18.700 - LINEAR ALGEBRA, DAY 13 UPPER TRIANGULAR MATRICES, DIAGONALIZATION

SAM SCHIAVONE

Contents

I. Pre-class Planning		1
I.1. Goals for lesson	· · · · · · · · · · · · · · · · · · ·	1
I.2. Methods of assessment		1
I.3. Materials to bring		1
II. Lesson Plan		2
II.1. Last time		2
II.2. 5C Upper triangular m	atrices, cont.	2
II.3. Diagonalizable Operate		2

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn the definition of eigenspace.
- (2) Students will learn criteria for diagonalizability.
- (3) Students will learn that a linear operator is diagonalizable iff its minimal polynomial splits and has no repeated roots.
- (4) Students will compute powers of a linear operator using diagonalization.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

II.1. Last time.

- Proved that the roots of the minimal polynomial are exactly the eigenvalues.
- Saw how to compute the eigenvalues and eigenvectors of a linear operator by upper triangularizing.
- Proved that the eigenvalues of an upper triangular matrix are the diagonal entries.

II.2. 5C Upper triangular matrices, cont.

Remark 1. Let $T \in \mathcal{L}(V)$. Last time we talked about choosing a basis so that $[T]_{\mathcal{B}}$ is upper triangular. This is NOT the same as the "upper triangulation" step in row reduction. Row reducing the matrix [T] is equivalent to multiplying P[T] by some invertible matrix P. This doesn't change the kernel of T, but it does change the outputs of T!

Proposition 2. Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then V has a basis \mathcal{B} with respect to which $[T]_{\mathcal{B}}$ is upper triangular iff minpoly(T) splits into degree 1 factors, i.e.,

minpoly
$$(T)(z) = (z - \lambda_1) \cdots (z - \lambda_m)$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$.

Proof sketch. (\Rightarrow): Suppose *T* has an upper triangular matrix with respect to some basis of *V*. Denote the diagonal entries of this matrix by $\alpha_1, \ldots, \alpha_n$. Letting

$$q(z) = (z - \alpha_1) \cdots (z - \alpha_n)$$
,

then q(T) by a previous result. Then minpoly(T) divides q, so minpoly also splits into degree 1 factors.

(\Leftarrow): Suppose minpoly(T)(z) = ($z - \lambda_1$) · · · ($z - \lambda_m$) for some $\lambda_1, ..., \lambda_m \in \mathbb{F}$. If m = 1, done. Otherwise, let $U = img(T - \lambda_m I)$. Then U is T-invariant, so we can consider the restriction $T|_U$. Apply the inductive hypothesis, extend the basis, and prove that this results in an upper triangular matrix.

Corollary 3. Let V be a finite dimensional C-vector space and $T \in \mathcal{L}(V)$. Then there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is upper triangular.

Proof. By the Fundamental Theorem of Algebra, nonconstant polynomial over \mathbb{C} splits into degree 1 factors, so this is true of minpoly(*T*) in particular.

II.3. **Diagonalizable Operators.** Say we have linear operators $S, T \in \mathcal{L}(V)$ and we want to compute their composition ST with respect to some choice of basis. In general, matrix multiplication is an expensive operation: naively, it requires n^3 operations, where $n = \dim(V)$. But if we can cleverly choose a basis of V that makes it so many of the entries of [S] and [T] are 0, then this will make this computation faster.

Definition 4. A *diagonal matrix* is a square matrix all of whose off-diagonal entries are 0. That is, A is diagonal if $A_{ij} = 0$ when $i \neq j$.

Example 5 (Give example, one where 0 is one of the diagonal entries.).

Proposition 6. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is diagonal, then the eigenvalues of T are precisely the diagonal entries of $[T]_{\mathcal{B}}$.

(0:00)

Proof. Diagonal matrices are upper triangular, so follows from a previous result.

Definition 7. An operator $T \in \mathcal{L}(V)$ is *diagonalizable* if there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is diagonal. Similarly, we say that a square matrix A is diagonalizable if the linear map $L_A : \mathbb{F}^n \to \mathbb{F}^n$ is diagonalizable.

Remark 8. Diagonalizable \neq diagonal!

