18.700 - LINEAR ALGEBRA, DAY 16 ORTHOGONAL COMPLEMENTS, MINIMIZATION ADJOINT, SELF-ADJOINT, AND NORMAL OPERATORS

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn how to compute the orthogonal projection of a vector onto a subspace.
- (2) Students will learn properties of orthogonal complements.
- (3) Students will learn the definition of the adjoint of a linear operator.
- (4) Students will learn the definition of self-adjoint and normal operators.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON ^PLAN **(0:00)**

Announcements: • Midterm Exam 2: Wednesday, November 13th in class

- II.1. **Last time.**
	- Stated basic results in inner product spaces, e.g., triangle inequality, Cauchy-Schwarz, Pythagorean theorem, Parallelogram Identity.
	- Proved that the Gram-Schmidt procdure produces orthonormal bases.
	- Defined the orthogonal complement of a subset of an inner product space.

II.2. **6C: Orthogonal complements and minimization, cont.**

Definition 1. Given a subset $S \subseteq V$, the *orthogonal complement of* S is

$$
S^{\perp} := \{ v \in V : \langle u, v \rangle = 0 \ \forall u \in S \} = \{ v \in V : v \perp u \ \forall u \in S \}.
$$

Proposition 2. *If S is a subset of V, then S* \cap $S^{\perp} \subseteq \{0\}$ *.*

The above proposition hints at the following result.

Proposition 3. *Suppose U is a finite-dimensional subspace of V. Then*

$$
V=U\oplus U^{\perp}.
$$

Proof. Since *U* and U^{\perp} are subspaces, then $0 \in U$ and $0 \in U^{\perp}$, so $U \cap U^{\perp} = \{0\}$ by part (d) of the previous result. Thus $U + U^{\perp}$ is direct.

It remains to show that $V = U + U^{\perp}$. Certainly $V \supseteq U + U^{\perp}$, so it suffices to show that $V \subseteq U + U^{\perp}$. [Ask students.] Suppose $v \in V$. By a previous result, there exists an orthonormal basis *e*1, . . . ,*e^m* of *U*. Let

$$
u := \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m
$$

$$
w := v - u.
$$

Then $v = u + w$ and $u \in U$. <u>Goal:</u> $w \in U^{\perp}$. [Ask students how to show this.] For each $k \in \{1, \ldots, m\}$, we have

$$
\langle w,e_k\rangle = \left\langle v - \sum_{i=1}^m \langle v,e_i\rangle e_i,e_k \right\rangle = \langle v,e_k\rangle - \sum_i \langle v,e_i\rangle \overbrace{\langle e_i,e_k\rangle}^{\text{=0 for } i \neq k} = \langle v,e_k\rangle - \langle v,e_k\rangle.
$$

Thus *w* is orthogonal to e_1, \ldots, e_m , so *w* is orthogonal to every vector in span (e_1, \ldots, e_m) = *U*. Thus $w \in U^{\perp}$. [⊥]. □

Corollary 4. *Suppose V is finite-dimensional and U is a subspace of V. Then*

$$
\dim(U^{\perp}) = \dim(V) - \dim(U).
$$

Proposition 5. *Suppose U is a finite-dimensional subspace of V. Then*

$$
(U^{\perp})^{\perp}_2 = U.
$$

Proof. (⊃): Exercise.

(⊆): Suppose $v \in (U^{\perp})^{\perp}$. By a previous result, we can write $v = u + w$ where $u \in U$ and $w\in U^\perp.$ <u>Goal</u>: $w=0.$ From the first part, we have $u\in U\subseteq (U^\perp)^\perp$, so

$$
w=v-u\in (U^\perp)^\perp.
$$

But then $w \in U^{\perp} \cap (U^{\perp})^{\perp} = \{0\}$, so $w = 0$ and $v = u \in U$.

Corollary 6. *With the same hypotheses as above,*

$$
U^\perp = \{0\} \iff U = V \, .
$$

Proof. Exercise. □

Definition 7 (Orthogonal projection)**.** Suppose *U* is a finite-dimensional subspace of *V*. For each $v \in V$, we write write $v = u + w$ where $u \in U$ and $w \in U^{\perp}$. The *orthogonal projection of v onto U* is $\text{proj}_{U}(v) := u.$ This defines a linear map $\text{proj}_{U} \in \mathcal{L}(V).$

Since $V = U \oplus U^{\perp}$, then the expression $v = u + w$ above is unique, so the map $proj_{U}$ is well-defined.

