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I. PRE-CLASS PLANNING

I.1. Goals for lesson.

(1) Students will learn the definition of eigenspace.
(2) Students will learn criteria for diagonalizability.
(3) Students will learn that a linear operator is diagonalizable iff its minimal polyno-

mial splits and has no repeated roots.
(4) Students will compute powers of a linear operator using diagonalization.

I.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN(0:00)
II.1. Last time.

• Proved that the roots of the minimal polynomial are exactly the eigenvalues.
• Saw how to compute the eigenvalues and eigenvectors of a linear operator by

upper triangularizing.
• Proved that the eigenvalues of an upper triangular matrix are the diagonal entries.

II.2. 5C Upper triangular matrices, cont.

Remark 1. Let T ∈ L(V). Last time we talked about choosing a basis so that [T]B is upper
triangular. This is NOT the same as the “upper triangulation” step in row reduction. Row
reducing the matrix [T] is equivalent to multiplying P[T] by some invertible matrix P.
This doesn’t change the kernel of T, but it does change the outputs of T!

Proposition 2. Suppose V is finite-dimensional and T ∈ L(V). Then V has a basis B with
respect to which [T]B is upper triangular iff minpoly(T) splits into degree 1 factors, i.e.,

minpoly(T)(z) = (z − λ1) · · · (z − λm)

for some λ1, . . . , λm ∈ F.

Proof sketch. (⇒): Suppose T has an upper triangular matrix with respect to some basis of
V. Denote the diagonal entries of this matrix by α1, . . . , αn. Letting

q(z) = (z − α1) · · · (z − αn) ,

then q(T) by a previous result. Then minpoly(T) divides q, so minpoly also splits into
degree 1 factors.

(⇐): Suppose minpoly(T)(z) = (z−λ1) · · · (z−λm) for some λ1, . . . , λm ∈ F. If m = 1,
done. Otherwise, let U = img(T − λm I). Then U is T-invariant, so we can consider the
restriction T|U. Apply the inductive hypothesis, extend the basis, and prove that this
results in an upper triangular matrix. □

Corollary 3. Let V be a finite dimensional C-vector space and T ∈ L(V). Then there exists a
basis B of V such that [T]B is upper triangular.

Proof. By the Fundamental Theorem of Algebra, nonconstant polynomial over C splits
into degree 1 factors, so this is true of minpoly(T) in particular. □

II.3. Diagonalizable Operators. Say we have linear operators S, T ∈ L(V) and we want
to compute their composition ST with respect to some choice of basis. In general, matrix
multiplication is an expensive operation: naively, it requires n3 operations, where n =
dim(V). But if we can cleverly choose a basis of V that makes it so many of the entries of
[S] and [T] are 0, then this will make this computation faster.

Definition 4. A diagonal matrix is a square matrix all of whose off-diagonal entries are 0.
That is, A is diagonal if Aij = 0 when i ̸= j.

Example 5 (Give example, one where 0 is one of the diagonal entries.).

Proposition 6. Let V be a finite-dimensional vector space and T ∈ L(V). If there exists a basis
B of V such that [T]B is diagonal, then the eigenvalues of T are precisely the diagonal entries of
[T]B.
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Proof. Diagonal matrices are upper triangular, so follows from a previous result. □

Definition 7. An operator T ∈ L(V) is diagonalizable if there exists a basis B of V such that
[T]B is diagonal. Similarly, we say that a square matrix A is diagonalizable if the linear
map LA : Fn → Fn is diagonalizable.

Remark 8. Diagonalizable ̸= diagonal!

Example 9. Define

T : F2 → F2

v 7→ Av

where

A =

(
−14 9
−30 19

)
.

Then A is not diagonal. However, with respect to the basis B

v1 =

(
1
2

)
, v2 =

(
3
5

)
,

we have

[T]B =

(
4 0
0 1

)
.

Thus T (and A) is diagonalizable.

Remark 10. Note that if v is an eigenvector of T, then so is cv for all 0 ̸= c ∈ F:

T(cv) = cT(v) = cλv = λ(cv) .

Definition 11. Let T ∈ L(V) and λ ∈ F. The eigenspace of T corresponding to λ is the
subspace

E(λ) := E(λ, T) := ker(T − λI) = {v ∈ V : T(v) = λv} .
So E(λ, T) is the set of all eigenvectors of T corresponding to λ, along with the 0 vector.

Remark 12. λ is an eigenvalue of T iff E(λ, T) ̸= {0}.

Theorem 13 (Sum of eigenspaces is direct). Let T ∈ L(V) and suppose λ1, . . . , λm are distinct
eigenvaues of T. Then

E(λ1, T)⊕ · · · ⊕ E(λm, T)
is a direct sum. Moreover, if V is finite-dimensional, then

dim(E(λ1, T)) + · · ·+ dim(E(λm, T)) ≤ dim(V) .

