18.700 - LINEAR ALGEBRA, DAY 15 **ORTHONORMAL BASES AND GRAM-SCHMIDT ORTHOGONAL COMPLEMENTS, MINIMIZATION**

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 6A: Inner products and norms, cont.	2
II.3. Orthonormal bases and Gram-Schmidt	3
II.4. 6C Orthogonal complements and minimization	6
II.5. Worksheet	8

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn how to construct an orthonormal basis using Gram-Schmidt.
- (2) Students will learn how to compute the orthogonal projection of a vector onto a subspace.
- (3) Students will learn properties of orthogonal complements.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk

II. LESSON PLAN

- II.1. Last time.
 - Showed that a linear operator *T* is diagonalizable iff minpoly(*T*) splits into degree 1 factors and has no repeated roots.
 - Efficiently computed powers of a linear operator using diagonalization.
 - Reviewed properties of inner product and norm for \mathbb{R}^n and \mathbb{C}^n .
 - Gave definition of an abstract inner product space.

II.2. 6A: Inner products and norms, cont.

Definition 1. An *inner product* on *V* is a function

$$\begin{array}{l} \langle \cdot, \cdot \rangle : V \times V \to \mathbb{F} \\ (u, v) \mapsto \langle u, v \rangle \end{array}$$

with the following properties. For all $u, v, w \in V$ and $\lambda \in \mathbb{F}$, we have...

- (1) Positivity. $\langle v, v \rangle \geq 0$.
- (2) Definiteness. $\langle v, v \rangle = 0$ iff v = 0.
- (3) Additivity in first component. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- (4) Homogeneity in first component. $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$.
- (5) Conjugate symmetry. $\langle u, v \rangle = \langle v, u \rangle$.

Definition 2. An *inner product space* is a vector space equipped with an inner product.

For the rest of the lecture, let *V* and *W* be inner product spaces over \mathbb{F} .

Proposition 3. *Suppose* $u, v, w \in V$ *and* $\lambda \in \mathbb{F}$ *.*

- (i) $\langle 0, v \rangle = 0$ and $\langle v, 0 \rangle = 0$.
- (*ii*) The function $v \mapsto \langle \cdot, v \rangle$, *i.e.*,

$$V \to \mathbb{F}$$
$$x \mapsto \langle x, v \rangle$$

is linear.

(*iii*)
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
.
(*iv*) $\langle u, \lambda, v \rangle = \overline{\lambda} \langle u, v \rangle$.

Proof sketch. For part (iii):

$$\langle u, v + w \rangle = \overline{\langle v + w, u \rangle} = \overline{\langle v, u \rangle + \langle w, u \rangle} = \overline{\langle v, u \rangle} + \overline{\langle w, u \rangle} = \langle u, v \rangle + \langle u, w \rangle$$

The other parts: exercise.

Definition 4. Given $v \in V$, the *norm* of v is

$$\|v\| := \sqrt{\langle v, v \rangle}.$$

Proposition 5. *Given* $v \in V$ *and* $\lambda \in \mathbb{F}$ *,*

(*i*) ||v|| = 0 iff v = 0; and (*ii*) $||\lambda v|| = |\lambda|||v||$.

Proof. Exercise.

(0:00)

Definition 6. Vectors $v, w \in V$ are *orthogonal* if $\langle u, v \rangle = 0$. This is denoted $u \perp v$. **Remark 7.** Since $\langle u, v \rangle = 0$ iff $\langle v, u \rangle = 0$, the orthogonality relation is symmetric. **Lemma 8.** *Given* $u, v \in \mathbb{R}^2$, *then*

$$\langle u, v \rangle = \|u\| \|v\| \cos(\theta)$$

where θ is the angle between u and v.

Definition 9. Given $u, v \in V$, we define the *angle between u and v* to be

$$\angle(u,v) := \arccos\left(\frac{\langle u,v\rangle}{\|u\|\|v\|}\right)$$

Remark 10. You will show in an exercise that this definition makes sense.

Lemma 11.

- 0 is orthogonal to every $v \in V$.
- 0 is the only vector in V that is orthogonal to itself.

