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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn how to compute the orthogonal projection of a vector onto a
subspace.

(2) Students will learn properties of orthogonal complements.
(3) Students will learn the definition of the adjoint of a linear operator.
(4) Students will learn the definition of self-adjoint and normal operators.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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II. LESSON PLAN(0:00)
Announcements: • Midterm Exam 2: Wednesday, November 13th in class

II.1. Last time.
• Stated basic results in inner product spaces, e.g., triangle inequality, Cauchy-Schwarz,

Pythagorean theorem, Parallelogram Identity.
• Proved that the Gram-Schmidt procdure produces orthonormal bases.
• Defined the orthogonal complement of a subset of an inner product space.

II.2. 6C: Orthogonal complements and minimization, cont.

Definition 1. Given a subset S ⊆ V, the orthogonal complement of S is

S⊥ := {v ∈ V : ⟨u, v⟩ = 0 ∀u ∈ S} = {v ∈ V : v ⊥ u ∀u ∈ S} .

Proposition 2. If S is a subset of V, then S ∩ S⊥ ⊆ {0}.

The above proposition hints at the following result.

Proposition 3. Suppose U is a finite-dimensional subspace of V. Then

V = U ⊕ U⊥ .

Proof. Since U and U⊥ are subspaces, then 0 ∈ U and 0 ∈ U⊥, so U ∩ U⊥ = {0} by part
(d) of the previous result. Thus U + U⊥ is direct.

It remains to show that V = U + U⊥. Certainly V ⊇ U + U⊥, so it suffices to show
that V ⊆ U + U⊥. [Ask students.] Suppose v ∈ V. By a previous result, there exists an
orthonormal basis e1, . . . , em of U. Let

u := ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em

w := v − u.

Then v = u + w and u ∈ U. Goal: w ∈ U⊥. [Ask students how to show this.] For each
k ∈ {1, . . . , m}, we have

⟨w, ek⟩ =
〈

v −
m

∑
i=1

⟨v, ei⟩ei, ek

〉
= ⟨v, ek⟩ − ∑

i
⟨v, ei⟩

=0 for i ̸= k︷ ︸︸ ︷
⟨ei, ek⟩ = ⟨v, ek⟩ − ⟨v, ek⟩ .

Thus w is orthogonal to e1, . . . , em, so w is orthogonal to every vector in span(e1, . . . , em) =

U. Thus w ∈ U⊥. □

Corollary 4. Suppose V is finite-dimensional and U is a subspace of V. Then

dim(U⊥) = dim(V)− dim(U) .

Proposition 5. Suppose U is a finite-dimensional subspace of V. Then

(U⊥)⊥ = U .
2



Proof. (⊇): Exercise.
(⊆): Suppose v ∈ (U⊥)⊥. By a previous result, we can write v = u + w where u ∈ U

and w ∈ U⊥. Goal: w = 0. From the first part, we have u ∈ U ⊆ (U⊥)⊥, so

w = v − u ∈ (U⊥)⊥ .

But then w ∈ U⊥ ∩ (U⊥)⊥ = {0}, so w = 0 and v = u ∈ U. □

Corollary 6. With the same hypotheses as above,

U⊥ = {0} ⇐⇒ U = V .

Proof. Exercise. □

Definition 7 (Orthogonal projection). Suppose U is a finite-dimensional subspace of V.
For each v ∈ V, we write write v = u + w where u ∈ U and w ∈ U⊥. The orthogonal
projection of v onto U is projU(v) := u. This defines a linear map projU ∈ L(V).

Since V = U ⊕ U⊥, then the expression v = u + w above is unique, so the map projU is
well-defined.

Proposition 8. Suppose U is a finite-dimensional subpsace of V. Then
(i) projU ∈ L(V);

(ii) projU |U = IU, i.e., projU(u) = u for all u ∈ U;
(iii) projU |U⊥ = 0, i.e., projU(w) = 0 for all w ∈ U⊥;
(iv) [Ask students] img(projU) = U;
(v) [Ask students] ker(projU) = U⊥;

(vi) v − projU(v) ∈ U⊥ for all v ∈ V;
(vii) proj2U = projU;

(viii) ∥projU(v)∥ ≤ ∥v∥ for all v ∈ V;
(ix) if e1, . . . , em is an orthonormal basis of U, then

projU(v) = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em .

Proof. Exercise. □

Remark 9. Property (ix) gives us a formula to compute an orthogonal projection, given
an orthonormal basis for the subspace.

Proposition 10 (Minimizing distance to a subspace). Suppose U is a finite-dimensional sub-
psace of V and v ∈ V. Then

∥v − projU(v)∥ ≤ ∥v − u∥
for all u ∈ U, with equality iff u = projU(v).

