18.700 - LINEAR ALGEBRA, DAY 12 UPPER TRIANGULAR MATRICES AND DIAGONALIZATION

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn that the roots of the minimal polynomial are exactly the eigenvalues.
- (2) Students will learn how to compute the eigenvalues and eigenvectors of a linear operator.
- (3) Students will learn that the eigenvalues of an upper triangular matrix are the diagonal entries.
- (4) Students will learn the definition of eigenspace.
- (5) Students will learn criteria for diagonalizability.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Exam grades posted. Median 77, Mean 74. [Show distribution, if possible.]

II.1. **Last time.**

- Proved some properties of eigenvalues.
- Defined $p(T)$ where p is a polynomial and T is a linear operator.
- Showed the existence of the minimal polynomial.
- Proved that the roots of minpoly(*T*) are eigenvalues of *T*.

II.2. **The Minimal Polynomial, continued.**

Corollary 1. Let V be a nonzero finite-dimensional C-vector space and $T \in \mathcal{L}(V)$. Then T has *an eigenvalue.*

Proof. Let $m := \text{minpoly}(T)$. Note that *m* is nonconstant: if $m = c$ were constant, then we would have $cI = 0$, contradicting the fact that $V \neq 0$.

By the Fundamental Theorem of Algebra, there exists $\lambda \in \mathbb{C}$ such that $m(\lambda) = 0$. Then

$$
m(z) = (z - \lambda)q(z)
$$

for some monic $q \in \mathcal{P}(\mathbb{C})$. Then

$$
0 = m(T) = (T - \lambda I)q(T).
$$

Since deg(*q*) $<$ deg(*m*) and *m* is the minpoly, then $q(T) \neq 0$. Then there is some vector $v \in V$ such that $q(T)(v) \neq 0$. Then

$$
0 = m(T)(v) = (T - \lambda I)(q(T)(v))
$$

so $q(T)(v)$ is an eigenvector of *T* with eigenvalue λ . \Box

Remark 2. Here we used the fact that **C** is algebraically closed in an important way. The result is not true over **R**!

Corollary 3. *With notation as above, the eigenvalues of T are exactly the roots of* minpoly(*T*)*.*

Proof. We have seen that all the roots of $m := \text{minpoly}(T)$ are eigenvalues of T. Conversely, suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T*. Then there exists $0 \neq v \in V$ such that $T(v) = \lambda v$. Applying *T* to both sides repeatedly, we see that $T^k(v) = \lambda^k v$ for all $k \in \mathbb{Z}_{\geq 0}$. Taking linear combinations of these monomials, we have [write " $0 = ...$ " last]

$$
0=m(T)v=m(\lambda)v.
$$

Since $v \neq 0$, then $m(\lambda) = 0$.

Q: Given a linear operator *T*, how can we compute its eigenvalues and eigenvectors? A:

(1) To compute minpoly(*T*), we need to find the smallest *d* such that

$$
c_0 I + c_1 T + \dots + c_{d-1} T^{d-1} = -T^d
$$

has a solution for $c_0, \ldots, c_{d-1} \in \mathbb{F}$. We can choose a basis B for V and apply $[\cdot]_B$ to the above equation. This produces a matrix equation which can be thought of as a linear system of $(\dim(V))^2$ equations in *d* unknowns.

This yields the following algorithm: for each $d = 1, 2, \ldots$, see if the above system of equations has a solution. By the theorem, this algorithm terminates at the latest when $d = \dim(V)$.

(2) Usually faster, but not guaranteed to always work: choose $v \in V, v \neq 0$ and consider the equation

$$
c_0v + c_1T(v) + \cdots + c_{n-1}T^{n-1}(v) = -T^n(v)
$$

where $n := \dim(V)$. Again, by choosing a basis for V and applying $[\cdot]_B$, we obtain a system of *n* equations in the *n* unknowns c_0, \ldots, c_{n-1} . If the solution to this system is unique, this yields the coefficients of minpoly(*T*).

(3) Choose a basis B and let $A = [T]_B$. Compute ker($A - \lambda I$), treating λ as a variable.

