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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn how to construct an orthonormal basis using Gram-Schmidt.
(2) Students will learn how to compute the orthogonal projection of a vector onto a

subspace.
(3) Students will learn properties of orthogonal complements.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets (3) Chalk
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II. LESSON PLAN(0:00)
II.1. Last time.

• Showed that a linear operator T is diagonalizable iff minpoly(T) splits into degree
1 factors and has no repeated roots.

• Efficiently computed powers of a linear operator using diagonalization.
• Reviewed properties of inner product and norm for Rn and Cn.
• Gave definition of an abstract inner product space.

II.2. 6A: Inner products and norms, cont.

Definition 1. An inner product on V is a function

⟨·, ·⟩ : V × V → F

(u, v) 7→ ⟨u, v⟩
with the following properties. For all u, v, w ∈ V and λ ∈ F, we have. . .

(1) Positivity. ⟨v, v⟩ ≥ 0.
(2) Definiteness. ⟨v, v⟩ = 0 iff v = 0.
(3) Additivity in first component. ⟨u + v, w⟩ = ⟨u, w⟩+ ⟨v, w⟩.
(4) Homogeneity in first component. ⟨λu, v⟩ = λ⟨u, v⟩.
(5) Conjugate symmetry. ⟨u, v⟩ = ⟨v, u⟩.

Definition 2. An inner product space is a vector space equipped with an inner product.

For the rest of the lecture, let V and W be inner product spaces over F.

Proposition 3. Suppose u, v, w ∈ V and λ ∈ F.
(i) ⟨0, v⟩ = 0 and ⟨v, 0⟩ = 0.

(ii) The function v 7→ ⟨·, v⟩, i.e.,

V → F

x 7→ ⟨x, v⟩
is linear.

(iii) ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u, w⟩.
(iv) ⟨u, λ, v⟩ = λ⟨u, v⟩.

Proof sketch. For part (iii):

⟨u, v + w⟩ = ⟨v + w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = ⟨u, v⟩+ ⟨u, w⟩
The other parts: exercise. □

Definition 4. Given v ∈ V, the norm of v is

∥v∥ :=
√
⟨v, v⟩ .

Proposition 5. Given v ∈ V and λ ∈ F,
(i) ∥v∥ = 0 iff v = 0; and

(ii) ∥λv∥ = |λ|∥v∥.

Proof. Exercise. □
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Definition 6. Vectors v, w ∈ V are orthogonal if ⟨u, v⟩ = 0. This is denoted u ⊥ v.

Remark 7. Since ⟨u, v⟩ = 0 iff ⟨v, u⟩ = 0, the orthogonality relation is symmetric.

Lemma 8. Given u, v ∈ R2, then

⟨u, v⟩ = ∥u∥∥v∥ cos(θ)

where θ is the angle between u and v.

Definition 9. Given u, v ∈ V, we define the angle between u and v to be

∠(u, v) := arccos
(

⟨u, v⟩
∥u∥∥v∥

)
.

Remark 10. You will show in an exercise that this definition makes sense.

Lemma 11.
• 0 is orthogonal to every v ∈ V.
• 0 is the only vector in V that is orthogonal to itself.

Proof. Exercise. □

Theorem 12 (Pythagorean theorem). If u, v ∈ V are orthogonal, then

∥u∥2 + ∥v∥2 = ∥u + v∥2 .

Proof. Exercise. □

Proposition 13 (Cauchy-Schwarz inequality). Given u, v ∈ V, then

|⟨u, v⟩| ≤ ∥u∥∥v∥ .

Moreover, we have an equality in the above iff u and v are scalar multiples of each other.

Proof. Exercise. □

Proposition 14 (Triangle Inequality). Given u, v ∈ V, then

∥u + v∥ ≤ ∥u∥+ ∥v∥ .

Proposition 15 (Parallelogram identity). Given u, v ∈ V, then

∥u + v∥2 + ∥u − v∥2 = 2(∥u∥2 + ∥v∥2)

[Draw picture: u + v and u − v are diagonals of parallelogram.]

