18.700 - LINEAR ALGEBRA, DAY 16 ORTHOGONAL COMPLEMENTS, MINIMIZATION ADJOINT, SELF-ADJOINT, AND NORMAL OPERATORS

SAM SCHIAVONE

Contents

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 6C: Orthogonal complements and minimization, cont.	2
II.3. Worksheet	4
II.4. 7A: Adjoint, Self-Adjoint, and Normal Operators	4

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn how to compute the orthogonal projection of a vector onto a subspace.
- (2) Students will learn properties of orthogonal complements.
- (3) Students will learn the definition of the adjoint of a linear operator.
- (4) Students will learn the definition of self-adjoint and normal operators.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

Announcements: • Midterm Exam 2: Wednesday, November 13th in class

- II.1. Last time.
 - Stated basic results in inner product spaces, e.g., triangle inequality, Cauchy-Schwarz, Pythagorean theorem, Parallelogram Identity.
 - Proved that the Gram-Schmidt procdure produces orthonormal bases.
 - Defined the orthogonal complement of a subset of an inner product space.

II.2. 6C: Orthogonal complements and minimization, cont.

Definition 1. Given a subset $S \subseteq V$, the *orthogonal complement of S* is

$$S^{\perp} := \{ v \in V : \langle u, v
angle = 0 \; orall u \in S \} = \{ v \in V : v \perp u \; orall u \in S \} \, .$$

Proposition 2. *If S is a subset of V, then* $S \cap S^{\perp} \subseteq \{0\}$ *.*

The above proposition hints at the following result.

Proposition 3. Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$
 .

Proof. Since U and U^{\perp} are subspaces, then $0 \in U$ and $0 \in U^{\perp}$, so $U \cap U^{\perp} = \{0\}$ by part (d) of the previous result. Thus $U + U^{\perp}$ is direct.

It remains to show that $V = U + U^{\perp}$. Certainly $V \supseteq U + U^{\perp}$, so it suffices to show that $V \subseteq U + U^{\perp}$. [Ask students.] Suppose $v \in V$. By a previous result, there exists an orthonormal basis e_1, \ldots, e_m of U. Let

$$u := \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m$$
$$w := v - u.$$

Then v = u + w and $u \in U$. <u>Goal</u>: $w \in U^{\perp}$. [Ask students how to show this.] For each $k \in \{1, ..., m\}$, we have

$$\langle w, e_k \rangle = \left\langle v - \sum_{i=1}^m \langle v, e_i \rangle e_i, e_k \right\rangle = \langle v, e_k \rangle - \sum_i \langle v, e_i \rangle \underbrace{\langle e_i, e_k \rangle}_{i = \langle v, e_k \rangle - \langle v, e_k \rangle}_{i = \langle v, e_k \rangle - \langle v, e_k \rangle}$$

Thus *w* is orthogonal to e_1, \ldots, e_m , so *w* is orthogonal to every vector in span $(e_1, \ldots, e_m) = U$. Thus $w \in U^{\perp}$.

Corollary 4. Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim(U^{\perp}) = \dim(V) - \dim(U).$$

Proposition 5. Suppose U is a finite-dimensional subspace of V. Then

$$(U^{\perp})^{\perp}_{2} = U$$

(0:00)

Proof. (\supseteq): Exercise.

(\subseteq): Suppose $v \in (U^{\perp})^{\perp}$. By a previous result, we can write v = u + w where $u \in U$ and $w \in U^{\perp}$. <u>Goal</u>: w = 0. From the first part, we have $u \in U \subseteq (U^{\perp})^{\perp}$, so

$$w = v - u \in (U^{\perp})^{\perp}.$$

But then $w \in U^{\perp} \cap (U^{\perp})^{\perp} = \{0\}$, so w = 0 and $v = u \in U$.

Corollary 6. With the same hypotheses as above,

$$U^{\perp} = \{0\} \iff U = V.$$

Proof. Exercise.

Definition 7 (Orthogonal projection). Suppose *U* is a finite-dimensional subspace of *V*. For each $v \in V$, we write write v = u + w where $u \in U$ and $w \in U^{\perp}$. The *orthogonal* projection of *v* onto *U* is $\text{proj}_{U}(v) := u$. This defines a linear map $\text{proj}_{U} \in \mathcal{L}(V)$.

Since $V = U \oplus U^{\perp}$, then the expression v = u + w above is unique, so the map proj_{U} is well-defined.