Proposition 4. *Suppose V is finite-dimensional,* $T \in \mathcal{L}(V)$ *and* $q \in \mathcal{P}(F)$ *. Then* $q(T) = 0$ *iff* minpoly(*T*) *divides q, i.e., q* = minpoly(*T*)*f* for some $f \in \mathcal{P}(\mathbb{F})$ *.*

Proof idea. Use the division algorithm to divide *q* by minpoly(*T*) and consider the remainder. \Box

Corollary 5. *With the same assumptions, suppose U is a T-invariant subspace of V. Then* minpoly($T|_U$) *divides* minpoly(T).

Corollary 6. *With the same assumptions, T is not invertible iff the constant term of* minpoly(*T*) *is* 0*.*

Proof. Let $m := \text{minpoly}(T)$. Then

T is not invertible
$$
\iff
$$
 0 is an eigenvalue of *T*
\n \iff 0 is a zero of *m*
\n \iff $m(0) = 0$
\n \iff the constant term of *m* is 0.

□

II.3. **Worksheet.**

II.4. **5C Upper triangular matrices.** Let $T: V \to W$ be a linear map and $\mathcal{B} = (v_1, \ldots, v_n)$ and $C = (w_1, \ldots, w_m)$ be bases of *V* and *W*, respectively. Recall that

$$
c[T]_{\mathcal{B}} = \left([T(v_1)]_{\mathcal{C}} \cdot \cdots \cdot [T(v_n)]_{\mathcal{C}} \right).
$$

When $V = W$, so *T* is a linear operator, then its matrix is [ask students] square.

Goal: Find a basis of *V* such that $[T]_B = B[T]_B$ is particularly simple. Suppose *V* is a **C**-vector space. As we saw, then *T* has an eigenvalue λ ; let $v \neq 0$ be a corresponding eigenvector, so $T(v) = \lambda v$. If we take *v* to be the first element in a basis for *B* of *V*, then

$$
[T]_{\mathcal{B}} = \begin{pmatrix} \lambda & & \\ 0 & * & \\ \vdots & & \\ 0 & & \end{pmatrix}
$$

.

(Here the ∗ indicate that we don't know the other entries.)

Definition 7. A square matrix is *upper triangular* if all entries below the diagonal are 0.

Example 8. [Give examples of diagonal and not diagonal matrices.]

Proposition 9. *Suppose* $T \in \mathcal{L}(V)$ *and* $\mathcal{B} := (v_1, \ldots, v_n)$ *is a basis of* V. TFAE.

- *(i)* $[T]$ ^B *is upper triangular.*
- *(ii)* $T(v_k)$ ∈ $\text{span}(v_1, \ldots, v_k)$ *for each* $k = 1, \ldots, n$ *.*
- *(iii)* $\text{span}(v_1, \ldots, v_k)$ *is T-invariant for each* $k = 1, \ldots, n$.

Proof sketch. (i) \implies (ii): Recall that the k^{th} column of $[T]_B$ is the coordinate vector $[T(v_k)]_{\mathcal{B}}$. Write

$$
[T(v_k)]_{\mathcal{B}} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}.
$$

Since $[T]_B$ is upper triangular, then $0 = a_{k+1} = \cdots = a_n$, so

$$
T(v_k) = a_1v_1 + \cdots + a_kv_k \in span(v_1,\ldots,v_k).
$$

- $(ii) \implies (i):$ Similar.
- (ii) \iff (iii): Exercise.

Proposition 10. *Suppose* $T \in \mathcal{L}(V)$ *and* V has a basis B with respect to which $[T]_B$ is upper *triangular with diagonal entries* $\lambda_1, \ldots, \lambda_n$. Then

(i)

$$
(T - \lambda_1 I) \cdots (T - \lambda_n I) = 0.
$$

- *(ii) The eigenvalues of T are exactly* $\lambda_1, \ldots, \lambda_n$.
- *Proof.* (i) <u>Claim</u>: $(T \lambda_1 I) \cdots (T \lambda_k I) v_j = 0$ for all $j \leq k$, for all $k = 1, \ldots, n$. By induction on *k*.
	- Base case: $k = 1$. Since $T(v_1) = \lambda_1 v_1$, then $(T \lambda_1 I)v_1 = 0$.

