18.700 - LINEAR ALGEBRA, DAY 13

UPPER TRIANGULAR MATRICES, DIAGONALIZATION

SAM SCHIAVONE
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[. PRE-CLASS PLANNING

1.1. Goals for lesson.

(1) Students will learn the definition of eigenspace.
(2) Students will learn criteria for diagonalizability.
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(3) Students will learn that a linear operator is diagonalizable iff its minimal polyno-

mial splits and has no repeated roots.

(4) Students will compute powers of a linear operator using diagonalization.

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
1



(0:00)

II. LESSON PLAN

II.1. Last time.

e Proved that the roots of the minimal polynomial are exactly the eigenvalues.

e Saw how to compute the eigenvalues and eigenvectors of a linear operator by
upper triangularizing.

e Proved that the eigenvalues of an upper triangular matrix are the diagonal entries.

II1.2. 5C Upper triangular matrices, cont.

Remark 1. Let T € £(V). Last time we talked about choosing a basis so that [T| 3 is upper
triangular. This is NOT the same as the “upper triangulation” step in row reduction. Row
reducing the matrix [T] is equivalent to multiplying P[T] by some invertible matrix P.
This doesn’t change the kernel of T, but it does change the outputs of T

Proposition 2. Suppose V is finite-dimensional and T € L(V). Then V has a basis B with
respect to which [T is upper triangular iff minpoly (T') splits into degree 1 factors, i.e.,

minpoly(T)(z) = (z— A1) -+ (z — Am)
forsome Aq,...,Am € F.

Proof sketch. (=-): Suppose T has an upper triangular matrix with respect to some basis of
V. Denote the diagonal entries of this matrix by a4, ..., a,. Letting

9(2) = (z—m) - (2 — ),
then ¢(T) by a previous result. Then minpoly(T) divides g, so minpoly also splits into
degree 1 factors.

(«<): Suppose minpoly(T)(z) = (z— A1) -+ - (z— Ap) forsome Aq,..., Ay € E Ifm =1,
done. Otherwise, let U = img(T — A, I). Then U is T-invariant, so we can consider the
restriction T|;. Apply the inductive hypothesis, extend the basis, and prove that this
results in an upper triangular matrix. 4

Corollary 3. Let V be a finite dimensional C-vector space and T € L(V'). Then there exists a
basis B of V such that [T|g is upper triangular.

Proof. By the Fundamental Theorem of Algebra, nonconstant polynomial over C splits
into degree 1 factors, so this is true of minpoly(T) in particular. U

I1.3. Diagonalizable Operators. Say we have linear operators S, T € £L(V) and we want
to compute their composition ST with respect to some choice of basis. In general, matrix
multiplication is an expensive operation: naively, it requires 1> operations, where n =
dim(V). But if we can cleverly choose a basis of V that makes it so many of the entries of
[S] and [T] are 0, then this will make this computation faster.

Definition 4. A diagonal matrix is a square matrix all of whose off-diagonal entries are 0.
That is, A is diagonal if A;; = 0 when i # j.

Example 5 (Give example, one where 0 is one of the diagonal entries.).

Proposition 6. Let V be a finite-dimensional vector space and T € L(V'). If there exists a basis
B of V such that [T)g is diagonal, then the eigenvalues of T are precisely the diagonal entries of

[T]5-
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Proof. Diagonal matrices are upper triangular, so follows from a previous result. U

Definition 7. An operator T € L(V) is diagonalizable if there exists a basis B of V such that
[T]p is diagonal. Similarly, we say that a square matrix A is diagonalizable if the linear
map L, : F" — F" is diagonalizable.

Remark 8. Diagonalizable # diagonal!
Example 9. Define
T:F* —F
v +— Av

~14 9
A—<—3o 19>'

Then A is not diagonal. However, with respect to the basis B

SINC)
[T = (g (1)> :

Remark 10. Note that if v is an eigenvector of T, then so is cv for all 0 # ¢ € F:
T(cv) = cT(v) = cAv = A(cv).

Definition 11. Let T € L£(V) and A € . The eigenspace of T corresponding to A is the
subspace

where

we have

Thus T (and A) is diagonalizable.

E(A):=E,T):=ker(T—AI) ={veV:T(v) =Av}.
So E(A, T) is the set of all eigenvectors of T corresponding to A, along with the 0 vector.