Example 9. Define

$$T: \mathbb{F}^2 \to \mathbb{F}^2$$
$$v \mapsto Av$$

where

$$A = \left(\begin{array}{cc} -14 & 9\\ -30 & 19 \end{array}\right) \,.$$

Then *A* is not diagonal. However, with respect to the basis \mathcal{B}

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$,

we have

$$[T]_{\mathcal{B}} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \,.$$

Thus *T* (and *A*) is diagonalizable.

Remark 10. Note that if *v* is an eigenvector of *T*, then so is *cv* for all $0 \neq c \in \mathbb{F}$:

$$T(cv) = cT(v) = c\lambda v = \lambda(cv)$$

Definition 11. Let $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The *eigenspace* of *T* corresponding to λ is the subspace

$$E(\lambda) := E(\lambda, T) := \ker(T - \lambda I) = \{v \in V : T(v) = \lambda v\}.$$

So $E(\lambda, T)$ is the set of all eigenvectors of *T* corresponding to λ , along with the 0 vector.

Remark 12. λ is an eigenvalue of *T* iff $E(\lambda, T) \neq \{0\}$.

Theorem 13 (Sum of eigenspaces is direct). Let $T \in \mathcal{L}(V)$ and suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T. Then

$$E(\lambda_1,T)\oplus\cdots\oplus E(\lambda_m,T)$$

is a direct sum. Moreover, if V is finite-dimensional, then

$$\dim(E(\lambda_1,T)) + \cdots + \dim(E(\lambda_m,T)) \leq \dim(V).$$

Proof. Suppose $v_1 + \cdots + v_m = 0$ where $v_k \in E(\lambda_k)$ for all $k = 1, \ldots, m$. Since eigenvectors corresponding to distinct eigenvalues are linearly independent, then $v_k = 0$ for all k. (Otherwise, this would be a nontrivial linear relation.) Thus the sum is direct.

If V is finite-dimensional, then

$$\dim(E(\lambda_1,T)) + \cdots + \dim(E(\lambda_m,T)) = \dim(E(\lambda_1) \oplus \cdots \oplus E(\lambda_m)) \leq \dim(V).$$

Q: How can we tell when a linear operator is diagonalizable?

Theorem 14 (Criteria for diagonalizability). Let *V* be finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. TFAE.

- (*i*) *T* is diagonalizable.
- *(ii) V* has a basis consisting of eigenvectors of *T*.
- (iii) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T).$
- (*iv*) $\dim(V) = \dim(E(\lambda_1, T)) + \cdots + \dim(E(\lambda_m, T)).$

Proof. (a) \iff (b): *T* has a diagonal matrix

$$\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

with respect to a basis v_1, \ldots, v_n iff $T(v_k) = \lambda_k$ for each *k*.

(b) \implies (c): Assume *V* has a basis of eigenvectors of *T*. Then every $v \in V$ can be written as a linear combination of eigenvectors, so

$$V = E(\lambda_1, T) + \cdots + E(\lambda_m, T)$$
,

and we know the sum is direct from the previous result.

- (c) \implies (d): Dimension of direct sum is sum of dimensions of the summands.
- (d) \implies (b): Assume

$$\dim(V) = \dim(E(\lambda_1, T)) + \cdots + \dim(E(\lambda_m, T)).$$

Choose a basis for each $E(\lambda_k, T)$, and concatenate these to form a list v_1, \ldots, v_n . <u>Claim</u>: These vectors are linearly independent. (Exercise.) Since this list has length dim(V), then it also spans, hence is a basis.

Remark 15.

- Every linear operator on a finite-dimensional C-vector space has an eigenvalue.
- Every linear operator on a finite-dimensional C-vector space can be upper triangularized.
- <u>Not</u> every linear operator on a finite-dimensional C-vector space can be diagonalized.

Example 16. Define

$$T: \mathbb{F}^3 \to \mathbb{F}^3$$
$$v \mapsto Av$$

where

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \,.$$

Note that *A* is upper triangular, but not diagonal. [Compute A^2 , A^3 .] Thus $T^3 = 0$, so 0 is the only possible eigenvalue of *T*. Since E(0, T) = ker(T), we see that

$$E(0,T) = \{(a,0,0) \in \mathbb{F}^3 : a \in \mathbb{F}\},\$$

which is 1-dimensional. Thus (d) fails, so *T* is not diagonalizable.