Proof. Exercise. □

II.3. Orthonormal bases and Gram-Schmidt. Bases of orthogonal vectors, all having
length 1, have some very convenient properties. We will see that any basis can be trans-
formed into an orthonormal basis.

Definition 16. A list e1, . . . , em of vectors is orthogonal if ⟨ei, ej⟩ = 0 for all i ̸= j. It is
orthonormal it is orthogonal and ∥ei∥ = 1 for all i.

In other words e1, . . . , en is orthonormal iff

⟨ei, ej⟩ =
{

1 if i = j,
0 if i ̸= j.
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Example 17.
• The standard basis of Fn is an orthonormal list.
• The list

1√
3
(1, 1, 1),

1√
2
(−1, 1, 0),

1√
6
(1, 1,−2)

is orthonormal.

Proposition 18. Every orthonormal list is linearly independent.

Proof. Suppose e1, . . . , em ∈ V is an orthonormal list. Suppose

a1e1 + · · ·+ amem = 0

for some a1, . . . , am ∈ F. Then

0 = ⟨0, e1⟩ = ⟨a1e1 + · · ·+ amem, e1⟩ = a1⟨e1, e1⟩+ · · ·+ am�����:0⟨em, e1⟩ = a1

so a1 = 0. Similarly applying ⟨·, ei⟩, we find ai = 0 for each i. □

Definition 19. An orthonormal basis of V is an orthonormal list in V that is also a basis of
V.

In general, given a basis v1, . . . , vn of V and a vector u ∈ V, it can be time-consuming
to compute the scalars a1, . . . , an ∈ F realizing u as a linear combination of v1, . . . , vn, i.e.,
such that

u = a1v1 + · · ·+ anvn .
However, if this basis is orthonormal, it is easy to compute these ai.

Proposition 20. Suppose e1, . . . , em is an orthonormal basis of V and u, v ∈ V. Then
(i) v = ⟨v, e1⟩e1 + · · ·+ ⟨v, en⟩en

(ii) ⟨u, v⟩ = ⟨u, e1⟩⟨v, e1⟩+ · · ·+ ⟨u, en⟩⟨v, en⟩

The following procedure describes how to transform a basis into an orthonormal basis.

Theorem 21 (Gram-Schmidt procedure). Suppose v1, . . . , vn is a linearly independent list. Let
f1 := v1, and for k = 2, . . . , m, define fk recursively by

fk = vk −
⟨vk, f1⟩
∥ f1∥2 f1 − · · · − ⟨vk, fk−1⟩

∥ fk−1∥2 fk−1 (∗)

For each k, let ek :=
fk

∥ fk∥
. Then e1, . . . , em is an orthonormal list in V such that

span(v1, . . . , vk) = span(e1, . . . , ek)

for all k = 1, . . . , m.

Proof. By induction on k. Base case: k = 1. Then

∥e1∥ =

∥∥∥∥ f1

∥ f1∥

∥∥∥∥ =
∥ f1∥
∥ f1∥

= 1 .

Since e1 is a nonzero multiple of v1, then span(e1) = span(v1).
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Inductive step: Assume k ≥ 2 and the result holds for k − 1, so the list e1, . . . , ek−1
defined by (∗) is orthonormal and

span(e1, . . . , ek−1) = span(v1, . . . , vk−1) .

Since v1, . . . , vk are linearly independent, then

vk /∈ span(v1, . . . , vk−1) = span( f1, . . . , fk−1) = span(e1, . . . , ek−1)

Thus fk ̸= 0, so ∥ fk∥ ̸= 0. Then

∥ek∥ =

∥∥∥∥ fk
∥ fk∥

∥∥∥∥ =
∥ fk∥
∥ fk∥

= 1 .

Given j ∈ {1, . . . , k − 1}, then

⟨ek, ej⟩ =
1

∥ fk∥∥ f j∥
⟨ fk, f j⟩

=
1

∥ fk∥∥ f j∥

〈
vk −

⟨vk, f1⟩
∥ f1∥2 f1 − · · · −

⟨vk, f j⟩
∥ f j∥2 f j − · · · − ⟨vk, fk−1⟩

∥ fk−1∥2 fk−1, f j

〉
.