Proposition 8. *Suppose U is a finite-dimensional subpsace of V. Then*

 (i) proj_{*UI*} $\in \mathcal{L}(V)$ *; (ii)* $\text{proj}_{U}|_{U} = I_{U}$, *i.e.*, $\text{proj}_{U}(u) = u$ *for all* $u \in U$; *(iii)* $\operatorname{proj}_{U}|_{U^{\perp}} = 0$, *i.e.,* $\operatorname{proj}_{U}(w) = 0$ *for all* $w \in U^{\perp}$ *; (iv)* [Ask students] $\text{img}(\text{proj}_U) = U;$ *(v)* [Ask students] $\ker(\text{proj}_U) = U^{\perp}$; *(vi)* v − $proj$ *U* (v) ∈ *U*^{\perp} *for all* v ∈ *V*; $(vii) \text{ proj}_U^2 = \text{proj}_U$ $(viii)$ $\|\text{proj}_{U}(v)\| \leq \|v\|$ *for all* $v \in V$; *(ix) if e*1, . . . ,*e^m is an orthonormal basis of U, then*

$$
\operatorname{proj}_{U}(v) = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.
$$

Proof. Exercise. □

Remark 9. Property (ix) gives us a formula to compute an orthogonal projection, given an orthonormal basis for the subspace.

Proposition 10 (Minimizing distance to a subspace)**.** *Suppose U is a finite-dimensional subpsace of V and* $v \in V$ *. Then*

$$
\|v - \text{proj}_U(v)\| \le \|v - u\|
$$

for all $u \in U$ *, with equality iff* $u = \text{proj}_U(v)$ *.*

Proof. Given $u \in U$, then $\text{proj}_U(v) - u \in U$. By orthogonal decomposition, $v - \text{proj}_U(v) \in$ U^{\perp} . Since

$$
v - u = (v - \text{proj}_U(v)) + (\text{proj}_U(v) - u)
$$

and these last two are orthogonal, then

$$
||v - u||2 = ||v - \text{proj}_{U}(v)||2 + ||\overrightarrow{\text{proj}}_{U}(v) - u||2 \ge ||v - \text{proj}_{U}(v)||2.
$$

Taking square roots yields the result. \Box

In calculus, you were sometimes faced with the following problem. Suppose *L* is a line through the origin in **R** 2 and *P* is a point not lying on the line *L*. What is the distance from *P* to *L*, i.e., what is the point on *L* closest to *P*? [Draw picture.]

The answer uses the ideas of orthogonal projection and orthogonal decomposition. Let *u* be the vector from the origin to *P*, and let *v* be a vector in the direction of *L*. [Continue picture.] Then $L = \text{span}(v)$ and $\frac{1}{\|v\|}v$ is an orthonormal basis for L . By the proposition, then

$$
\text{proj}_L(u) = \left\langle u, \frac{1}{\|v\|}v \right\rangle \frac{1}{\|v\|}v = \frac{1}{\|v\|^2} \langle u, v \rangle v
$$

is the point on *L* that is closest to *P*.

II.3. **Worksheet.**

II.4. **7A: Adjoint, Self-Adjoint, and Normal Operators.** For today, let *V* and *W* be nonzero finite-dimensional inner product spaces over **F**.

A brief addendum to section 6B:

Definition 11. Let *V* be an **F**-vector space.

- A *linear functional* on *V* is a linear map $\varphi : V \to \mathbb{F}$.
- The *dual space of V*, denoted V^{\vee} or V^* or V' , is

$$
V^{\vee} := \mathcal{L}(V, \mathbb{F}).
$$

In other words, the vector space of all linear functionals on *V*.

Theorem 12 (Riesz Representation Theorem)**.** *Suppose V is a finite-dimensional inner product space, and* $\varphi \in \mathcal{L}(V, \mathbb{F})$ *. Then there is a unique vector* $v \in V$ *such that*

$$
\varphi(u)=\langle u,v\rangle
$$

for all $u \in V$.

Proof. Existence: Let *e*1, . . . ,*eⁿ* be an orthonormal basis for *V*. Let

$$
v:=\varphi(e_1)e_1+\cdots+\varphi(e_n)e_n.
$$

Given $u \in V$, then

$$
\langle u, v \rangle = \langle u, \overline{\varphi(e_1)}e_1 + \cdots + \overline{\varphi(e_n)}e_n \rangle = \langle u, \overline{\varphi(e_1)}e_1 \rangle + \cdots + \langle u, \overline{\varphi(e_n)}e_n \rangle
$$

= $\varphi(e_1) \langle u, e_1 \rangle + \cdots + \varphi(e_n) \langle u, e_n \rangle = \varphi(\langle u, e_1 \rangle e_1 + \cdots + \langle u, e_n \rangle e_n) = \varphi(u).$

[Ask students if *v* depends on *u*.]

