$ *.*

Proof. Suppose *T* is normal. Then $T^*T = TT^*$, so given $v \in V$,

$$
\langle TT^*(v), v \rangle = \langle T^*(v), T^*(v) \rangle = ||T^*(v)||^2
$$

$$
\langle T^*T(v), v \rangle = \langle T(v), T(v) \rangle = ||T(v)||^2.
$$

One can show that each of these steps is reversible, so the reverse implication is also true. \Box

Proposition 15. *Suppose* $T \in \mathcal{L}(V)$ *is normal. Then*

(i) $\ker(T) = \ker(T^*)$; (iii) $\text{img}(T) = \text{img}(T^*)$; (iii) $V = \text{ker}(T) \oplus \text{img}(T)$; *(iv)* $\mathbb{T} - \lambda I$ *is normal for all* $\lambda \in \mathbb{F}$ *; (v) if* $v \in V$ *and* $\lambda \in \mathbb{F}$ *, then* $T(v) = \lambda v$ *iff* $T^*(v) = \overline{\lambda}v$ *.*

Proof. (i) Given $v \in V$, then

$$
v \in \ker(T) \iff ||T(v)|| = 0 \iff ||T^*(v)|| = 0 \iff v \in \ker(T^*)
$$

where the middle equality holds by the previous proposition.

(ii) By a previous result, $\text{img}(T) = (\text{ker}(T^*))^{\perp}$ and $(\text{ker}(T))^{\perp} = \text{img}(T^*)$. Then

$$
img(T) = (ker(T^*))^{\perp} = (ker(T))^{\perp} = img(T^*)
$$

by part (i).

(iii) We have

$$
V = (\ker(T)) \oplus (\ker(T))^{\perp} = \ker(T) \oplus \text{img}(T^*) = \ker(T) \oplus \text{img}(T).
$$

(iv) Exercise.

(v) [Leave as exercise if necessary.] Suppose $v \in V$ and $\lambda \in F$. By the previous part,

$$
||(T - \lambda I)(v)|| = ||(T - \lambda I)^*(v)|| = ||(T^* - \overline{\lambda}I)(v)||.
$$

Thus $T(v) = \lambda v$ iff $T^*(v) = \overline{\lambda}v$.

Proposition 16. Suppose $T \in \mathcal{L}(V)$ is normal. Then the eigenvectors of T with distinct eigen*values are orthogonal.*

Proof. [Leave as exercise if necessary.] Suppose $\alpha \neq \beta$ are eigenvalues of *T* with corresponding eigenvectors *u* and *v*, so $T(u) = \alpha u$ and $T(v) = \beta v$. Then

$$
0 = \langle T(u), v \rangle - \langle T(u), v \rangle = \langle T(u), v \rangle - \langle u, T^*(v) \rangle = \langle \alpha u, v \rangle - \langle u, \overline{\beta} v \rangle
$$

= $\alpha \langle u, v \rangle - \beta \langle u, v \rangle = (\alpha - \beta) \langle u, v \rangle$.

Since $\alpha - \beta \neq 0$, then $\langle u, v \rangle = 0$. □

□

II.3. **7B The Spectral Theorem.** Let *V* be a finite-dimensional C-vector space and $T \in$ $\mathcal{L}(V)$.

- There exists a basis *B* of *V* such that $[T]_B$ is upper triangular.
- If *T* is diagonalizable, then there exists a basis *B* of *V* such that $[T]_B$ is diagonal. In this case, B consists of eigenvectors of *T*.

Q: Now let *V* be a finite-dimensional inner product space. When does *V* have an *orthonormal* basis $\mathcal E$ consisting of eigenvectors of T ?

A:

- For $\mathbb{F} = \mathbb{C}$, when *T* is normal.
- For $F = \mathbb{R}$, when *T* is self-adjoint.

Throughout today, let *V* be a finite-dimensional inner product space over **F**.

Theorem 17 (Spectral Theorem over C). Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. TFAE.

- *(i) T is normal.*
- *(ii)* There is an orthonormal basis B of V such that $[T]_B$ *is diagonal.*
- *(iii) There is an orthonormal basis of V consisting of eigenvectors of T.*

Proof. We have already seen (b) \iff (c), so it remains to show (a) \iff (b).