Proposition 8. Suppose U is a finite-dimensional subpsace of V. Then

(i) $\operatorname{proj}_{U} \in \mathcal{L}(V)$; (*ii*) $\operatorname{proj}_{U}|_{U} = I_{U}$, *i.e.*, $\operatorname{proj}_{U}(u) = u$ for all $u \in U$; (iii) $\operatorname{proj}_{U}|_{U^{\perp}} = 0$, i.e., $\operatorname{proj}_{U}(w) = 0$ for all $w \in U^{\perp}$; (iv) [Ask students] $\operatorname{img}(\operatorname{proj}_{U}) = U;$ (v) [Ask students] ker(proj₁₁) = U^{\perp} ; (vi) $v - \operatorname{proj}_{U}(v) \in U^{\perp}$ for all $v \in V$; (*vii*) $\operatorname{proj}_{II}^2 = \operatorname{proj}_{II}$; (viii) $\|\operatorname{proj}_{U}(v)\| \leq \|v\|$ for all $v \in V$; (ix) if e_1, \ldots, e_m is an orthonormal basis of U, then

 $\operatorname{proj}_{U}(v) = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$

Proof. Exercise.

Remark 9. Property (ix) gives us a formula to compute an orthogonal projection, given an orthonormal basis for the subspace.

Proposition 10 (Minimizing distance to a subspace). Suppose U is a finite-dimensional sub*psace of* V *and* $v \in V$ *. Then*

$$\|v - \operatorname{proj}_{U}(v)\| \le \|v - u\|$$

for all $u \in U$, with equality iff $u = \text{proj}_{U}(v)$.

Proof. Given $u \in U$, then $\operatorname{proj}_{U}(v) - u \in U$. By orthogonal decomposition, $v - \operatorname{proj}_{U}(v) \in U$ U^{\perp} . Since

$$v - u = (v - \operatorname{proj}_{U}(v)) + (\operatorname{proj}_{U}(v) - u)$$

and these last two are orthogonal, then

$$\|v-u\|^{2} = \|v-\operatorname{proj}_{U}(v)\|^{2} + \underbrace{\|\operatorname{proj}_{U}(v)-u\|^{2}}_{3} \ge \|v-\operatorname{proj}_{U}(v)\|^{2}.$$

 \square

 \square

 \square

Taking square roots yields the result.

In calculus, you were sometimes faced with the following problem. Suppose *L* is a line through the origin in \mathbb{R}^2 and *P* is a point not lying on the line *L*. What is the distance from *P* to *L*, i.e., what is the point on *L* closest to *P*? [Draw picture.]

The answer uses the ideas of orthogonal projection and orthogonal decomposition. Let u be the vector from the origin to P, and let v be a vector in the direction of L. [Continue picture.] Then L = span(v) and $\frac{1}{\|v\|}v$ is an orthonormal basis for L. By the proposition, then

$$\operatorname{proj}_{L}(u) = \left\langle u, \frac{1}{\|v\|}v \right\rangle \frac{1}{\|v\|}v = \frac{1}{\|v\|^{2}} \langle u, v \rangle v$$

is the point on *L* that is closest to *P*.

II.3. Worksheet.

II.4. **7A: Adjoint, Self-Adjoint, and Normal Operators.** For today, let *V* and *W* be nonzero finite-dimensional inner product spaces over **F**.

A brief addendum to section 6B:

Definition 11. Let *V* be an \mathbb{F} -vector space.

- A *linear functional* on *V* is a linear map $\varphi : V \to \mathbb{F}$.
- The *dual space of* V, denoted V^{\vee} or V^* or V', is

$$V^{\vee} := \mathcal{L}(V, \mathbb{F})$$

In other words, the vector space of all linear functionals on *V*.

Theorem 12 (Riesz Representation Theorem). Suppose *V* is a finite-dimensional inner product space, and $\varphi \in \mathcal{L}(V, \mathbb{F})$. Then there is a unique vector $v \in V$ such that

$$\varphi(u) = \langle u, v \rangle$$

for all $u \in V$.

Proof. Existence: Let e_1, \ldots, e_n be an orthonormal basis for *V*. Let

$$v := \varphi(e_1)e_1 + \cdots + \varphi(e_n)e_n.$$

Given $u \in V$, then

$$\langle u, v \rangle = \left\langle u, \overline{\varphi(e_1)}e_1 + \dots + \overline{\varphi(e_n)}e_n \right\rangle = \left\langle u, \overline{\varphi(e_1)}e_1 \right\rangle + \dots + \left\langle u, \overline{\varphi(e_n)}e_n \right\rangle$$

= $\varphi(e_1)\langle u, e_1 \rangle + \dots + \varphi(e_n)\langle u, e_n \rangle = \varphi(\langle u, e_1 \rangle e_1 + \dots + \langle u, e_n \rangle e_n) = \varphi(u).$

[Ask students if *v* depends on *u*.]