Uniqueness: Suppose $v_1, v_2 \in V$ both satisfy

$$
\langle u,v_1\rangle=\varphi(u)=\langle u,v_2\rangle
$$

for all $u \in V$. Then

$$
\langle u, v_1 - v_2 \rangle = \langle u, v_1 \rangle - \langle u, v_2 \rangle = 0
$$

for all $u \in V$, so $v_1 - v_2 = 0$ by a previous result. Thus $v_1 = v_2$.

Proposition 13. *Given* $T \in \mathcal{L}(V, W)$ *, then there exists a unique linear map* $T^* \in \mathcal{L}(W, V)$ *such that*

$$
\langle T(v), w \rangle = \langle v, T^*(w) \rangle \tag{*}
$$

for all $v \in V$ *and all* $w \in W$.

Definition 14. The linear map T[∗] above is called the *adjoint of T*. That is, it is the unique map satisfying [\(*\)](#page-4-0).

Proof of proposition. Fix $w \in W$ and consider the linear functional

$$
\varphi: V \to \mathbb{F}
$$

$$
v \mapsto \langle T(v), w \rangle.
$$

By the Riesz Representation Theorem, there exists a unique $u \in V$ such that

$$
\langle T(v), w \rangle = \varphi(v) = \langle v, u \rangle
$$

for all $v \in V$. Define $T^*(w) := u$; then

$$
\langle T(v), w \rangle = \langle v, T^*(w) \rangle
$$

for all $v \in V$.

It remains to show that $T^* : W \to V$ is linear: exercise.

Remark 15. In the above equation, the LHS is the inner product on *W*, while the righthand side is the inner product on *V*.

Proposition 16. *Suppose* $T \in \mathcal{L}(V, W)$ *.*

- *(i)* $(S+T)^* = S^* + T^*$ *for all* $S \in \mathcal{L}(V, W)$ *.*
- *(ii)* $(\lambda T)^* = \overline{\lambda} T^*$ *for all* $\lambda \in \mathbb{F}$ *.*
- *(iii)* $(T^*)^* = T$.
- *(iv)* Let U be a finite-dimensional inner product space. Then $(ST)^* = T^*S^*$ for all $S \in$ $\mathcal{L}(W,U)$.

$$
(v) I^* = I.
$$

(*vi*) If T is invertible, then T^{*} is also invertible, and $(T^*)^{-1} = (T^{-1})^*$.

Proof. Suppose $v \in v$, $w \in W$, and $\lambda \in \mathbb{F}$.

(i) By definition,

$$
\langle (S+T)(v), w \rangle = \langle v, (S+T)^*(w) \rangle.
$$

Now

$$
\langle (S+T)(v), w \rangle = \langle S(v), w \rangle + \langle T(v), w \rangle = \langle v, S^*(w) \rangle + \langle v, T^*(w) \rangle
$$

= $\langle v, S^*(w) + T^*(w) \rangle = \langle v, (S^* + T^*)(w) \rangle$.

(ii) Similar.

(iii)

$$
\langle T^*(w),v\rangle=\overline{\langle v,T^*(w)\rangle}=\overline{\langle T(v),w\rangle}=\langle w,T(v)\rangle.
$$

(iv) Given $S \in \mathcal{L}(W, U)$ and $u \in U$, then

$$
\langle (ST)(v),u\rangle = \langle S(T(v)),u\rangle = \langle T(v),S^*(u)\rangle = \langle v,T^*(S^*(u))\rangle.
$$

(v) Exercise.

(vi) Apply $*$ to the equations $T^{-1}T = I$ and $TT^{-1} = I$ and then apply the two previous parts.

Proposition 17. *Suppose* $T \in \mathcal{L}(V, W)$ *. Then*

- (i) ker $(T^*) = (img(T))^{\perp}$;
- (iii) img (T^*) = ker $(T)^{\perp}$;
- $(iii) \ \text{ker}(T) = (\text{img}(T^*))^{\perp}$;
- (iv) img(*T*) = (ker(*T*^{*}))[⊥].

Proof. (i) (⊆): Given $w \in \text{ker}(T^*)$, then $0 = T^*(w)$. Given $x \in \text{img}(T)$, then $x = T(v)$ for some $v \in V$. Then

$$
\langle x,w\rangle=\langle T(v),w\rangle=\langle v,T^*(w)\rangle=\langle v,0\rangle=0\,.
$$

Thus $w \in (\text{img}(T))^{\perp}$.

(⊇): Similar.

- (ii) Replace T by T^* in the previous part.
- (iii) Take the orthogonal complement of (i).
- (iv) Take the orthogonal complement of (ii).