Proof. Exercise.

Theorem 12 (Pythagorean theorem). *If* $u, v \in V$ *are orthogonal, then*

$$||u||^2 + ||v||^2 = ||u+v||^2.$$

Proof. Exercise.

Proposition 13 (Cauchy-Schwarz inequality). *Given* $u, v \in V$, *then*

$$|\langle u,v\rangle|\leq \|u\|\|v\|.$$

Moreover, we have an equality in the above iff u and v are scalar multiples of each other.

Proof. Exercise.

Proposition 14 (Triangle Inequality). *Given* $u, v \in V$, *then*

 $||u+v|| \le ||u|| + ||v||.$

Proposition 15 (Parallelogram identity). *Given* $u, v \in V$, *then*

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

[Draw picture: u + v and u - v are diagonals of parallelogram.]

Proof. Exercise.

II.3. **Orthonormal bases and Gram-Schmidt.** Bases of orthogonal vectors, all having length 1, have some very convenient properties. We will see that any basis can be transformed into an orthonormal basis.

Definition 16. A list e_1, \ldots, e_m of vectors is *orthogonal* if $\langle e_i, e_j \rangle = 0$ for all $i \neq j$. It is *orthonormal* it is orthogonal and $||e_i|| = 1$ for all *i*.

In other words e_1, \ldots, e_n is orthonormal iff

$$\langle e_i, e_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

 \square

Example 17.

- The standard basis of \mathbb{F}^n is an orthonormal list.
- The list

$$\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(-1,1,0), \frac{1}{\sqrt{6}}(1,1,-2)$$

is orthonormal.

Proposition 18. *Every orthonormal list is linearly independent.*

Proof. Suppose $e_1, \ldots, e_m \in V$ is an orthonormal list. Suppose

$$a_1e_1+\cdots+a_me_m=0$$

for some $a_1, \ldots, a_m \in \mathbb{F}$. Then

$$0 = \langle 0, e_1 \rangle = \langle a_1 e_1 + \dots + a_m e_m, e_1 \rangle = a_1 \langle e_1, e_1 \rangle + \dots + a_m \langle e_m, e_1 \rangle \stackrel{0}{=} a_1$$

0. Similarly applying $\langle \cdot, e_i \rangle$, we find $a_i = 0$ for each *i*.

so $a_1 = 0$. Similarly applying $\langle \cdot, e_i \rangle$, we find $a_i = 0$ for each *i*.

Definition 19. An *orthonormal basis* of V is an orthonormal list in V that is also a basis of V.

In general, given a basis v_1, \ldots, v_n of V and a vector $u \in V$, it can be time-consuming to compute the scalars $a_1, \ldots, a_n \in \mathbb{F}$ realizing *u* as a linear combination of v_1, \ldots, v_n , i.e., such that

$$u=a_1v_1+\cdots+a_nv_n.$$

However, if this basis is orthonormal, it is easy to compute these a_i .

Proposition 20. Suppose e_1, \ldots, e_m is an orthonormal basis of *V* and $u, v \in V$. Then

(i) $v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$ (*ii*) $\langle u, v \rangle = \langle u, e_1 \rangle \overline{\langle v, e_1 \rangle} + \dots + \langle u, e_n \rangle \overline{\langle v, e_n \rangle}$

The following procedure describes how to transform a basis into an orthonormal basis.

Theorem 21 (Gram-Schmidt procedure). Suppose v_1, \ldots, v_n is a linearly independent list. Let $f_1 := v_1$, and for k = 2, ..., m, define f_k recursively by

$$f_k = v_k - \frac{\langle v_k, f_1 \rangle}{\|f_1\|^2} f_1 - \dots - \frac{\langle v_k, f_{k-1} \rangle}{\|f_{k-1}\|^2} f_{k-1}$$
(*)

For each k, let $e_k := \frac{f_k}{\|f_k\|}$. Then e_1, \ldots, e_m is an orthonormal list in V such that

 $\operatorname{span}(v_1,\ldots,v_k) = \operatorname{span}(e_1,\ldots,e_k)$

for all k = 1, ..., m.