Uniqueness: Suppose $v_1, v_2 \in V$ both satisfy

$$\langle u, v_1 \rangle = \varphi(u) = \langle u, v_2 \rangle$$

for all $u \in V$. Then

$$\langle u, v_1 - v_2 \rangle = \langle u, v_1 \rangle - \langle u, v_2 \rangle = 0$$

for all $u \in V$, so $v_1 - v_2 = 0$ by a previous result. Thus $v_1 = v_2$.

Proposition 13. *Given* $T \in \mathcal{L}(V, W)$ *, then there exists a unique linear map* $T^* \in \mathcal{L}(W, V)$ *such that*

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle \tag{(*)}$$

for all $v \in V$ and all $w \in W$.

Definition 14. The linear map T^* above is called the *adjoint of* T. That is, it is the unique map satisfying (*).

Proof of proposition. Fix $w \in W$ and consider the linear functional

$$\varphi: V \to \mathbb{F}$$
$$v \mapsto \langle T(v), w \rangle$$

By the Riesz Representation Theorem, there exists a unique $u \in V$ such that

$$\langle T(v), w \rangle = \varphi(v) = \langle v, u \rangle$$

for all $v \in V$. Define $T^*(w) := u$; then

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle$$

for all $v \in V$.

It remains to show that $T^* : W \to V$ is linear: exercise.

Remark 15. In the above equation, the LHS is the inner product on *W*, while the righthand side is the inner product on *V*.

Proposition 16. Suppose $T \in \mathcal{L}(V, W)$.

- (*i*) $(S + T)^* = S^* + T^*$ for all $S \in \mathcal{L}(V, W)$.
- (*ii*) $(\lambda T)^* = \overline{\lambda} T^*$ for all $\lambda \in \mathbb{F}$.
- (*iii*) $(T^*)^* = T$.
- (iv) Let U be a finite-dimensional inner product space. Then $(ST)^* = T^*S^*$ for all $S \in \mathcal{L}(W, U)$.

(v)
$$I^* = I$$
.

(vi) If T is invertible, then T^* is also invertible, and $(T^*)^{-1} = (T^{-1})^*$.

Proof. Suppose $v \in v$, $w \in W$, and $\lambda \in \mathbb{F}$.

(i) By definition,

$$\langle (S+T)(v), w \rangle = \langle v, (S+T)^*(w) \rangle$$

Now

$$\langle (S+T)(v), w \rangle = \langle S(v), w \rangle + \langle T(v), w \rangle = \langle v, S^*(w) \rangle + \langle v, T^*(w) \rangle$$

= $\langle v, S^*(w) + T^*(w) \rangle = \langle v, (S^* + T^*)(w) \rangle.$

(ii) Similar.

(iii)

$$\langle T^*(w), v \rangle = \overline{\langle v, T^*(w) \rangle} = \overline{\langle T(v), w \rangle} = \langle w, T(v) \rangle$$

(iv) Given $S \in \mathcal{L}(W, U)$ and $u \in U$, then

$$\langle (ST)(v), u \rangle = \langle S(T(v)), u \rangle = \langle T(v), S^*(u) \rangle = \langle v, T^*(S^*(u)) \rangle.$$

(v) Exercise.

(vi) Apply * to the equations $T^{-1}T = I$ and $TT^{-1} = I$ and then apply the two previous parts.

Proposition 17. Suppose $T \in \mathcal{L}(V, W)$. Then

- (*i*) $\ker(T^*) = (\operatorname{img}(T))^{\perp};$
- (*ii*) $\operatorname{img}(T^*) = \operatorname{ker}(T)^{\perp}$;
- (*iii*) ker(*T*) = (img(*T*^{*}))^{\perp};
- (*iv*) $img(T) = (ker(T^*))^{\perp}$.
- *Proof.* (i) (\subseteq): Given $w \in \text{ker}(T^*)$, then $0 = T^*(w)$. Given $x \in \text{img}(T)$, then x = T(v) for some $v \in V$. Then

$$\langle x,w\rangle = \langle T(v),w\rangle = \langle v,T^*(w)\rangle = \langle v,0\rangle = 0$$

Thus $w \in (\operatorname{img}(T))^{\perp}$.

 (\supseteq) : Similar.

