18.700 - LINEAR ALGEBRA, DAY 15
ORTHONORMAL BASES AND GRAM-SCHMIDT
ORTHOGONAL COMPLEMENTS, MINIMIZATION

SAM SCHIAVONE
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I. PRE-CLASS PLANNING
1.1. Goals for lesson.

(1) Students will learn how to construct an orthonormal basis using Gram-Schmidt.

(2) Students will learn how to compute the orthogonal projection of a vector onto a
subspace.

(3) Students will learn properties of orthogonal complements.

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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(0:00)

II. LESSON PLAN

II.1. Last time.

e Showed that a linear operator T is diagonalizable iff minpoly(T) splits into degree
1 factors and has no repeated roots.

e Efficiently computed powers of a linear operator using diagonalization.

e Reviewed properties of inner product and norm for R" and C".

e Gave definition of an abstract inner product space.

I.2. 6A: Inner products and norms, cont.

Definition 1. An inner product on V is a function
(,):VxV —=F
(u,v) — (u,v)
with the following properties. For all u,v,w € V and A € F, we have...
(1) Positivity. (v,v) > 0.
(2) Definiteness. (v,v) = 0iff v = 0.
(3) Additivity in first component. (u + v, w) = (u, w) + (v, w).
(4) Homogeneity in first component. (Au,v) = A(u, v).
(5) Conjugate symmetry. (u,v) = (v, u).

Definition 2. An inner product space is a vector space equipped with an inner product.
For the rest of the lecture, let V and W be inner product spaces over FF.

Proposition 3. Suppose u,v,w € Vand A € F.
(i) (0,v) =0and (v,0) = 0.
(ii) The function v — (-,v), i.e.,
V—-TF
x — (x,0)

is linear.
(iii) (u,v+w) = (u,v) + (u, w).

(iv) (u,A,v) = A(u,v).
Proof sketch. For part (iii):

(u,v+w) =(v+w,u) = (v,u)+ (w,uy = (v,u) + (w,u) = (u,v) + (1, w)
The other parts: exercise. U]

Definition 4. Given v € V, the norm of v is

ol ==/ (o, ).

Proposition 5. Given v € Vand A € F,
(i) ||o|| = 0iffo = 0; and
(i) [[Av[| = [A[[o]]

Proof. Exercise. U



Definition 6. Vectors v, w € V are orthogonal if (1, v) = 0. This is denoted u L v.
Remark 7. Since (u,v) = 0iff (v, u) = 0, the orthogonality relation is symmetric.
Lemma 8. Given u,v € R?, then

(u,0) = |[ul[[[v]| cos(6)
where 0 is the angle between u and v.

Definition 9. Given u,v € V, we define the angle between u and v to be
Z(u,v) := arccos (M> .
[l

Remark 10. You will show in an exercise that this definition makes sense.

Lemma 11.

e 0 is orthogonal to everyv € V.
e 0 is the only vector in V that is orthogonal to itself.

Proof. Exercise. O
Theorem 12 (Pythagorean theorem). If u,v € V are orthogonal, then

]+ [ol? = fJu + 0]
Proof. Exercise. O
Proposition 13 (Cauchy-Schwarz inequality). Given u,v € V, then

[(w, 0)| < [[ullllo]l -
Moreover, we have an equality in the above iff u and v are scalar multiples of each other.
Proof. Exercise. U
Proposition 14 (Triangle Inequality). Given u,v € V, then
[+l < [ull + flof]
Proposition 15 (Parallelogram identity). Given u,v € V, then
e+ 0[1 + [l — o[> = 2(]|u]|* + [|o]*)

[Draw picture: u + v and u — v are diagonals of parallelogram.]

Proof. Exercise. O

I1.3. Orthonormal bases and Gram-Schmidt. Bases of orthogonal vectors, all having
length 1, have some very convenient properties. We will see that any basis can be trans-
formed into an orthonormal basis.

Definition 16. A list ey, ..., e, of vectors is orthogonal if <ei,e]~> = 0 foralli # j. Itis
orthonormal it is orthogonal and ||e;|| = 1 for all i.
In other words ey, . . ., e, is orthonormal iff

(ei ) = {1 Hi=

0 ifi].
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Example 17.

e The standard basis of F" is an orthonormal list.

e The list

L a1,1), L -1,1,0), 2 1,1,-2)

V3 V2 V6

is orthonormal.
Proposition 18. Every orthonormal list is linearly independent.
Proof. Supposeey, ..., e, € V is an orthonormal list. Suppose
ae1+ - +amen =0

for some aq,...,a, € F. Then

0
0=1(0,e1) = (mer+ -+ amem,e1) = a1{ey, e1) + - - - + amlemrer) = a3

so a; = 0. Similarly applying (-, e;), we find a; = 0 for each i. U

Definition 19. An orthonormal basis of V is an orthonormal list in V that is also a basis of
V.