Inductive step: Let *k* ≥ 2 and assume the result holds for *k* − 1. Fix *j* ∈ {1,...,*k*}. $\frac{\text{Case 1: } }{I}$ ∕ k . Then $j \leq k-1$. Note that the $T - \lambda_i I$ commute with each other since they are polynomials in *T*. Then

0 by inductive hypothesis
\n
$$
(T - \lambda_1 I) \cdots (T - \lambda_k I) v_j = (T - \lambda_k) \overbrace{(T - \lambda_1 I) \cdots (T - \lambda_{k-1} I) v_j}^{0 \text{ by inductive hypothesis}}
$$
\n
$$
= (T - \lambda_k)(0) = 0
$$

Case 2: $j = k$. Since $[T]_B$ is upper triangular, then

$$
T(v_k) = a_1v_1 + \cdots + a_{k-1}v_{k-1} + \lambda_kv_k
$$

for some $a_1, \ldots, a_{k-1} \in \mathbb{F}$. Then

$$
(T - \lambda_k I)(v_k) = a_1 v_1 + \dots + a_{k-1} v_{k-1} + \lambda_k v_k - \lambda_k v_k.
$$

Then

$$
(T - \lambda_1 I) \cdots (T - \lambda_{k-1} I)(T - \lambda_k I)(v_k) = (T - \lambda_1 I) \cdots (T - \lambda_{k-1} I)(a_1 v_1 + \cdots + a_{k-1} v_{k-1})
$$

= $a_1 \cdot 0 + \cdots + a_{k-1} \cdot 0 = 0$

by the inductive hypothesis.

(ii) Recall that λ is an eigenvalue of *T* iff $T - \lambda I$ is not invertible. Since $T(v_1) = \lambda_1 v_1$, then λ_1 is an eigenvalue.

Given $k \in \{2, \ldots, n\}$, then $(T - \lambda_k I)v_k \in span(v_1, \ldots, v_{k-1})$ by the above. Thus $T - \lambda_k I$ maps $\text{span}(v_1, \ldots, v_k)$ into $\text{span}(v_1, \ldots, v_{k-1})$. Since

dim(span($v_1, ..., v_k$)) = *k* and dim(span($v_1, ..., v_{k-1}$)) = *k* − 1

then $T - \lambda_k I$ is not injective by a previous result (consequence of Rank-Nullity). Thus λ_k is an eigenvalue of T .

□

Proposition 11. *Suppose V is finite-dimensional and* $T \in \mathcal{L}(V)$ *. Then V has a basis B with respect to which* $[T]_B$ *is upper triangular iff* minpoly(*T*) *splits into degree* 1 *factors, i.e.,*

$$
minpoly(T)(z) = (z - \lambda_1) \cdots (z - \lambda_m)
$$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$ *.*

Proof sketch. (⇒): Suppose *T* has an upper triangular matrix with respect to some basis of *V*. Denote the diagonal entries of this matrix by *α*1, . . . , *αn*. Letting

$$
q(z)=(z-\alpha_1)\cdots(z-\alpha_n),
$$

then $q(T)$ by a previous result. Then minpoly(*T*) divides *q*, so minpoly also splits into degree 1 factors.

(⇐): Suppose minpoly(*T*)(*z*) = (*z* − *λ*1)· · ·(*z* − *λm*) for some *λ*1, . . . , *λ^m* ∈ **F**. If *m* = 1, done. Otherwise, let $U = \text{img}(T - \lambda_m I)$. Then *U* is *T*-invariant, so we can consider the restriction $T|_U$. Apply the inductive hypothesis, extend the basis, and prove that this results in an upper triangular matrix. □

Corollary 12. Let V be a finite dimensional C-vector space and $T \in \mathcal{L}(V)$. Then there exists a *basis* B *of V such that T has an upper triangular matrix with respect to* B*.*

Proof. By the Fundamental Theorem of Algebra, nonconstant polynomial over **C** splits into degree 1 factors, so this is true of minpoly (T) in particular.

II.5. **Diagonalizable Operators.** Say we have linear operators $S, T \in \mathcal{L}(V)$ and we want to compute their composition *ST* with respect to some choice of basis. In general, matrix multiplication is an expensive operation: naively, it requires n^3 operations, where $n =$ dim(*V*). But if we can cleverly choose a basis of *V* that makes it so many of the entries of $|S|$ and $|T|$ are 0, then this will make this computation faster.

