18.700 - LINEAR ALGEBRA, DAY 13 UPPER TRIANGULAR MATRICES, DIAGONALIZATION

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn the definition of eigenspace.
- (2) Students will learn criteria for diagonalizability.
- (3) Students will learn that a linear operator is diagonalizable iff its minimal polynomial splits and has no repeated roots.
- (4) Students will compute powers of a linear operator using diagonalization.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

II.1. **Last time.**

- Proved that the roots of the minimal polynomial are exactly the eigenvalues.
- Saw how to compute the eigenvalues and eigenvectors of a linear operator by upper triangularizing.
- Proved that the eigenvalues of an upper triangular matrix are the diagonal entries.

II.2. **5C Upper triangular matrices, cont.**

Remark 1. Let $T \in \mathcal{L}(V)$. Last time we talked about choosing a basis so that $[T]_B$ is upper triangular. This is NOT the same as the "upper triangulation" step in row reduction. Row reducing the matrix [*T*] is equivalent to multiplying *P*[*T*] by some invertible matrix *P*. This doesn't change the kernel of *T*, but it does change the outputs of *T*!

Proposition 2. Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then V has a basis B with *respect to which* $[T]_B$ *is upper triangular iff* minpoly(*T*) *splits into degree* 1 *factors, i.e.,*

$$
minpoly(T)(z) = (z - \lambda_1) \cdots (z - \lambda_m)
$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$ *.*

Proof sketch. (⇒): Suppose *T* has an upper triangular matrix with respect to some basis of *V*. Denote the diagonal entries of this matrix by *α*1, . . . , *αn*. Letting

$$
q(z)=(z-\alpha_1)\cdots(z-\alpha_n),
$$

then $q(T)$ by a previous result. Then minpoly(*T*) divides *q*, so minpoly also splits into degree 1 factors.

(⇐): Suppose minpoly(*T*)(*z*) = (*z* − *λ*1)· · ·(*z* − *λm*) for some *λ*1, . . . , *λ^m* ∈ **F**. If *m* = 1, done. Otherwise, let $U = \text{img}(T - \lambda_m I)$. Then *U* is *T*-invariant, so we can consider the restriction $T|_U$. Apply the inductive hypothesis, extend the basis, and prove that this results in an upper triangular matrix.

Corollary 3. Let V be a finite dimensional C-vector space and $T \in \mathcal{L}(V)$. Then there exists a *basis* B of V such that $[T]_B$ *is upper triangular.*

Proof. By the Fundamental Theorem of Algebra, nonconstant polynomial over **C** splits into degree 1 factors, so this is true of minpoly (T) in particular. \Box

II.3. **Diagonalizable Operators.** Say we have linear operators $S, T \in \mathcal{L}(V)$ and we want to compute their composition *ST* with respect to some choice of basis. In general, matrix multiplication is an expensive operation: naively, it requires n^3 operations, where $n =$ dim(*V*). But if we can cleverly choose a basis of *V* that makes it so many of the entries of [*S*] and [*T*] are 0, then this will make this computation faster.

Definition 4. A *diagonal matrix* is a square matrix all of whose off-diagonal entries are 0. That is, *A* is diagonal if $A_{ij} = 0$ when $i \neq j$.

Example 5 (Give example, one where 0 is one of the diagonal entries.)**.**

Proposition 6. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If there exists a basis B of V such that $[T]_B$ is diagonal, then the eigenvalues of T are precisely the diagonal entries of $[T]_{\mathcal{B}}$.

Proof. Diagonal matrices are upper triangular, so follows from a previous result. □

Definition 7. An operator $T \in \mathcal{L}(V)$ is *diagonalizable* if there exists a basis B of V such that $[T]$ _B is diagonal. Similarly, we say that a square matrix *A* is diagonalizable if the linear map $L_A: \mathbb{F}^n \to \mathbb{F}^n$ is diagonalizable.

Remark 8. Diagonalizable \neq diagonal!

Example 9. Define

$$
T: \mathbb{F}^2 \to \mathbb{F}^2
$$

$$
v \mapsto Av
$$

where

$$
A = \left(\begin{array}{cc} -14 & 9 \\ -30 & 19 \end{array}\right).
$$

Then *A* is not diagonal. However, with respect to the basis B

$$
v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix},
$$

we have

$$
[T]_{\mathcal{B}} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}.
$$

Thus *T* (and *A*) is diagonalizable.