In general, given a basis vy,...,v, of V and a vector u € V, it can be time-consuming
to compute the scalars ay, . ..,a, € F realizing u as a linear combination of vy, ..., vy, i.e,,
such that

U=a01+---+a,ouy.
However, if this basis is orthonormal, it is easy to compute these ;.
Proposition 20. Suppose ey, . .., ey, is an orthonormal basis of V and u,v € V. Then
(i) v= <’U,€1>€1 + -+ <U/5n>en
(ii) (u,v) = (u,e1)(v,e1) + -+ + (U, en) (v, )

The following procedure describes how to transform a basis into an orthonormal basis.
Theorem 21 (Gram-Schmidt procedure). Suppose v, ..., vy is a linearly independent list. Let
f1:=wvy,and fork =2,...,m, define fi recursively by

(or, f1) (0%, fr—1)
1217 e l1?
fr

For each k, let e := ———. Then eq, ..., ey, is an orthonormal list in V such that

I fell’

fr-1 (*)

span(vy, ..., v;) = span(ey, ..., ex)
forallk =1,...,m.

Proof. By induction on k. Base case: k = 1. Then

A | Z Al
LA 1AL

Since e; is a nonzero multiple of vy, then span(e;) = span(vy).
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Inductive step: Assume k > 2 and the result holds for k — 1, so the list ey, ..., e,
defined by () is orthonormal and

span(ey, ..., ex_1) = span(vy, ...,V 1).
Since vy, ..., vk are linearly independent, then

vk € span(vy,...,vk_1) =span(fi, ..., fr_1) = span(ey, ..., ex_1)
Thus fx # 0, so || fx|| # 0. Then

) A
el = || = g =
Givenje {1,...,k—1}, then
) = [ O
D S O % VPR 0.7/ S (O fet) ;.
B ka””f]” <Uk ||f1”2 h ||f]H7. J ka_1||2 fk—1'f]> :

Since f1, ..., fr—1 are orthogonal, this becomes

B S R o 1V e SN .7/ PSSR C 15 ST R
TITA] << wfi) = T e iz ) ”flezMa

_; v '_<Uk/f]'> 112 _ 1 o Vo ' _
~ TRITA (< ) g ”ffH) T (o) = @ fil) = 0

By solving for vy in (x), we see that

vk € span(fi, ..., fx) =span(ey, ..., e)
and combining this with the inductive hypothesis yields

span(vy,...,v¢) C span(ey, ..., ex) . (t)

Bothvy,...,vrand ey, ..., e are linearly independent—the v; by hypothesis, and the e; be-
cause they are orthonormal—so both subspaces have dimension k, hence we have equal-

ity in (f). O
We can now add the adjective “orthonormal” to many results about bases of vector
spaces.

Proposition 22. Every finite-dimensional inner product space V has an orthonormal basis.

Proof. By a previous result, V has a basis 5. Apply Gram-Schmidt to B: this produces
an orthonormal, hence linearly independent, list of dim(V') vectors. By another previous
result, then this is a basis of V. O

Proposition 23. Suppose that V is finite-dimensional. Then every orthonormal list of vectors in
V can be extended to an orthonormal basis of V.

Proof sketch. Letting L be such a list, then by a previous result, we can extend L to a basis

B of V. Now apply Gram-Schmidt. O
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[Skip next two results if necessary.]

Proposition 24. Suppose V is finite-dimensional and T € L(V'). Then there exists an orthonor-
mal basis € of V such that [T|¢ is upper triangular iff minpoly(T) splits into degree 1 factors.

Proof. Exercise. O

Corollary 25. Suppose V is a finite-dimensional C-inner product space and T € L(V'). Then
there exists an orthonormal basis £ of V such that [T|¢ is upper triangular.

I1.4. 6C Orthogonal complements and minimization.
Definition 26. Given a subset S C V, the orthogonal complement of S is
Sti={veV:(uv)y=0vuecS}={veV:vlLuVucSs}.

Le., the set of all vectors that are orthogonal to every vector in S.

-{)

St ={(xy,z) €eR®:2x — 3y +7z = 0}.

Example 27.
o Let V=R>and

Then

[Draw picture.]
e Let V =R?and

S:={(x,y,2z) €R®:2x =3y +7z=0}.
Then

Proposition 28.