(a) \implies (b): Assume *T* is normal. Since minpoly(*T*) splits into degree 1 factors, then there is an orthonormal basis $\mathcal{E} := (e_1, \ldots, e_n)$ of *V* such that $[T]_{\mathcal{E}}$ is upper triangular.

$$
[T]_{\mathcal{E}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}.
$$

Since $\mathcal E$ is orthonormal, then

$$
[T^*]_{\mathcal{E}} = ([T]_{\mathcal{E}})^* = \begin{pmatrix} \overline{a_{11}} & & & \\ \overline{a_{12}} & \overline{a_{22}} & \\ \vdots & \vdots & \ddots & \\ \overline{a_{1n}} & \overline{a_{2n}} & \cdots & \overline{a_{nn}} \end{pmatrix}
$$

.

We will show that $[T]_{\mathcal{E}}$ is diagonal. Then

$$
T(e_1) = a_{11}e_1
$$

\n
$$
T^*(e_1) = \overline{a_{11}}e_1 + \overline{a_{12}}e_2 + \cdots + \overline{a_{1n}}e_n.
$$

Since e_1, \ldots, e_n is orthonormal, then

$$
||T(e_1)||^2 = |a_{11}|^2
$$

\n
$$
||T^*(e_1)||^2 = |\overline{a_{11}}|^2 + |\overline{a_{12}}|^2 + \cdots + |\overline{a_{1n}}|^2
$$

\n
$$
= |a_{11}|^2 + |a_{12}|^2 + \cdots + |a_{1n}|^2
$$

by the Pythagorean Theorem. Since *T* is normal, then these are equal by a previous result. Subtracting, then

$$
0 = |a_{12}|^2 + \dots + |a_{1n}|^2
$$

so $0 = a_{12} = \dots = a_{1n}$. [Update matrices for $[T]_{\mathcal{E}}$ and $[T^*]_{\mathcal{E}}$ by filling in 0s.]

Now we have

$$
T(e_2) = a_{22}e_2
$$

$$
T^*(e_2) = \overline{a_{22}}e_2 + \cdots \overline{a_{2n}}e_n
$$

so

$$
||T(e_2)||^2 = |a_{22}|^2
$$

\n
$$
||T^*(e_2)||^2 = |\overline{a_{22}}|^2 + |\overline{a_{23}}|^2 + \cdots + |\overline{a_{2n}}|^2
$$

\n
$$
= |a_{22}|^2 + |a_{23}|^2 + \cdots + |a_{2n}|^2.
$$

By analogous reasoning, then $0 = a_{23} = \cdots = a_{2n}$. Proceeding similarly, we find that $a_{ij} = 0$ for all $i \neq j$. Thus $[T]_{\mathcal{E}}$ is diagonal.

(b) \implies (a): Assume there is an orthonormal basis $\mathcal E$ of *V* such that $[T]_{\mathcal E}$ is diagonal. Then $[T^*]_\mathcal{E} = ([T]_\mathcal{E})^*$, which is also diagonal. Since diagonal matrices commute, then

$$
[TT^*]_{\mathcal{E}} = [T]_{\mathcal{E}}[T^*]_{\mathcal{E}} = [T^*]_{\mathcal{E}}[T]_{\mathcal{E}} = [T^*T]_{\mathcal{E}},
$$

so $TT^* = T^*T$. (Recall that $[\cdot]_{\mathcal{E}} : \mathcal{L}(V) \to M_{n \times n}(\mathbb{F})$ is an isomorphism.) Thus *T* is normal. \Box

Theorem 18 (Spectral Theorem over **R**). *Suppose* $\mathbb{F} = \mathbb{R}$ *and* $T \in \mathcal{L}(V)$ *. TFAE.*

- *(i) T is self-adjoint.*
- *(ii)* There is an orthonormal basis B of V such that $[T]_B$ *is diagonal.*
- *(iii) There is an orthonormal basis of V consisting of eigenvectors of T.*

We'll need some preliminary results to prove the theorem.

Lemma 19. *Suppose* $T \in \mathcal{L}(V)$ *is self-adjoint, and b, c* $\in \mathbb{R}$ *with* $b^2 - 4c < 0$ *. Then*

$$
T^2 + bT + cI
$$

is an invertible operator.