Proof. By induction on k. <u>Base case</u>: k = 1. Then

$$||e_1|| = \left|\left|\frac{f_1}{||f_1||}\right|\right| = \frac{||f_1||}{||f_1||} = 1.$$

Since e_1 is a nonzero multiple of v_1 , then span $(e_1) = \text{span}(v_1)$.

Inductive step: Assume $k \ge 2$ and the result holds for k - 1, so the list e_1, \ldots, e_{k-1} defined by (*) is orthonormal and

$$\operatorname{span}(e_1,\ldots,e_{k-1})=\operatorname{span}(v_1,\ldots,v_{k-1}).$$

Since v_1, \ldots, v_k are linearly independent, then

 $v_k \notin \operatorname{span}(v_1,\ldots,v_{k-1}) = \operatorname{span}(f_1,\ldots,f_{k-1}) = \operatorname{span}(e_1,\ldots,e_{k-1})$

Thus $f_k \neq 0$, so $||f_k|| \neq 0$. Then

$$||e_k|| = \left\|\frac{f_k}{||f_k||}\right\| = \frac{||f_k||}{||f_k||} = 1.$$

Given $j \in \{1, ..., k - 1\}$, then

$$\langle e_k, e_j \rangle = \frac{1}{\|f_k\| \|f_j\|} \langle f_k, f_j \rangle$$

= $\frac{1}{\|f_k\| \|f_j\|} \left\langle v_k - \frac{\langle v_k, f_1 \rangle}{\|f_1\|^2} f_1 - \dots - \frac{\langle v_k, f_j \rangle}{\|f_j\|^2} f_j - \dots - \frac{\langle v_k, f_{k-1} \rangle}{\|f_{k-1}\|^2} f_{k-1}, f_j \right\rangle .$

Since f_1, \ldots, f_{k-1} are orthogonal, this becomes

$$\frac{1}{\|f_k\|\|f_j\|} \left(\langle v_k, f_j \rangle - \frac{\langle v_k, f_1 \rangle}{\|f_1\|^2} \langle f_1, f_j \rangle^{-1} \cdots - \frac{\langle v_k, f_j \rangle}{\|f_j\|^2} \langle f_j, f_j \rangle - \cdots - \frac{\langle v_k, f_{k-1} \rangle}{\|f_{k-1}\|^2} \langle f_{k-1}, f_j \rangle \right)$$
$$= \frac{1}{\|f_k\|\|f_j\|} \left(\langle v_k, f_j \rangle - \frac{\langle v_k, f_j \rangle}{\|f_j\|^2} \|f_j\|^2 \right) = \frac{1}{\|f_k\|\|f_j\|} \left(\langle v_k, f_j \rangle - \langle v_k, f_j \rangle \right) = 0.$$

By solving for v_k in (*), we see that

 $v_k \in \operatorname{span}(f_1,\ldots,f_k) = \operatorname{span}(e_1,\ldots,e_k)$

and combining this with the inductive hypothesis yields

$$\operatorname{span}(v_1,\ldots,v_k) \subseteq \operatorname{span}(e_1,\ldots,e_k).$$
 (†)

Both v_1, \ldots, v_k and e_1, \ldots, e_k are linearly independent—the v_i by hypothesis, and the e_i because they are orthonormal—so both subspaces have dimension k, hence we have equality in (†).

We can now add the adjective "orthonormal" to many results about bases of vector spaces.

Proposition 22. Every finite-dimensional inner product space V has an orthonormal basis.

Proof. By a previous result, *V* has a basis \mathcal{B} . Apply Gram-Schmidt to \mathcal{B} : this produces an orthonormal, hence linearly independent, list of dim(*V*) vectors. By another previous result, then this is a basis of *V*.

Proposition 23. Suppose that V is finite-dimensional. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V.

Proof sketch. Letting *L* be such a list, then by a previous result, we can extend *L* to a basis \mathcal{B} of *V*. Now apply Gram-Schmidt.

[Skip next two results if necessary.]