Remark 10. Note that if *v* is an eigenvector of *T*, then so is *cv* for all $0 \neq c \in \mathbb{F}$:

$$
T(cv) = cT(v) = c\lambda v = \lambda(cv).
$$

Definition 11. Let $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The *eigenspace* of *T* corresponding to λ is the subspace

$$
E(\lambda) := E(\lambda, T) := \ker(T - \lambda I) = \{ v \in V : T(v) = \lambda v \}.
$$

So $E(\lambda, T)$ is the set of all eigenvectors of *T* corresponding to λ , along with the 0 vector.

Remark 12. λ is an eigenvalue of *T* iff $E(\lambda, T) \neq \{0\}$.

Theorem 13 (Sum of eigenspaces is direct). Let $T \in \mathcal{L}(V)$ and suppose $\lambda_1, \ldots, \lambda_m$ are distinct *eigenvaues of T. Then*

$$
E(\lambda_1,T)\oplus\cdots\oplus E(\lambda_m,T)
$$

is a direct sum. Moreover, if V is finite-dimensional, then

$$
\dim(E(\lambda_1,T))+\cdots+\dim(E(\lambda_m,T))\leq \dim(V).
$$

Proof. Suppose $v_1 + \cdots + v_m = 0$ where $v_k \in E(\lambda_k)$ for all $k = 1, \ldots, m$. Since eigenvectors corresponding to distinct eigenvalues are linearly independent, then $v_k = 0$ for all *k*. (Otherwise, this would be a nontrivial linear relation.) Thus the sum is direct.

If *V* is finite-dimensional, then

$$
\dim(E(\lambda_1,T))+\cdots+\dim(E(\lambda_m,T))=\dim(E(\lambda_1)\oplus\cdots\oplus E(\lambda_m))\leq \dim(V).
$$

Q: How can we tell when a linear operator is diagonalizable?

□

Theorem 14 (Criteria for diagonalizability). Let V be finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ *be the distinct eigenvalues of T. TFAE.*

- *(i) T is diagonalizable.*
- *(ii) V has a basis consisting of eigenvectors of T.*
- (iii) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$.
- (iv) dim(*V*) = dim($E(\lambda_1, T)$) + · · · + dim($E(\lambda_m, T)$).

Proof. (a) \iff (b): *T* has a diagonal matrix

$$
\begin{pmatrix} \lambda_1 & 0 \\ \cdot & \cdot \\ 0 & \lambda_n \end{pmatrix}
$$

with respect to a basis v_1, \ldots, v_n iff $T(v_k) = \lambda_k$ for each k .

(b) \implies (c): Assume *V* has a basis of eigenvectors of *T*. Then every $v \in V$ can be written as a linear combination of eigenvectors, so

$$
V=E(\lambda_1,T)+\cdots+E(\lambda_m,T),
$$

and we know the sum is direct from the previous result.

- (c) \implies (d): Dimension of direct sum is sum of dimensions of the summands.
- (d) \implies (b): Assume

$$
\dim(V) = \dim(E(\lambda_1, T)) + \cdots + \dim(E(\lambda_m, T)).
$$

Choose a basis for each $E(\lambda_k, T)$, and concatenate these to form a list v_1, \ldots, v_n . Claim: These vectors are linearly independent. (Exercise.) Since this list has length dim(*V*), then it also spans, hence is a basis. \Box

Remark 15.

- Every linear operator on a finite-dimensional **C**-vector space has an eigenvalue.
- Every linear operator on a finite-dimensional **C**-vector space can be upper triangularized.
- Not every linear operator on a finite-dimensional **C**-vector space can be diagonalized.

Example 16. Define

$$
T: \mathbb{F}^3 \to \mathbb{F}^3
$$

$$
v \mapsto Av
$$

where

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Note that A is upper triangular, but not diagonal. [Compute A^2 , A^3 .] Thus $T^3 = 0$, so 0 is the only possible eigenvalue of *T*. Since $E(0,T) = \text{ker}(T)$, we see that

$$
E(0,T) = \{(a,0,0) \in \mathbb{F}^3 : a \in \mathbb{F}\},\
$$

which is 1-dimensional. Thus (d) fails, so *T* is not diagonalizable.