Proposition 17. Let V be finite-dimensional and suppose $T \in \mathcal{L}(V)$ has dim(V) distinct eigenvalues. Then T is diagonalizable.

Proof. Let $n := \dim(V)$ and suppose *T* has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Then $\dim(E(\lambda_i)) \ge 1$ for each *i*, so

 $\dim(E(\lambda_1)) + \cdots + \dim(E(\lambda_n)) \ge 1 + \cdots + 1 = n = \dim(V).$

The reverse inequality is always true so we have equality, hence *T* is diagonalizable. \Box

Remark 18. The converse is NOT true. For instance, the identity operator has 1 as a repeated eigenvalue, but is clearly diagonalizable. Indeed, its matrix is diagonal with respect to any basis.

Theorem 19. Suppose *V* is finite-dimensional and $T \in \mathcal{L}(V)$. Then *T* is diagonalizable iff minpoly(*T*) splits into degree 1 factors and has no repeated roots, i.e., there exist distinct $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$ such that minpoly(*T*) = $(z - \lambda_1) \cdots (z - \lambda_m)$.

Proof. (\Rightarrow): Assume *T* is diagonalizable. Then there is a basis of *V* consisting of eigenvectors of *T*. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. Then for each *j*, there exists λ_k such that $(T - \lambda_k I)v_j = 0$. Thus

$$(T - \lambda_1 I) \cdots (T - \lambda_m I) v_i = 0$$

for each *j*, so minpoly(*T*) = $(z - \lambda_1) \cdots (z - \lambda_m)$.

(\Leftarrow): Assume the minpoly $(T) = (z - \lambda_1) \cdots (z - \lambda_m)$ where $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$ are distinct. By strong induction on *m*.

<u>Base case</u>: m = 1. Then $T - \lambda_1 I = 0$, so $T = \lambda_1 I$, which is diagonalizable.

Inductive step: Assume $m \ge 2$ and the result holds for all k < m. By a previous result, $U := img(T - \lambda_m I)$ is *T*-invariant, so we can restrict *T* to this subspace. Given $u \in img(T - \lambda_m I)$, then [ask students] $u = (T - \lambda_m I)(v)$ for some $v \in V$. Then

$$(T - \lambda_1 I) \cdots (T - \lambda_{m-1} I)u = (T - \lambda_1 I) \cdots (T - \lambda_{m-1} I)(T - \lambda_m I)(v) = 0, \quad (\ddagger)$$

so this polynomial kills $T|_U$. Thus $(z - \lambda_1) \cdots (z - \lambda_{m-1})$ is a polynomial multiple of minpoly $(T|_U)$. By the inductive hypothesis, then $img(T - \lambda_m I)$ has a basis consisting of eigenvectors of $T|_U$, and hence of T.

<u>Claim</u>: $\operatorname{img}(T - \lambda_m I) + \operatorname{ker}(T - \lambda_m I)$ is direct. Given $u \in \operatorname{img}(T - \lambda_m I) \cap \operatorname{ker}(T - \lambda_m I)$, then $(T - \lambda_m I)(u) = 0 \iff T(u) = \lambda_m u$. Since $u \in \operatorname{img}(T - \lambda_m I)$, then

$$0 = (T - \lambda_1 I) \cdots (T - \lambda_{m-1} I) u = (\lambda_m - \lambda_1) \cdots (\lambda_m - \lambda_{m-1}) u$$

by (‡). Since the λ_i are distinct, this implies that u = 0. Thus $img(T - \lambda_m I) \cap ker(T - \lambda_m I) = \{0\}$.

Since the sum is direct, then

 $\dim(\operatorname{img}(T - \lambda_m I) \oplus \operatorname{ker}(T - \lambda_m I)) = \dim(\operatorname{img}(T - \lambda_m I)) + \dim(\operatorname{ker}(T - \lambda_m I)) = \dim(V)$ by Rank-Nullity. Thus $V = \operatorname{img}(T - \lambda_m I) \oplus \operatorname{ker}(T - \lambda_m I)$.