Proof. Suppose v1 + · · ·+ vm = 0 where vk ∈ E(λk) for all k = 1, . . . , m. Since eigenvectors
corresponding to distinct eigenvalues are linearly independent, then vk = 0 for all k.
(Otherwise, this would be a nontrivial linear relation.) Thus the sum is direct.

If V is finite-dimensional, then

dim(E(λ1, T)) + · · ·+ dim(E(λm, T)) = dim(E(λ1)⊕ · · · ⊕ E(λm)) ≤ dim(V) .

□

Q: How can we tell when a linear operator is diagonalizable?
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Theorem 14 (Criteria for diagonalizability). Let V be finite-dimensional and T ∈ L(V). Let
λ1, . . . , λm be the distinct eigenvalues of T. TFAE.

(i) T is diagonalizable.
(ii) V has a basis consisting of eigenvectors of T.

(iii) V = E(λ1, T)⊕ · · · ⊕ E(λm, T).
(iv) dim(V) = dim(E(λ1, T)) + · · ·+ dim(E(λm, T)).

Proof. (a) ⇐⇒ (b): T has a diagonal matrixλ1 0
. . .

0 λn


with respect to a basis v1, . . . , vn iff T(vk) = λk for each k.

(b) =⇒ (c): Assume V has a basis of eigenvectors of T. Then every v ∈ V can be
written as a linear combination of eigenvectors, so

V = E(λ1, T) + · · ·+ E(λm, T) ,

and we know the sum is direct from the previous result.
(c) =⇒ (d): Dimension of direct sum is sum of dimensions of the summands.
(d) =⇒ (b): Assume

dim(V) = dim(E(λ1, T)) + · · ·+ dim(E(λm, T)) .

Choose a basis for each E(λk, T), and concatenate these to form a list v1, . . . , vn. Claim:
These vectors are linearly independent. (Exercise.) Since this list has length dim(V), then
it also spans, hence is a basis. □

Remark 15.
• Every linear operator on a finite-dimensional C-vector space has an eigenvalue.
• Every linear operator on a finite-dimensional C-vector space can be upper trian-

gularized.
• Not every linear operator on a finite-dimensional C-vector space can be diagonal-

ized.

Example 16. Define

T : F3 → F3

v 7→ Av

where

A =

0 1 0
0 0 1
0 0 0

 .

Note that A is upper triangular, but not diagonal. [Compute A2, A3.] Thus T3 = 0, so 0 is
the only possible eigenvalue of T. Since E(0, T) = ker(T), we see that

E(0, T) = {(a, 0, 0) ∈ F3 : a ∈ F} ,

which is 1-dimensional. Thus (d) fails, so T is not diagonalizable.
4



Proposition 17. Let V be finite-dimensional and suppose T ∈ L(V) has dim(V) distinct eigen-
values. Then T is diagonalizable.

Proof. Let n := dim(V) and suppose T has distinct eigenvalues λ1, . . . , λn. Then dim(E(λi)) ≥
1 for each i, so

dim(E(λ1)) + · · ·+ dim(E(λn)) ≥ 1 + · · ·+ 1 = n = dim(V) .

The reverse inequality is always true so we have equality, hence T is diagonalizable. □

Remark 18. The converse is NOT true. For instance, the identity operator has 1 as a
repeated eigenvalue, but is clearly diagonalizable. Indeed, its matrix is diagonal with
respect to any basis.

Theorem 19. Suppose V is finite-dimensional and T ∈ L(V). Then T is diagonalizable iff
minpoly(T) splits into degree 1 factors and has no repeated roots, i.e., there exist distinct λ1, . . . , λm ∈
F such that minpoly(T) = (z − λ1) · · · (z − λm).

Proof. (⇒): Assume T is diagonalizable. Then there is a basis of V consisting of eigenvec-
tors of T. Let λ1, . . . , λm be the distinct eigenvalues of T. Then for each j, there exists λk
such that (T − λk I)vj = 0. Thus

(T − λ1 I) · · · (T − λm I)vj = 0

for each j, so minpoly(T) = (z − λ1) · · · (z − λm).
(⇐): Assume the minpoly(T) = (z−λ1) · · · (z−λm) where λ1, . . . , λm ∈ F are distinct.