Since f1, . . . , fk−1 are orthogonal, this becomes

1
∥ fk∥∥ f j∥

(
⟨vk, f j⟩ −

⟨vk, f1⟩
∥ f1∥2 ��

��*0
⟨ f1, f j⟩ − · · · −

⟨vk, f j⟩
∥ f j∥2 ⟨ f j, f j⟩ − · · · − ⟨vk, fk−1⟩

∥ fk−1∥2 �����:0⟨ fk−1, f j⟩
)

=
1

∥ fk∥∥ f j∥

(
⟨vk, f j⟩ −

⟨vk, f j⟩
∥ f j∥2 ∥ f j∥2

)
=

1
∥ fk∥∥ f j∥

(
⟨vk, f j⟩ − ⟨vk, f j⟩

)
= 0 .

By solving for vk in (∗), we see that

vk ∈ span( f1, . . . , fk) = span(e1, . . . , ek)

and combining this with the inductive hypothesis yields

span(v1, . . . , vk) ⊆ span(e1, . . . , ek) . (†)

Both v1, . . . , vk and e1, . . . , ek are linearly independent—the vi by hypothesis, and the ei be-
cause they are orthonormal—so both subspaces have dimension k, hence we have equal-
ity in (†). □

We can now add the adjective “orthonormal” to many results about bases of vector
spaces.

Proposition 22. Every finite-dimensional inner product space V has an orthonormal basis.

Proof. By a previous result, V has a basis B. Apply Gram-Schmidt to B: this produces
an orthonormal, hence linearly independent, list of dim(V) vectors. By another previous
result, then this is a basis of V. □

Proposition 23. Suppose that V is finite-dimensional. Then every orthonormal list of vectors in
V can be extended to an orthonormal basis of V.

Proof sketch. Letting L be such a list, then by a previous result, we can extend L to a basis
B of V. Now apply Gram-Schmidt. □
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[Skip next two results if necessary.]

Proposition 24. Suppose V is finite-dimensional and T ∈ L(V). Then there exists an orthonor-
mal basis E of V such that [T]E is upper triangular iff minpoly(T) splits into degree 1 factors.

Proof. Exercise. □

Corollary 25. Suppose V is a finite-dimensional C-inner product space and T ∈ L(V). Then
there exists an orthonormal basis E of V such that [T]E is upper triangular.

II.4. 6C Orthogonal complements and minimization.

Definition 26. Given a subset S ⊆ V, the orthogonal complement of S is

S⊥ := {v ∈ V : ⟨u, v⟩ = 0 ∀u ∈ S} = {v ∈ V : v ⊥ u ∀u ∈ S} .

I.e., the set of all vectors that are orthogonal to every vector in S.

Example 27.

• Let V = R3 and

S :=


 2
−3

7

 .

Then
S⊥ = {(x, y, z) ∈ R3 : 2x − 3y + 7z = 0} .

[Draw picture.]
• Let V = R3 and

S := {(x, y, z) ∈ R3 : 2x − 3y + 7z = 0} .

Then

S⊥ = span

 2
−3

7

 =


 2
−3

7

 t : t ∈ R

 .

Proposition 28.

(a) If S is a subset of V, then S⊥ is a subspace of V.
(b) [Ask students.] {0}⊥ = V.
(c) [Ask students.] V⊥ = {0}
(d) If S is a subset of V, then S ∩ S⊥ = {0}.
(e) If S1 and S2 are subsets of V with S1 ⊆ S2, then S⊥

1 ⊇ S⊥
2 .

Proof. Exercise. □

Part (d) of the above proposition hints at the following result.

Proposition 29. Suppose U is a finite-dimensional subspace of V. Then

V = U ⊕ U⊥ .
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Proof. Since U and U⊥ are subspaces, then 0 ∈ U and 0 ∈ U⊥, so U ∩ U⊥ = {0} by part
(d) of the previous result. Thus U + U⊥ is direct.

It remains to show that V = U + U⊥. Certainly V ⊇ U + U⊥, so it suffices to show
that V ⊆ U + U⊥. [Ask students.] Suppose v ∈ V. By a previous result, there exists an
orthonormal basis e1, . . . , em of U. Let

u := ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em

w := v − u.