(a) If S is a subset of V, then S* is a subspace of V.

(b) [Ask students.] {0} = V.

(c) [Ask students.] V+ = {0}

(d) If S is a subset of V, then SN S+ = {0}.

(e) If Sy and Sy are subsets of V with Sy C S, then S O S5

Proof. Exercise. U
Part (d) of the above proposition hints at the following result.
Proposition 29. Suppose U is a finite-dimensional subspace of V. Then

V=UoUut.
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Proof. Since U and U~ are subspaces, then 0 € U and 0 € U, so UNU* = {0} by part
(d) of the previous result. Thus U + U is direct.
It remains to show that V = U + U+ . Certainly V O U + UL, so0 it suffices to show

that V C U 4 U*. [Ask students.] Suppose v € V. By a previous result, there exists an
orthonormal basis ey, ..., e, of U. Let

= (v,er)er + -+ (0 em)em
W:i=70—1U
Thenv = u +wand u € U. Goal: w € U". [Ask students how to show this.] For each
ke{1,...,m}, wehave
. =0fori #k
—~ =~
(w, er) = <v - (o, ei)ei,ek> = (v,er) — Y (v,er) (eiex) = (v,e0) — (v,ep) .
i=1 i
Thus w is orthogonal to ey, . . ., e, SO w is orthogonal to every vector in span(ey, . .., ey)
U. Thus w € U~
Corollary 30. Suppose V is finite-dimensional and U is a subspace of V. Then
dim(Ut) = dim(V) — dim(U) .
Proposition 31. Suppose U is a finite-dimensional subspace of V. Then
(uhH)t=u.

Ol

Proof. (2): Exercise.
(€): Suppose v € (uh)*. By a previous result, we can write v = u 4+ w where u € U
and w € U™. Goal: w = 0. From the first part, we haveu € U C (UL)L, SO

w=v—uc (Uh)*.
But then w € U+ N (U)! = {0}, sow =0and v =u € U. O
Corollary 32. With the same hypotheses as above,
Ut ={0} < u=".
Proof. Exercise. U

Definition 33 (Orthogonal projection). Suppose U is a finite-dimensional subspace of V.

For each v € V, we write write v = u + w where u € U and w € U*. The orthogonal
projection of v onto U is proj;;(v) := u. This defines a linear map proj; € L(V).

Since V = U @ U™, then the expression v = u + w above is unique, so the map projy; is
well-defined.

Proposition 34. Suppose U is a finite-dimensional subpsace of V. Then
(i) proj,; € L(V);
(ii) proj; lu = Iu, i.e., proj(u) = u forall u € U;
(iii) proj; |yL = 0, i.e., proj,(w) = 0 forall w € U*;
(iv) [Ask students] img(proj,;) = U;
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(v) [Ask students] ker(proj;) = U™;
(vi) v — proj,(v) € U™ forallv € V;
(vii) projy; = proj;
(viii) || proj,;(v)|| < ||v|| forallv € V;
(ix) if ey, ..., ey is an orthonormal basis of U, then
proj (o) = (o,er)er + -+ (o, enen
Proof. Exercise. t

Remark 35. Property (ix) gives us a formula to compute an orthogonal projection, given
an orthonormal basis for the subspace.

Proposition 36 (Minimizing distance to a subspace). Suppose U is a finite-dimensional sub-
psace of V.and v € V. Then

lo = proj; (0)|| < [lo—ul
for all u € U, with equality iff u = proj,(v).
Proof. Given u € U, then proj;(v) — u € U. By orthogonal decomposition, v — proj;;(v) €
U+t. Since
v —u = (v—projy (v)) + (projy (v) —u)
and these last two are orthogonal, then

0y

I? 12

lo =]} = [lo — proj; () |* + || projy; (v) — ul* > [|o — proj, ()
Taking square roots yields the result. u

In calculus, you were sometimes faced with the following problem. Suppose L is a line

through the origin in R? and P is a point not lying on the line L. What is the distance from
P to L,i.e., what is the point on L closest to P? [Draw picture.]
The answer uses the ideas of orthogonal projection and orthogonal decomposition. Let

u be the vector from the origin to P, and let v be a vector in the direction of L. [Continue

1
picture.] Then L = span(v) and WU is an orthonormal basis for L. By the proposition,

then

roj, (u) = (u 10 L v = ! (u,v)v
PO T AT Tl Mol Tl
is the point on L that is closest to P.

11.5. Worksheet.
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