Remark 12. A is an eigenvalue of T iff E(A, T) # {0}.

Theorem 13 (Sum of eigenspaces is direct). Let T € L(V) and suppose A1, . .., Ay, are distinct
eigenvaues of T. Then

E(AM,T)®--- ®E(Ay,T)
is a direct sum. Moreover, if V is finite-dimensional, then

dim(E(Ay, T)) + - - - + dim(E(Ap, T)) < dim(V).

Proof. Suppose v1 + - - - + vy, = Owhere vy € E(Ag) forallk = 1,. .., m. Since eigenvectors
corresponding to distinct eigenvalues are linearly independent, then vy = 0 for all k.
(Otherwise, this would be a nontrivial linear relation.) Thus the sum is direct.

If V is finite-dimensional, then

dim(E(A1, T)) + - - - + dim(E(Ay, T)) = dim(E(A1) & - - - @ E(Ay)) < dim(V).
O

Q: How can we tell when a linear operator is diagonalizable?
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Theorem 14 (Criteria for diagonalizability). Let V be finite-dimensional and T € L(V'). Let
A1, ..., Aw be the distinct eigenvalues of T. TFAE.

(i) T is diagonalizable.
(ii) 'V has a basis consisting of eigenvectors of T.
(iii)) V.= E(A, T) @ -+ ® E(A, T).
(iv) dim (V) = dim(E(A1, T)) + - - - + dim(E(Ay, T)).
Proof. (a) <= (b): T has a diagonal matrix

M 0

with respect to a basis vy, ..., v, iff T(vg) = Ay for each k.

(b) = (c): Assume V has a basis of eigenvectors of T. Then every v € V can be
written as a linear combination of eigenvectors, so

V=EA,T)+---+EM\uT),

and we know the sum is direct from the previous result.
(¢) = (d): Dimension of direct sum is sum of dimensions of the summands.
(d) = (b): Assume

dim(V) = dim(E(Aq, T)) + - - - + dim(E(A, T)) .
Choose a basis for each E(Ag, T), and concatenate these to form a list vy, ...,v,. Claim:

These vectors are linearly independent. (Exercise.) Since this list has length dim(V'), then
it also spans, hence is a basis. U

Remark 15.

e Every linear operator on a finite-dimensional C-vector space has an eigenvalue.

e Every linear operator on a finite-dimensional C-vector space can be upper trian-
gularized.

e Not every linear operator on a finite-dimensional C-vector space can be diagonal-
ized.

Example 16. Define

where

Note that A is upper triangular, but not diagonal. [Compute A%, A%.] Thus T° = 0, s0 0is
the only possible eigenvalue of T. Since E(0, T) = ker(T), we see that

E(0,T) = {(a,0,0) € F*:a € F},

which is 1-dimensional. Thus (d) fails, so T is not diagonalizable.
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Proposition 17. Let V be finite-dimensional and suppose T € L(V') has dim (V) distinct eigen-
values. Then T is diagonalizable.

Proof. Letn := dim (V') and suppose T has distinct eigenvalues A4, ..., A,. Thendim(E(A;)) >
1 for each i, so

dim(E(A1)) + - - +dim(E(Ay)) > 14 - +1=n=dim(V).
The reverse inequality is always true so we have equality, hence T is diagonalizable. [

Remark 18. The converse is NOT true. For instance, the identity operator has 1 as a
repeated eigenvalue, but is clearly diagonalizable. Indeed, its matrix is diagonal with
respect to any basis.

Theorem 19. Suppose V is finite-dimensional and T € L(V). Then T is diagonalizable iff
minpoly(T) splits into degree 1 factors and has no repeated roots, i.e., there exist distinct Ay, ..., Ay, €
IF such that minpoly(T) = (z — A1) -+ - (2 — Am).

Proof. (=): Assume T is diagonalizable. Then there is a basis of V consisting of eigenvec-
tors of T. Let Ay, ..., A;; be the distinct eigenvalues of T. Then for each j, there exists A
such that (T — A¢I)v; = 0. Thus

(T—MI)- (T = Aul)v; = 0

for each j, so minpoly(T) = (z — A1) - - - (z — Am).

(«<): Assume the minpoly(T) = (z—Aq) - - - (z — Ay) where Ay, ..., Ay, € F are distinct.
By strong induction on m.

Base case: m = 1. Then T — A1l = 0,so T = A1, which is diagonalizable.