Q: After having chosen bases, how does the matrix of T^* relate to the matrix of T ?

Definition 18. Let $A \in M_{m \times n}(\mathbb{F})$. The *conjugate transpose of A*, denoted A^* , is defined by

$$
(A^*)_{ij} = \overline{(A^t)_{ij}} = \overline{A_{ji}}.
$$

Proposition 19. Let $T \in \mathcal{L}(V, W)$, let $\mathcal{E} := (e_1, \ldots, e_n)$, and $\mathcal{F} := (f_1, \ldots, f_m)$ be orthonormal *bases for V and W, respectively. Then*

$$
\varepsilon[T^*]_{\mathcal{F}} = (\mathcal{F}[T]_{\mathcal{E}})^*.
$$

Proof. Recall that the k^{th} column of $_{\mathcal{F}}[T]_{\mathcal{E}}$ is $[T(e_k)]_{\mathcal{F}}.$ Since \mathcal{F} is orthonormal, we have $T(e_k) = \langle T(e_k), f_1 \rangle f_1 + \cdots \langle T(e_k), f_m \rangle f_m$

so

$$
[T(e_k)]_{\mathcal{F}} = \begin{pmatrix} \langle T(e_k), f_1 \rangle \\ \vdots \\ \langle T(e_k), f_1 \rangle \end{pmatrix}.
$$

Thus

$$
(\mathcal{F}[T]_{\mathcal{E}})_{jk} = \langle T(e_k), f_j \rangle.
$$

Similarly

$$
(\varepsilon[T^*]_{\mathcal{F}})_{jk} = \langle T^*(f_k), e_j \rangle = \langle f_k, T(e_j) \rangle = \overline{\langle T(e_j), f_k \rangle}.
$$

Thus

$$
({_{\mathcal{E}}}[T^*]_{\mathcal{F}})_{jk} = \overline{({_{\mathcal{F}}}[T]_{\mathcal{E}})_{kj}} = \overline{({_{\mathcal{F}}}[T]_{\mathcal{E}})_{jk}^t}.
$$

□

□

□

II.4.1. *Self-adjoint operators.*

Definition 20. An operator $T \in \mathcal{L}(V)$ is *self-adjoint* if $T = T^*$.

Lemma 21. If $\mathcal E$ is an orthonormal basis for V, then T is self-adjoint iff $[T^*]_{\mathcal E} = ([T]_{\mathcal E})^*$.

Example 22. Let $T \in \mathcal{L}(\mathbb{F}^2)$ be the linear operator such that

$$
[T]_{\mathcal{E}} = \begin{pmatrix} 2 & i \\ -i & 7 \end{pmatrix}.
$$

T is self-adjoint.

Remark 23. The adjoint of a linear operator is similar to the complex conjugate of a complex number.

Proposition 24. Let $T \in \mathcal{L}(V)$ be self-adjoint. Then every eigenvalue of T is real.

Proof. Suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T*, so $T(v) = \lambda v$ for some $0 \neq v \in V$. Then

$$
\langle T(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2
$$

$$
\langle T(v), v \rangle = \langle v, T(v) \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle = \overline{\lambda} ||v||^2.
$$

Since $v \neq 0$, then $||v||^2 \neq 0$, so $\overline{\lambda} = \lambda$. Thus $\lambda \in \mathbb{R}$.

Proposition 25. Suppose V is an inner product space over \mathbb{C} and $T \in \mathcal{L}(V)$. Then T is self*adjoint iff* $\langle T(v), v \rangle \in \mathbb{R}$ *for all* $v \in V$.

Proof. (\Rightarrow): Assume *T* is self-adjoint, so *T* = *T*^{*}. Given *v* \in *V*, then

$$
\langle T^*(v),v\rangle=\overline{\langle v,T^*(v)\rangle}=\overline{\langle T(v),v\rangle}.
$$

Then

$$
0=\langle 0(v),v\rangle=\langle (T-T^*)(v),v\rangle=\langle T(v),v\rangle-\langle T^*(v),v\rangle=\langle T(v),v\rangle-\overline{\langle T(v),v\rangle}.
$$

Thus $\langle T(v), v \rangle$ is real.

 (\Leftarrow) : Exercise. (Similar.)

Definition 26. An operator $T \in \mathcal{L}(V)$ is *normal* if *T* commutes with its adjoint, i.e.,

$$
TT^* = T^*T.
$$

Example 27. Let $T \in \mathcal{L}(F^2)$ whose matrix with respect to the standard basis is

$$
\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}.
$$

Then *T* is not self-adjoint (matrix is not symmetric), but is normal. [Compute *TT*[∗] and *T* [∗]*T*.]