We already saw that $img(T - \lambda_m I)$ has a basis of eigenvectors of T. Since $ker(T - \lambda_m I)$ is exatly the λ_m -eigenspace of T, taking a basis of $ker(T - \lambda_m I)$ and concatenating it with the basis of $img(T - \lambda_m I)$ yields a basis of V of eigenvectors of T. Thus T is diagonalizable.

Corollary 20. Suppose $T \in \mathcal{L}(V)$ is diagonalizable and U is a T-invariant subspace of V. Then $T|_U$ is diagonalizable.

Proof. Since *T* is diagonalizable, then minpoly(*T*) splits and has no repeated roots. By a previous results, minpoly(*T*) is a polynomial multiple of minpoly($T|_U$), so minpoly($T|_U$) also splits and has no repeated roots.

II.3.1. Worksheet.

II.3.2. Gershgorin disc theorem.

Definition 21. Suppose $T \in \mathcal{L}(V)$ and $\mathcal{B} := (v_1, \ldots, v_n)$ is a basis of *V*. Let $A = [T]_{\mathcal{B}}$. A *Gershgorin disc* of *T* with respect to \mathcal{B} is a set of the form

$$\left\{z \in \mathbb{F} : |z - A_{j,j}| \le \sum_{\substack{k=1\\k \neq j}}^{n} |A_{j,k}|\right\}$$

where $j \in \{1, ..., n\}$.

Remark 22.

- *T* has *n* Gershgorin discs, one for each j = 1, ..., n.
- For $\mathbb{F} = \mathbb{R}$, the *j*th disc is a closed interval centered at $A_{j,j}$, with radius the sum of the absolute values of all the entries in the *j*th row.
- For $\mathbb{F} = \mathbb{R}$, the *j*th disc is a closed disc centered at $A_{j,j}$. [Draw picture.]

Theorem 23 (Gershgorin Disc Theorem). With notation as above, each eigenvalue of T is contained in some Gershgorin disc of T with respect to \mathcal{B} .

Proof. Suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T* with corresponding eigenvector *w*. Then we can uniquely write

$$w=c_1v_1+\cdots+c_nv_n$$

for some $c_1, \ldots, c_n \in \mathbb{F}$. Let $A = [T]_{\mathcal{B}}$. Applying *T* to both sides, then

$$\lambda c_1 v_1 + \dots + \lambda c_n v_n = \lambda w = T(w) = T\left(\sum_{k=1}^n c_k v_k\right) = \sum_{k=1}^n c_k T(v_k).$$
(24)

Now

$$[T(v_k)]_{\mathcal{B}} = [T]_{\mathcal{B}}[v_k]_{\mathcal{B}} = Ae_k = \begin{pmatrix} A_{1,k} \\ \vdots \\ A_{n,k} \end{pmatrix}$$

so

$$T(v_k) = A_{1,k}v_1 + \dots + A_{n,k}v_n = \sum_{j=1}^n A_{j,k}v_j.$$

Substituting this into (24), we have

$$\sum_{k=1}^{n} c_k T(v_k) = \sum_{k=1}^{n} c_k \sum_{j=1}^{n} A_{j,k} v_j = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} A_{j,k} c_k \right) v_j.$$

Equating the coefficients of v_j from the above and (24), then

$$\lambda_j = \sum_{k=1}^n A_{j,k} c_k \tag{(†)}$$

for all j = 1, ..., n. Now let $m \in \{1, ..., n\}$ be such that

$$c_m|=\max\{|c_1|,\ldots,|c_n|\}.$$

Taking j = m in (†) and subtracting $A_{m,m}c_m$ from both sides, we have [start in middle]

$$(\lambda - A_{m,m})c_m = \lambda c_m - A_{m,m}c_m = \left(\sum_{k=1}^n A_{m,k}c_k\right) - A_{m,m}c_m = \sum_{\substack{k=1\\k \neq m}}^n A_{m,k}c_k.$$

Then

$$|\lambda - A_{m,m}| = \left| \sum_{\substack{k=1\\k \neq m}}^n A_{m,k} \frac{c_k}{c_m} \right| \le \sum_{\substack{k=1\\k \neq m}}^n |A_{m,k}| \frac{c_k}{c_m} \le \sum_{\substack{k=1\\k \neq m}}^n |A_{m,k}|$$

by the triangle inequality. Thus λ is in the m^{th} Gershgorin disc.