Inductive step: Assume m > 2 and the result holds for all k < m. By a previous
result, U := img(T — Ay I) is T-invariant, so we can restrict T to this subspace. Given
u € img(T — AyI), then [ask students] u = (T — Ay I)(v) for some v € V. Then

(T=MI) (T =Ap—aDu = (T =MI) -+ (T = Ayt (T = AuI)(0) =0,  (3)

so this polynomial kills T|;. Thus (z — Aq) -+ (z — Ay—1) is a polynomial multiple of
minpoly(T|y). By the inductive hypothesis, then img(T — A,,I) has a basis consisting of
eigenvectors of T|;, and hence of T.

Claim: img(T — Ay, I) + ker(T — Ay l) is direct. Given u € img(T — Ay I) Nker(T —
AmI), then (T — ApI)(u) =0 <= T(u) = Apu. Since u € img(T — Ay, 1), then

0= (T - )\1[) cee (T - Am_ll)u = (/\m - )\1) cee (Am — /\m_l)u

by (). Since the A; are distinct, this implies that u = 0. Thus img(T — A, I) Nker(T —
Aml) = {0}.

Since the sum is direct, then
dim(img(T — Ay l) @ ker(T — Ay l)) = dim(img(T — Ay l)) + dim(ker(T — Ay, 1)) = dim(V)

by Rank-Nullity. Thus V = img(T — Ay I) @ ker(T — Ay I).

We already saw that img(T — A,,I) has a basis of eigenvectors of T. Since ker(T —
AmlI) is exatly the A,,-eigenspace of T, taking a basis of ker(T — A,,I) and concatenating
it with the basis of img(T — A,,I) yields a basis of V of eigenvectors of T. Thus T is

diagonalizable. g
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Corollary 20. Suppose T € L(V) is diagonalizable and U is a T-invariant subspace of V. Then
T|u is diagonalizable.

Proof. Since T is diagonalizable, then minpoly(T) splits and has no repeated roots. By a
previous results, minpoly(T) is a polynomial multiple of minpoly(T|;), so minpoly(T|;)
also splits and has no repeated roots. O

11.3.1. Worksheet.

I1.3.2. Gershgorin disc theorem.

Definition 21. Suppose T € L£(V) and B := (vy,...,v,) is abasis of V. Let A = [T]z. A
Gershgorin disc of T with respect to B is a set of the form

n
zeF: ‘Z — A]’]| < Z |A],k’
k=1
k#j
where j € {1,...,n}.
Remark 22.
e T has n Gershgorin discs, one foreachj =1,...,n.
e For F = R, the j™ disc is a closed interval centered at Aj j, with radius the sum of
the absolute values of all the entries in the j row.
e For F = R, the j" disc is a closed disc centered at Aj ;. [Draw picture.]

Theorem 23 (Gershgorin Disc Theorem). With notation as above, each eigenvalue of T is con-
tained in some Gershgorin disc of T with respect to B.

Proof. Suppose A € F is an eigenvalue of T with corresponding eigenvector w. Then we
can uniquely write

W =001+ +Cnln
for some ¢y, ...,cy € F. Let A = [T]5. Applying T to both sides, then

Acog+ -+ Aoy =Aw=T(w) =T <i ckvk> = i cx T (vg) . (24)
k=1 k=1
Now
Ak
[T(vi)]s = [Tlslodls = Aex = | |,
An,k
SO

n
T(vx) = Ago1+ -+ Aypon = ) Ajxv; .
j=1

Substituting this into (24), we have
n n n n n
Z CkT(’Uk) = Z Cr Z A]',kvj = Z Z A]',ka ’0]' .
k=1 =1 =1 i=1 \k=1
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Equating the coefficients of v; from the above and , then
n
Aj =) Ajkck (1)
k=1

forallj=1,...,n. Nowletm € {1,...,n} be such that

lem| = max{|c1], ..., |cnl}-

Taking j = m in (t) and subtracting A, ;¢ from both sides, we have [start in middle]

n
(/\ - Am,m)cm = Acy — mmCm = (Z A kck> mmCm = Z Am,kck .

m
Then
A — Apm| = ZAmk_ < Z | Am i Cck < Z | A k]
k#m k#m " lf#m
by the triangle inequality. Thus A is in the m™ Gershgorin disc. U
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