Proposition 24. Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then there exists an orthonormal basis \mathcal{E} of V such that $[T]_{\mathcal{E}}$ is upper triangular iff minpoly(T) splits into degree 1 factors.

Proof. Exercise.

 \square

Corollary 25. Suppose V is a finite-dimensional \mathbb{C} -inner product space and $T \in \mathcal{L}(V)$. Then there exists an orthonormal basis \mathcal{E} of V such that $[T]_{\mathcal{E}}$ is upper triangular.

II.4. 6C Orthogonal complements and minimization.

Definition 26. Given a subset $S \subseteq V$, the *orthogonal complement of S* is

$$S^{\perp} := \{ v \in V : \langle u, v \rangle = 0 \; \forall u \in S \} = \{ v \in V : v \perp u \; \forall u \in S \}.$$

I.e., the set of all vectors that are orthogonal to every vector in *S*.

Example 27.

• Let $V = \mathbb{R}^3$ and

$$S := \left\{ \begin{pmatrix} 2 \\ -3 \\ 7 \end{pmatrix} \right\} \,.$$

Then

$$S^{\perp} = \{(x, y, z) \in \mathbb{R}^3 : 2x - 3y + 7z = 0\}.$$

[Draw picture.]

• Let $V = \mathbb{R}^3$ and

$$S := \{(x, y, z) \in \mathbb{R}^3 : 2x - 3y + 7z = 0\}.$$

Then

$$S^{\perp} = \operatorname{span} \begin{pmatrix} 2 \\ -3 \\ 7 \end{pmatrix} = \left\{ \begin{pmatrix} 2 \\ -3 \\ 7 \end{pmatrix} t : t \in \mathbb{R} \right\}.$$

Proposition 28.

- (a) If S is a subset of V, then S^{\perp} is a subspace of V.
- (b) [Ask students.] $\{0\}^{\perp} = V$.
- (c) [Ask students.] $V^{\perp} = \{0\}$
- (d) If S is a subset of V, then $S \cap S^{\perp} = \{0\}$.
- (e) If S_1 and S_2 are subsets of V with $S_1 \subseteq S_2$, then $S_1^{\perp} \supseteq S_2^{\perp}$.

Proof. Exercise.

Part (d) of the above proposition hints at the following result.

Proposition 29. Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}_{6}$$

Proof. Since U and U^{\perp} are subspaces, then $0 \in U$ and $0 \in U^{\perp}$, so $U \cap U^{\perp} = \{0\}$ by part (d) of the previous result. Thus $U + U^{\perp}$ is direct.

It remains to show that $V = U + U^{\perp}$. Certainly $V \supseteq U + U^{\perp}$, so it suffices to show that $V \subseteq U + U^{\perp}$. [Ask students.] Suppose $v \in V$. By a previous result, there exists an orthonormal basis e_1, \ldots, e_m of U. Let

$$u := \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m$$
$$w := v - u.$$

Then v = u + w and $u \in U$. <u>Goal</u>: $w \in U^{\perp}$. [Ask students how to show this.] For each $k \in \{1, ..., m\}$, we have

$$\langle w, e_k \rangle = \left\langle v - \sum_{i=1}^m \langle v, e_i \rangle e_i, e_k \right\rangle = \langle v, e_k \rangle - \sum_i \langle v, e_i \rangle \xrightarrow{=0 \text{ for } i \neq k} \langle v, e_k \rangle - \langle v, e_k \rangle.$$

Thus *w* is orthogonal to e_1, \ldots, e_m , so *w* is orthogonal to every vector in span $(e_1, \ldots, e_m) = U$. Thus $w \in U^{\perp}$.

Corollary 30. Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim(U^{\perp}) = \dim(V) - \dim(U).$$

Proposition 31. Suppose U is a finite-dimensional subspace of V. Then

$$(U^{\perp})^{\perp} = U$$

Proof. (\supseteq): Exercise.