By strong induction on m.
Base case: m = 1. Then T − λ1 I = 0, so T = λ1 I, which is diagonalizable.
Inductive step: Assume m ≥ 2 and the result holds for all k < m. By a previous

result, U := img(T − λm I) is T-invariant, so we can restrict T to this subspace. Given
u ∈ img(T − λm I), then [ask students] u = (T − λm I)(v) for some v ∈ V. Then

(T − λ1 I) · · · (T − λm−1 I)u = (T − λ1 I) · · · (T − λm−1 I)(T − λm I)(v) = 0 , (‡)

so this polynomial kills T|U. Thus (z − λ1) · · · (z − λm−1) is a polynomial multiple of
minpoly(T|U). By the inductive hypothesis, then img(T − λm I) has a basis consisting of
eigenvectors of T|U, and hence of T.

Claim: img(T − λm I) + ker(T − λm I) is direct. Given u ∈ img(T − λm I) ∩ ker(T −
λm I), then (T − λm I)(u) = 0 ⇐⇒ T(u) = λmu. Since u ∈ img(T − λm I), then

0 = (T − λ1 I) · · · (T − λm−1 I)u = (λm − λ1) · · · (λm − λm−1)u

by (‡). Since the λi are distinct, this implies that u = 0. Thus img(T − λm I) ∩ ker(T −
λm I) = {0}.

Since the sum is direct, then

dim(img(T − λm I)⊕ ker(T − λm I)) = dim(img(T − λm I)) + dim(ker(T − λm I)) = dim(V)

by Rank-Nullity. Thus V = img(T − λm I)⊕ ker(T − λm I).
We already saw that img(T − λm I) has a basis of eigenvectors of T. Since ker(T −

λm I) is exatly the λm-eigenspace of T, taking a basis of ker(T − λm I) and concatenating
it with the basis of img(T − λm I) yields a basis of V of eigenvectors of T. Thus T is
diagonalizable. □
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Corollary 20. Suppose T ∈ L(V) is diagonalizable and U is a T-invariant subspace of V. Then
T|U is diagonalizable.

Proof. Since T is diagonalizable, then minpoly(T) splits and has no repeated roots. By a
previous results, minpoly(T) is a polynomial multiple of minpoly(T|U), so minpoly(T|U)
also splits and has no repeated roots. □

II.3.1. Worksheet.

II.3.2. Gershgorin disc theorem.

Definition 21. Suppose T ∈ L(V) and B := (v1, . . . , vn) is a basis of V. Let A = [T]B. A
Gershgorin disc of T with respect to B is a set of the formz ∈ F : |z − Aj,j| ≤

n

∑
k=1
k ̸=j

|Aj,k|


where j ∈ {1, . . . , n}.

Remark 22.
• T has n Gershgorin discs, one for each j = 1, . . . , n.
• For F = R, the jth disc is a closed interval centered at Aj,j, with radius the sum of

the absolute values of all the entries in the jth row.
• For F = R, the jth disc is a closed disc centered at Aj,j. [Draw picture.]

Theorem 23 (Gershgorin Disc Theorem). With notation as above, each eigenvalue of T is con-
tained in some Gershgorin disc of T with respect to B.

Proof. Suppose λ ∈ F is an eigenvalue of T with corresponding eigenvector w. Then we
can uniquely write

w = c1v1 + · · ·+ cnvn

for some c1, . . . , cn ∈ F. Let A = [T]B. Applying T to both sides, then

λc1v1 + · · ·+ λcnvn = λw = T(w) = T

(
n

∑
k=1

ckvk

)
=

n

∑
k=1

ckT(vk) . (24)

Now

[T(vk)]B = [T]B[vk]B = Aek =

A1,k
...

An,k

 ,

so

T(vk) = A1,kv1 + · · ·+ An,kvn =
n

∑
j=1

Aj,kvj .

Substituting this into (24), we have
n

∑
k=1

ckT(vk) =
n

∑
k=1

ck

n

∑
j=1

Aj,kvj =
n

∑
j=1

(
n

∑
k=1

Aj,kck

)
vj .
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Equating the coefficients of vj from the above and (24), then

λj =
n

∑
k=1

Aj,kck (†)

for all j = 1, . . . , n. Now let m ∈ {1, . . . , n} be such that

|cm| = max{|c1|, . . . , |cn|} .

Taking j = m in (†) and subtracting Am,mcm from both sides, we have [start in middle]

(λ − Am,m)cm = λcm − Am,mcm =

(
n

∑
k=1

Am,kck

)
− Am,mcm =

n

∑
k=1
k ̸=m

Am,kck .

Then

|λ − Am,m| =

∣∣∣∣∣∣∣
n

∑
k=1
k ̸=m

Am,k
ck
cm

∣∣∣∣∣∣∣ ≤
n

∑
k=1
k ̸=m

|Am,k

∣∣∣∣ ck
cm

∣∣∣∣ ≤ n

∑
k=1
k ̸=m

|Am,k|

by the triangle inequality. Thus λ is in the mth Gershgorin disc. □
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