Proof. Given u ∈ U, then projU(v)− u ∈ U. By orthogonal decomposition, v−projU(v) ∈
U⊥. Since

v − u = (v − projU(v)) + (projU(v)− u)
and these last two are orthogonal, then

∥v − u∥2 = ∥v − projU(v)∥
2 +

≥0︷ ︸︸ ︷
∥projU(v)− u∥2 ≥ ∥v − projU(v)∥

2 .
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Taking square roots yields the result. □

In calculus, you were sometimes faced with the following problem. Suppose L is a line
through the origin in R2 and P is a point not lying on the line L. What is the distance from
P to L, i.e., what is the point on L closest to P? [Draw picture.]

The answer uses the ideas of orthogonal projection and orthogonal decomposition. Let
u be the vector from the origin to P, and let v be a vector in the direction of L. [Continue

picture.] Then L = span(v) and
1

∥v∥v is an orthonormal basis for L. By the proposition,

then

projL(u) =
〈

u,
1

∥v∥v
〉

1
∥v∥v =

1
∥v∥2 ⟨u, v⟩v

is the point on L that is closest to P.

II.3. Worksheet.

II.4. 7A: Adjoint, Self-Adjoint, and Normal Operators. For today, let V and W be nonzero
finite-dimensional inner product spaces over F.

A brief addendum to section 6B:

Definition 11. Let V be an F-vector space.
• A linear functional on V is a linear map φ : V → F.
• The dual space of V, denoted V∨ or V∗ or V′, is

V∨ := L(V, F) .

In other words, the vector space of all linear functionals on V.

Theorem 12 (Riesz Representation Theorem). Suppose V is a finite-dimensional inner product
space, and φ ∈ L(V, F). Then there is a unique vector v ∈ V such that

φ(u) = ⟨u, v⟩
for all u ∈ V.

Proof. Existence: Let e1, . . . , en be an orthonormal basis for V. Let

v := φ(e1)e1 + · · ·+ φ(en)en .

Given u ∈ V, then

⟨u, v⟩ =
〈

u, φ(e1)e1 + · · ·+ φ(en)en

〉
=

〈
u, φ(e1)e1

〉
+ · · ·+

〈
u, φ(en)en

〉
= φ(e1)⟨u, e1⟩+ · · ·+ φ(en)⟨u, en⟩ = φ(⟨u, e1⟩e1 + · · ·+ ⟨u, en⟩en) = φ(u) .

[Ask students if v depends on u.]
Uniqueness: Suppose v1, v2 ∈ V both satisfy

⟨u, v1⟩ = φ(u) = ⟨u, v2⟩
for all u ∈ V. Then

⟨u, v1 − v2⟩ = ⟨u, v1⟩ − ⟨u, v2⟩ = 0

for all u ∈ V, so v1 − v2 = 0 by a previous result. Thus v1 = v2. □
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Proposition 13. Given T ∈ L(V, W), then there exists a unique linear map T∗ ∈ L(W, V) such
that

⟨T(v), w⟩ = ⟨v, T∗(w)⟩ (*)
for all v ∈ V and all w ∈ W.

Definition 14. The linear map T∗ above is called the adjoint of T. That is, it is the unique
map satisfying (*).

Proof of proposition. Fix w ∈ W and consider the linear functional

φ : V → F

v 7→ ⟨T(v), w⟩ .

By the Riesz Representation Theorem, there exists a unique u ∈ V such that

⟨T(v), w⟩ = φ(v) = ⟨v, u⟩
for all v ∈ V. Define T∗(w) := u; then

⟨T(v), w⟩ = ⟨v, T∗(w)⟩
for all v ∈ V.

It remains to show that T∗ : W → V is linear: exercise. □

Remark 15. In the above equation, the LHS is the inner product on W, while the righthand
side is the inner product on V.

Proposition 16. Suppose T ∈ L(V, W).
(i) (S + T)∗ = S∗ + T∗ for all S ∈ L(V, W).

(ii) (λT)∗ = λT∗ for all λ ∈ F.
(iii) (T∗)∗ = T.
(iv) Let U be a finite-dimensional inner product space. Then (ST)∗ = T∗S∗ for all S ∈

L(W, U).
(v) I∗ = I.

(vi) If T is invertible, then T∗ is also invertible, and (T∗)−1 = (T−1)∗.

Proof. Suppose v ∈ v, w ∈ W, and λ ∈ F.
(i) By definition,

⟨(S + T)(v), w⟩ = ⟨v, (S + T)∗(w)⟩ .
Now

⟨(S + T)(v), w⟩ = ⟨S(v), w⟩+ ⟨T(v), w⟩ = ⟨v, S∗(w)⟩+ ⟨v, T∗(w)⟩
= ⟨v, S∗(w) + T∗(w)⟩ = ⟨v, (S∗ + T∗)(w)⟩ .