(\subseteq): Suppose $v \in (U^{\perp})^{\perp}$. By a previous result, we can write v = u + w where $u \in U$ and $w \in U^{\perp}$. Goal: w = 0. From the first part, we have $u \in U \subseteq (U^{\perp})^{\perp}$, so

$$w = v - u \in (U^{\perp})^{\perp}$$
.

But then $w \in U^{\perp} \cap (U^{\perp})^{\perp} = \{0\}$, so w = 0 and $v = u \in U$.

Corollary 32. With the same hypotheses as above,

$$U^{\perp} = \{0\} \iff U = V.$$

Proof. Exercise.

Definition 33 (Orthogonal projection). Suppose *U* is a finite-dimensional subspace of *V*. For each $v \in V$, we write write v = u + w where $u \in U$ and $w \in U^{\perp}$. The *orthogonal* projection of *v* onto *U* is $\text{proj}_{U}(v) := u$. This defines a linear map $\text{proj}_{U} \in \mathcal{L}(V)$.

Since $V = U \oplus U^{\perp}$, then the expression v = u + w above is unique, so the map proj_U is well-defined.

Proposition 34. Suppose U is a finite-dimensional subpsace of V. Then

- (i) $\operatorname{proj}_{U} \in \mathcal{L}(V)$;
- (*ii*) $\operatorname{proj}_{U}|_{U} = I_{U}$, *i.e.*, $\operatorname{proj}_{U}(u) = u$ for all $u \in U$;
- (iii) $\operatorname{proj}_{U}|_{U^{\perp}} = 0$, i.e., $\operatorname{proj}_{U}(w) = 0$ for all $w \in U^{\perp}$;
- (iv) [Ask students] img $(proj_{II}) = U;$

(v) [Ask students] ker(proj_U) = U^{\perp} ; (vi) $v - \text{proj}_{U}(v) \in U^{\perp}$ for all $v \in V$; (vii) $\text{proj}_{U}^{2} = \text{proj}_{U}$; (viii) $\| \text{proj}_{U}(v) \| \leq \|v\|$ for all $v \in V$; (ix) if e_{1}, \ldots, e_{m} is an orthonormal basis of U, then

$$\operatorname{proj}_{U}(v) = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Proof. Exercise.

Remark 35. Property (ix) gives us a formula to compute an orthogonal projection, given an orthonormal basis for the subspace.

Proposition 36 (Minimizing distance to a subspace). *Suppose U is a finite-dimensional subpsace of V and* $v \in V$. *Then*

$$\|v - \operatorname{proj}_{U}(v)\| \le \|v - u\|$$

for all $u \in U$, with equality iff $u = \text{proj}_{U}(v)$.

Proof. Given $u \in U$, then $\text{proj}_U(v) - u \in U$. By orthogonal decomposition, $v - \text{proj}_U(v) \in U^{\perp}$. Since

$$v - u = (v - \operatorname{proj}_{U}(v)) + (\operatorname{proj}_{U}(v) - u)$$

and these last two are orthogonal, then

$$\|v - u\|^{2} = \|v - \operatorname{proj}_{U}(v)\|^{2} + \underbrace{\|\operatorname{proj}_{U}(v) - u\|^{2}}_{||v - \operatorname{proj}_{U}(v)||^{2}} \ge \|v - \operatorname{proj}_{U}(v)\|^{2}.$$

Taking square roots yields the result.

In calculus, you were sometimes faced with the following problem. Suppose *L* is a line through the origin in \mathbb{R}^2 and *P* is a point not lying on the line *L*. What is the distance from *P* to *L*, i.e., what is the point on *L* closest to *P*? [Draw picture.]

The answer uses the ideas of orthogonal projection and orthogonal decomposition. Let u be the vector from the origin to P, and let v be a vector in the direction of L. [Continue picture.] Then L = span(v) and $\frac{1}{\|v\|}v$ is an orthonormal basis for L. By the proposition, then

$$\operatorname{proj}_{L}(u) = \left\langle u, \frac{1}{\|v\|}v \right\rangle \frac{1}{\|v\|}v = \frac{1}{\|v\|^{2}} \langle u, v \rangle v$$

is the point on *L* that is closest to *P*.

II.5. Worksheet.