Proposition 17. Let V be finite-dimensional and suppose $T \in \mathcal{L}(V)$ has $dim(V)$ distinct eigen*values. Then T is diagonalizable.*

Proof. Let $n := \dim(V)$ and suppose *T* has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Then $\dim(E(\lambda_i)) \geq$ 1 for each *i*, so

$$
\dim(E(\lambda_1))+\cdots+\dim(E(\lambda_n))\geq 1+\cdots+1=n=\dim(V).
$$

The reverse inequality is always true so we have equality, hence *T* is diagonalizable. \Box

Remark 18. The converse is NOT true. For instance, the identity operator has 1 as a repeated eigenvalue, but is clearly diagonalizable. Indeed, its matrix is diagonal with respect to any basis.

Theorem 19. Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then T is diagonalizable iff $\minpoly(T)$ *splits into degree* 1 *factors and has no repeated roots, i.e., there exist distinct* $\lambda_1, \ldots, \lambda_m \in$ **F** *such that* $minpoly(T) = (z - \lambda_1) \cdot \cdot \cdot (z - \lambda_m)$ *.*

Proof. (\Rightarrow): Assume *T* is diagonalizable. Then there is a basis of *V* consisting of eigenvectors of *T*. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of *T*. Then for each *j*, there exists λ_k such that $(T - \lambda_k I)v_j = 0$. Thus

$$
(T - \lambda_1 I) \cdots (T - \lambda_m I) v_j = 0
$$

for each *j*, so minpoly(*T*) = $(z - \lambda_1) \cdots (z - \lambda_m)$.

(⇐): Assume the minpoly $(T) = (z - \lambda_1) \cdots (z - \lambda_m)$ where $\lambda_1, \ldots, \lambda_m$ ∈ **F** are distinct. By strong induction on *m*.

Base case: $m = 1$. Then $T - \lambda_1 I = 0$, so $T = \lambda_1 I$, which is diagonalizable.

Inductive step: Assume $m \geq 2$ and the result holds for all $k < m$. By a previous result, $U := \text{img}(T - \lambda_m I)$ is *T*-invariant, so we can restrict *T* to this subspace. Given $u \in \text{img}(T - \lambda_m I)$, then [ask students] $u = (T - \lambda_m I)(v)$ for some $v \in V$. Then

$$
(T - \lambda_1 I) \cdots (T - \lambda_{m-1} I)u = (T - \lambda_1 I) \cdots (T - \lambda_{m-1} I)(T - \lambda_m I)(v) = 0, \qquad (\ddagger)
$$

so this polynomial kills *T*|*U*. Thus $(z - \lambda_1) \cdots (z - \lambda_{m-1})$ is a polynomial multiple of minpoly($T|_U$). By the inductive hypothesis, then img($T - \lambda_m I$) has a basis consisting of eigenvectors of $T|_U$, and hence of *T*.

Claim: img($T - \lambda_m I$) + ker($T - \lambda_m I$) is direct. Given $u \in \text{img}(T - \lambda_m I) \cap \text{ker}(T \lambda_m I$), then $(T - \lambda_m I)(u) = 0 \iff T(u) = \lambda_m u$. Since $u \in \text{img}(T - \lambda_m I)$, then

$$
0 = (T - \lambda_1 I) \cdots (T - \lambda_{m-1} I) u = (\lambda_m - \lambda_1) \cdots (\lambda_m - \lambda_{m-1}) u
$$

by [\(‡\)](#page-4-0). Since the λ_i are distinct, this implies that $u = 0$. Thus img($T - \lambda_m I$) \cap ker($T \lambda_m I$) = {0}.

Since the sum is direct, then

 $dim(img(T − \lambda_m I) ⊕ ker(T − \lambda_m I)) = dim(img(T − \lambda_m I)) + dim(ker(T − \lambda_m I)) = dim(V)$ by Rank-Nullity. Thus $V = \text{img}(T - \lambda_m I) \oplus \text{ker}(T - \lambda_m I)$.