(ii) Similar.
(iii)

⟨T∗(w), v⟩ = ⟨v, T∗(w)⟩ = ⟨T(v), w⟩ = ⟨w, T(v)⟩ .

(iv) Given S ∈ L(W, U) and u ∈ U, then

⟨(ST)(v), u⟩ = ⟨S(T(v)), u⟩ = ⟨T(v), S∗(u)⟩ = ⟨v, T∗(S∗(u))⟩ .

(v) Exercise.
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(vi) Apply ∗ to the equations T−1T = I and TT−1 = I and then apply the two previous
parts.

□

Proposition 17. Suppose T ∈ L(V, W). Then
(i) ker(T∗) = (img(T))⊥;

(ii) img(T∗) = ker(T)⊥;
(iii) ker(T) = (img(T∗))⊥;
(iv) img(T) = (ker(T∗))⊥.

Proof. (i) (⊆): Given w ∈ ker(T∗), then 0 = T∗(w). Given x ∈ img(T), then x = T(v)
for some v ∈ V. Then

⟨x, w⟩ = ⟨T(v), w⟩ = ⟨v, T∗(w)⟩ = ⟨v, 0⟩ = 0 .

Thus w ∈ (img(T))⊥.
(⊇): Similar.

(ii) Replace T by T∗ in the previous part.
(iii) Take the orthogonal complement of (i).
(iv) Take the orthogonal complement of (ii).

□

Q: After having chosen bases, how does the matrix of T∗ relate to the matrix of T?

Definition 18. Let A ∈ Mm×n(F). The conjugate transpose of A, denoted A∗, is defined by

(A∗)ij = (At)ij = Aji .

Proposition 19. Let T ∈ L(V, W), let E := (e1, . . . , en), and F := ( f1, . . . , fm) be orthonormal
bases for V and W, respectively. Then

E [T∗]F = (F [T]E )∗ .

Proof. Recall that the kth column of F [T]E is [T(ek)]F . Since F is orthonormal, we have

T(ek) = ⟨T(ek), f1⟩ f1 + · · · ⟨T(ek), fm⟩ fm ,

so

[T(ek)]F =

⟨T(ek), f1⟩
...

⟨T(ek), f1⟩

 .

Thus
(F [T]E )jk = ⟨T(ek), f j⟩ .

Similarly

(E [T∗]F )jk = ⟨T∗( fk), ej⟩ = ⟨ fk, T(ej)⟩ = ⟨T(ej), fk⟩ .

Thus

(E [T∗]F )jk = (F [T]E )kj = (F [T]E )t
jk .

□
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II.4.1. Self-adjoint operators.

Definition 20. An operator T ∈ L(V) is self-adjoint if T = T∗.

Lemma 21. If E is an orthonormal basis for V, then T is self-adjoint iff [T∗]E = ([T]E )∗.

Example 22. Let T ∈ L(F2) be the linear operator such that

[T]E =

(
2 i
−i 7

)
.

T is self-adjoint.

Remark 23. The adjoint of a linear operator is similar to the complex conjugate of a com-
plex number.

Proposition 24. Let T ∈ L(V) be self-adjoint. Then every eigenvalue of T is real.

Proof. Suppose λ ∈ F is an eigenvalue of T, so T(v) = λv for some 0 ̸= v ∈ V. Then

⟨T(v), v⟩ = ⟨λv, v⟩ = λ < v, v⟩ = λ∥v∥2

⟨T(v), v⟩ = ⟨v, T(v)⟩ = ⟨v, λv⟩ = λ⟨v, v⟩ = λ∥v∥2 .

Since v ̸= 0, then ∥v∥2 ̸= 0, so λ = λ. Thus λ ∈ R. □

Proposition 25. Suppose V is an inner product space over C and T ∈ L(V). Then T is self-
adjoint iff ⟨T(v), v⟩ ∈ R for all v ∈ V.

Proof. (⇒): Assume T is self-adjoint, so T = T∗. Given v ∈ V, then

⟨T∗(v), v⟩ = ⟨v, T∗(v)⟩ = ⟨T(v), v⟩ .

Then

0 = ⟨0(v), v⟩ = ⟨(T − T∗)(v), v⟩ = ⟨T(v), v⟩ − ⟨T∗(v), v⟩ = ⟨T(v), v⟩ − ⟨T(v), v⟩ .

Thus ⟨T(v), v⟩ is real.
(⇐): Exercise. (Similar.) □

Definition 26. An operator T ∈ L(V) is normal if T commutes with its adjoint, i.e.,

TT∗ = T∗T .

Example 27. Let T ∈ L(F2) whose matrix with respect to the standard basis is(
2 −3
3 2

)
.

Then T is not self-adjoint (matrix is not symmetric), but is normal. [Compute TT∗ and
T∗T.]
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