- (ii) Replace *T* by T^* in the previous part.
- (iii) Take the orthogonal complement of (i).
- (iv) Take the orthogonal complement of (ii).

<u>Q</u>: After having chosen bases, how does the matrix of T^* relate to the matrix of T?

Definition 18. Let $A \in M_{m \times n}(\mathbb{F})$. The *conjugate transpose of* A, denoted A^* , is defined by

$$(A^*)_{ij} = \overline{(A^t)_{ij}} = \overline{A_{ji}}$$

Proposition 19. Let $T \in \mathcal{L}(V, W)$, let $\mathcal{E} := (e_1, \ldots, e_n)$, and $\mathcal{F} := (f_1, \ldots, f_m)$ be orthonormal bases for V and W, respectively. Then

$$\mathcal{E}[T^*]_{\mathcal{F}} = (\mathcal{F}[T]_{\mathcal{E}})^*$$

Proof. Recall that the k^{th} column of $_{\mathcal{F}}[T]_{\mathcal{E}}$ is $[T(e_k)]_{\mathcal{F}}$. Since \mathcal{F} is orthonormal, we have $T(e_k) = \langle T(e_k), f_1 \rangle f_1 + \cdots \langle T(e_k), f_m \rangle f_m$,

so

$$[T(e_k)]_{\mathcal{F}} = \begin{pmatrix} \langle T(e_k), f_1 \rangle \\ \vdots \\ \langle T(e_k), f_1 \rangle \end{pmatrix} .$$

Thus

$$(_{\mathcal{F}}[T]_{\mathcal{E}})_{jk} = \langle T(e_k), f_j \rangle.$$

Similarly

$$(\mathcal{E}[T^*]_{\mathcal{F}})_{jk} = \langle T^*(f_k), e_j \rangle = \langle f_k, T(e_j) \rangle = \overline{\langle T(e_j), f_k \rangle}.$$

Thus

$$(\mathcal{E}[T^*]_{\mathcal{F}})_{jk} = \overline{(\mathcal{F}[T]_{\mathcal{E}})_{kj}} = \overline{(\mathcal{F}[T]_{\mathcal{E}})_{jk}^t}.$$

II.4.1. Self-adjoint operators.

Definition 20. An operator $T \in \mathcal{L}(V)$ is *self-adjoint* if $T = T^*$.

Lemma 21. If \mathcal{E} is an orthonormal basis for V, then T is self-adjoint iff $[T^*]_{\mathcal{E}} = ([T]_{\mathcal{E}})^*$.

Example 22. Let $T \in \mathcal{L}(\mathbb{F}^2)$ be the linear operator such that

$$[T]_{\mathcal{E}} = \begin{pmatrix} 2 & i \\ -i & 7 \end{pmatrix}$$

T is self-adjoint.

Remark 23. The adjoint of a linear operator is similar to the complex conjugate of a complex number.

Proposition 24. Let $T \in \mathcal{L}(V)$ be self-adjoint. Then every eigenvalue of T is real.

Proof. Suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T*, so $T(v) = \lambda v$ for some $0 \neq v \in V$. Then

Since $v \neq 0$, then $||v||^2 \neq 0$, so $\overline{\lambda} = \lambda$. Thus $\lambda \in \mathbb{R}$.

Proposition 25. Suppose V is an inner product space over \mathbb{C} and $T \in \mathcal{L}(V)$. Then T is selfadjoint iff $\langle T(v), v \rangle \in \mathbb{R}$ for all $v \in V$.

Proof. (\Rightarrow): Assume *T* is self-adjoint, so *T* = *T*^{*}. Given *v* \in *V*, then

$$\langle T^*(v),v\rangle = \overline{\langle v,T^*(v)\rangle} = \overline{\langle T(v),v\rangle}.$$

Then

$$0 = \langle 0(v), v \rangle = \langle (T - T^*)(v), v \rangle = \langle T(v), v \rangle - \langle T^*(v), v \rangle = \langle T(v), v \rangle - \overline{\langle T(v), v \rangle}.$$

Thus $\langle T(v), v \rangle$ is real.

 (\Leftarrow) : Exercise. (Similar.)

Definition 26. An operator $T \in \mathcal{L}(V)$ is *normal* if *T* commutes with its adjoint, i.e.,

$$TT^* = T^*T$$
.

Example 27. Let $T \in \mathcal{L}(F^2)$ whose matrix with respect to the standard basis is

$$\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix} \, \cdot \,$$

Then *T* is not self-adjoint (matrix is not symmetric), but is normal. [Compute TT^* and T^*T .]