We already saw that $\text{img}(T - \lambda_m I)$ has a basis of eigenvectors of *T*. Since ker(*T* − $\lambda_m I$) is exatly the λ_m -eigenspace of *T*, taking a basis of ker(*T* − $\lambda_m I$) and concatenating it with the basis of img($T - \lambda_m I$) yields a basis of *V* of eigenvectors of *T*. Thus *T* is diagonalizable. □

Corollary 20. *Suppose* $T \in \mathcal{L}(V)$ *is diagonalizable and U is a T-invariant subspace of V. Then T*|*^U is diagonalizable.*

Proof. Since *T* is diagonalizable, then minpoly(*T*) splits and has no repeated roots. By a previous results, minpoly(*T*) is a polynomial multiple of minpoly(*T*|*U*), so minpoly(*T*|*U*) also splits and has no repeated roots. \Box

II.3.1. *Worksheet.*

II.3.2. *Gershgorin disc theorem.*

Definition 21. Suppose $T \in \mathcal{L}(V)$ and $\mathcal{B} := (v_1, \ldots, v_n)$ is a basis of *V*. Let $A = [T]_B$. A *Gershgorin disc* of *T* with respect to *B* is a set of the form

$$
\left\{ z \in \mathbb{F} : |z - A_{j,j}| \leq \sum_{\substack{k=1 \ k \neq j}}^n |A_{j,k}| \right\}
$$

where $j \in \{1, ..., n\}$.

Remark 22.

- *T* has *n* Gershgorin discs, one for each $j = 1, \ldots, n$.
- For $\mathbb{F} = \mathbb{R}$, the *j*th disc is a closed interval centered at $A_{j,j}$, with radius the sum of the absolute values of all the entries in the *j*th row.
- For $\mathbb{F} = \mathbb{R}$, the *j*th disc is a closed disc centered at $A_{j,j}$. [Draw picture.]

Theorem 23 (Gershgorin Disc Theorem)**.** *With notation as above, each eigenvalue of T is contained in some Gershgorin disc of T with respect to* B*.*

Proof. Suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T* with corresponding eigenvector *w*. Then we can uniquely write

$$
w=c_1v_1+\cdots+c_nv_n
$$

for some $c_1, \ldots, c_n \in \mathbb{F}$. Let $A = [T]_B$. Applying *T* to both sides, then

$$
\lambda c_1 v_1 + \dots + \lambda c_n v_n = \lambda w = T(w) = T\left(\sum_{k=1}^n c_k v_k\right) = \sum_{k=1}^n c_k T(v_k).
$$
 (24)

Now

$$
[T(v_k)]_{\mathcal{B}} = [T]_{\mathcal{B}}[v_k]_{\mathcal{B}} = Ae_k = \begin{pmatrix} A_{1,k} \\ \vdots \\ A_{n,k} \end{pmatrix},
$$

so

$$
T(v_k) = A_{1,k}v_1 + \cdots + A_{n,k}v_n = \sum_{j=1}^n A_{j,k}v_j.
$$

Substituting this into [\(24\)](#page-5-0), we have

$$
\sum_{k=1}^{n} c_k T(v_k) = \sum_{k=1}^{n} c_k \sum_{j=1}^{n} A_{j,k} v_j = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} A_{j,k} c_k \right) v_j.
$$

Equating the coefficients of v_j from the above and [\(24\)](#page-5-0), then

$$
\lambda_j = \sum_{k=1}^n A_{j,k} c_k \tag{†}
$$

for all $j = 1, ..., n$. Now let $m \in \{1, ..., n\}$ be such that

$$
|c_m|=\max\{|c_1|,\ldots,|c_n|\}.
$$

Taking $j = m$ in [\(†\)](#page-6-0) and subtracting $A_{m,m}c_m$ from both sides, we have [start in middle]

$$
(\lambda - A_{m,m})c_m = \lambda c_m - A_{m,m}c_m = \left(\sum_{k=1}^n A_{m,k}c_k\right) - A_{m,m}c_m = \sum_{\substack{k=1\\k \neq m}}^n A_{m,k}c_k.
$$

Then

$$
|\lambda - A_{m,m}| = \left| \sum_{\substack{k=1 \ k \neq m}}^n A_{m,k} \frac{c_k}{c_m} \right| \leq \sum_{\substack{k=1 \ k \neq m}}^n |A_{m,k}| \frac{c_k}{c_m} \leq \sum_{\substack{k=1 \ k \neq m}}^n |A_{m,k}|
$$

by the triangle inequality. Thus λ is in the m^{th} Gershgorin disc. □