Then v = u + w and u ∈ U. Goal: w ∈ U⊥. [Ask students how to show this.] For each
k ∈ {1, . . . , m}, we have

⟨w, ek⟩ =
〈

v −
m

∑
i=1

⟨v, ei⟩ei, ek

〉
= ⟨v, ek⟩ − ∑

i
⟨v, ei⟩

=0 for i ̸= k︷ ︸︸ ︷
⟨ei, ek⟩ = ⟨v, ek⟩ − ⟨v, ek⟩ .

Thus w is orthogonal to e1, . . . , em, so w is orthogonal to every vector in span(e1, . . . , em) =

U. Thus w ∈ U⊥. □

Corollary 30. Suppose V is finite-dimensional and U is a subspace of V. Then

dim(U⊥) = dim(V)− dim(U) .

Proposition 31. Suppose U is a finite-dimensional subspace of V. Then

(U⊥)⊥ = U .

Proof. (⊇): Exercise.
(⊆): Suppose v ∈ (U⊥)⊥. By a previous result, we can write v = u + w where u ∈ U

and w ∈ U⊥. Goal: w = 0. From the first part, we have u ∈ U ⊆ (U⊥)⊥, so

w = v − u ∈ (U⊥)⊥ .

But then w ∈ U⊥ ∩ (U⊥)⊥ = {0}, so w = 0 and v = u ∈ U. □

Corollary 32. With the same hypotheses as above,

U⊥ = {0} ⇐⇒ U = V .

Proof. Exercise. □

Definition 33 (Orthogonal projection). Suppose U is a finite-dimensional subspace of V.
For each v ∈ V, we write write v = u + w where u ∈ U and w ∈ U⊥. The orthogonal
projection of v onto U is projU(v) := u. This defines a linear map projU ∈ L(V).

Since V = U ⊕ U⊥, then the expression v = u + w above is unique, so the map projU is
well-defined.

Proposition 34. Suppose U is a finite-dimensional subpsace of V. Then
(i) projU ∈ L(V);

(ii) projU |U = IU, i.e., projU(u) = u for all u ∈ U;
(iii) projU |U⊥ = 0, i.e., projU(w) = 0 for all w ∈ U⊥;
(iv) [Ask students] img(projU) = U;

7



(v) [Ask students] ker(projU) = U⊥;
(vi) v − projU(v) ∈ U⊥ for all v ∈ V;

(vii) proj2U = projU;
(viii) ∥projU(v)∥ ≤ ∥v∥ for all v ∈ V;

(ix) if e1, . . . , em is an orthonormal basis of U, then

projU(v) = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em .

Proof. Exercise. □

Remark 35. Property (ix) gives us a formula to compute an orthogonal projection, given
an orthonormal basis for the subspace.

Proposition 36 (Minimizing distance to a subspace). Suppose U is a finite-dimensional sub-
psace of V and v ∈ V. Then

∥v − projU(v)∥ ≤ ∥v − u∥
for all u ∈ U, with equality iff u = projU(v).

Proof. Given u ∈ U, then projU(v)− u ∈ U. By orthogonal decomposition, v−projU(v) ∈
U⊥. Since

v − u = (v − projU(v)) + (projU(v)− u)
and these last two are orthogonal, then

∥v − u∥2 = ∥v − projU(v)∥
2 +

≥0︷ ︸︸ ︷
∥projU(v)− u∥2 ≥ ∥v − projU(v)∥

2 .

Taking square roots yields the result. □

In calculus, you were sometimes faced with the following problem. Suppose L is a line
through the origin in R2 and P is a point not lying on the line L. What is the distance from
P to L, i.e., what is the point on L closest to P? [Draw picture.]

The answer uses the ideas of orthogonal projection and orthogonal decomposition. Let
u be the vector from the origin to P, and let v be a vector in the direction of L. [Continue

picture.] Then L = span(v) and
1

∥v∥v is an orthonormal basis for L. By the proposition,

then

projL(u) =
〈

u,
1

∥v∥v
〉

1
∥v∥v =

1
∥v∥2 ⟨u, v⟩v

is the point on L that is closest to P.

II.5. Worksheet.
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