Skip if necessary. Suppose $0 \neq v \in V$. By Cauchy-Schwarz, we have

$$
|\langle bT(v),v\rangle| \leq ||bT(v)|| ||v|| = |b|| ||T(v)|| ||v||
$$

$$
\iff -|b|| ||T(v)|| ||v|| \leq \langle bT(v),v\rangle \leq |b|| ||T(v)|| ||v||.
$$

Since *T* is self-adjoint, then

$$
\langle (T^2 + bT + cI)(v), v \rangle = \langle T^2(v), v \rangle + b \langle T(v), v \rangle + c \langle v, v \rangle
$$

\n
$$
= \langle T(v), T(v) \rangle + b \langle T(v), v \rangle + c ||v||^2
$$

\n
$$
\geq ||T(v)||^2 - |b| \langle T(v), v \rangle + c ||v||^2
$$

\n
$$
= \left(||T(v)|| - \frac{|b| ||v||}{2} \right)^2 - \frac{|b|^2 ||v||^2}{4} + c ||v||^2
$$

\n
$$
= \left(||T(v)|| - \frac{|b| ||v||}{2} \right)^2 + \frac{4c - b^2}{4} ||v|| > 0.
$$

Thus $(T^2 + bT + cI)(v) \neq 0$. This shows that $\ker(T^2 + bT + cI) = \{0\}$, so this operator is injective. Since the domain and codomain are both *V*, then this implies that it is invertible. □

Proposition 20. *Suppose* $T \in \mathcal{L}(V)$ *is self-adjoint. Then*

$$
minpoly(T) = (z - \lambda_1) \cdots (z - \lambda_m)
$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ *.*

Proof. Case 1: $\mathbb{F} = \mathbb{C}$. Then minpoly(*T*) splits into degree 1 factors. Recall that the roots of minpoly(*T*) are the eigenvalues of *T*. Since *T* is self-adjoint, by a previous result, all its eigenvalues are real. Thus minpoly has the desired form.

Case 2: $\mathbb{F} = \mathbb{R}$. Then minpoly(*T*) factors into a product of degree 1 and degree 2 factors:

$$
minpoly(T) = (z - \lambda_1) \cdots (z - \lambda_m) (z^2 + b_1 z + c_1) \cdots (z^2 + b_N z + c_N)
$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ and some $b_1, \ldots, b_N, c_1, \ldots, c_N \in \mathbb{R}$ with $b_k^2 - 4c_k < 0$ for all $k = 1, \ldots, N$. Goal: $N = 0$. Since this is minpoly(*T*), then

$$
(T - \lambda_1) \cdots (T - \lambda_m) (T^2 + b_1 T + c_1) \cdots (T^2 + b_N T + c_N) = 0.
$$
 (*)

For contradiction, suppose $N > 0$. Then $(T^2 + b_N T + c_N)$ is invertible by the previous result, so multiplying both sides of ([∗](#page-7-0)) by its inverse, we have

$$
(T - \lambda_1) \cdots (T - \lambda_m) (T^2 + b_1 T + c_1) \cdots (T^2 + b_{N-1} T + c_{N-1}) = 0.
$$

But this has degree strictly smaller than minpoly(*T*), contradiction. Thus $N = 0$. \Box

Proof of Spectral Theorem over **R***.* We have already seen (b) \iff (c).

(a) \implies (b): Assume *T* is self-adjoint. Since minpoly(*T*) splits into degree 1 factors by the previous result, then there exists an orthonormal basis $\mathcal E$ of V such that $[T]_\mathcal E$ is upper triangular. Since *T* is self-adjoint, then

$$
([T]_{\mathcal{E}})^t = ([T]_{\mathcal{E}})^* = [T^*]_{\mathcal{E}} = [T]_{\mathcal{E}}.
$$

 $\text{Now } ([T]_\mathcal{E})^t$ is lower triangular, so we must have that $[T]_\mathcal{E}$ is diagonal.

(b) \implies (a): Assume there exists an orthonormal basis $\mathcal E$ of V such that $[T]_{\mathcal E}$ is diagonal. Then

$$
[T]_{\mathcal{E}} = ([T]_{\mathcal{E}})^t = ([T]_{\mathcal{E}})^*
$$

so $T = T^*$. Thus *T* is self-adjoint. \Box