Definition 13. A *diagonal matrix* is a square matrix all of whose off-diagonal entries are 0. That is, *A* is diagonal if $A_{ij} = 0$ when $i \neq j$.

Example 14 (Give example, one where 0 is one of the diagonal entries.)**.**

Proposition 15. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If there exists a basis B of V such that $[T]_B$ is diagonal, then the eigenvalues of T are precisely the diagonal entries of $[T]$ _B.

Proof. Diagonal matrices are upper triangular, so follows from a previous result. □

Definition 16. An operator $T \in \mathcal{L}(V)$ is *diagonalizable* if there exists a basis \mathcal{B} of V such that $[T]_B$ is diagonal. Similarly, we say that a square matrix A is diagonalizable if the linear map $L_A: \mathbb{F}^n \to \mathbb{F}^n$ is diagonalizable.

Remark 17. Diagonalizable \neq diagonal!

Example 18. Define

$$
T: \mathbb{F}^2 \to \mathbb{F}^2
$$

$$
v \mapsto Av
$$

where

$$
A = \left(\begin{array}{cc} -14 & 9 \\ -30 & 19 \end{array}\right).
$$

Then *A* is not diagonal. However, with respect to the basis B

$$
v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix},
$$

we have

$$
[T]_{\mathcal{B}} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}.
$$

Thus *T* (and *A*) is diagonalizable.

Remark 19. Note that if *v* is an eigenvector of *T*, then so is *cv* for all $0 \neq c \in \mathbb{F}$:

$$
T(cv) = cT(v) = c\lambda v = \lambda(cv).
$$

Definition 20. Let $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The *eigenspace* of *T* corresponding to λ is the subspace

$$
E(\lambda) := E(\lambda, T) := \ker(T - \lambda I) = \{ v \in V : T(v) = \lambda v \}.
$$

So $E(\lambda, T)$ is the set of all eigenvectors of *T* corresponding to λ , along with the 0 vector.

Remark 21. λ is an eigenvalue of *T* iff $E(\lambda, T) \neq \{0\}$.

Theorem 22 (Sum of eigenspaces is direct). Let $T \in \mathcal{L}(V)$ and suppose $\lambda_1, \ldots, \lambda_m$ are distinct *eigenvaues of T. Then*

 $E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$

is a direct sum. Moreover, if V is finite-dimensional, then

$$
\dim(E(\lambda_1,T))+\cdots+\dim(E(\lambda_m,T))\leq \dim(V).
$$

Proof. Suppose $v_1 + \cdots + v_m = 0$ where $v_k \in E(\lambda_k)$ for all $k = 1, \ldots, m$. Since eigenvectors corresponding to distinct eigenvalues are linearly independent, then $v_k = 0$ for all k. (Otherwise, this would be a nontrivial linear relation.) Thus the sum is direct.

If *V* is finite-dimensional, then

$$
\dim(E(\lambda_1,T)) + \cdots + \dim(E(\lambda_m,T)) = \dim(E(\lambda_1) \oplus \cdots \oplus E(\lambda_m)) \leq \dim(V).
$$

Q: How can we tell when a linear operator is diagonalizable?

Theorem 23 (Criteria for diagonalizability). Let V be finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T. TFAE.

- *(i) T is diagonalizable.*
- *(ii) V has a basis consisting of eigenvectors of T.*
- (iii) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$.
- (iv) dim(*V*) = dim($E(\lambda_1, T)$) + · · · + dim($E(\lambda_m, T)$).

Proof. (a) \iff (b): *T* has a diagonal matrix

$$
\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}
$$

with respect to a basis v_1, \ldots, v_n iff $T(v_k) = \lambda_k$ for each k .

(b) \implies (c): Assume *V* has a basis of eigenvectors of *T*. Then every $v \in V$ can be written as a linear combination of eigenvectors, so

$$
V = E(\lambda_1, T) + \cdots + E(\lambda_m, T),
$$

and we know the sum is direct from the previous result.

- (c) \implies (d): Dimension of direct sum is sum of dimensions of the summands.
- (d) \implies (b): Assume

$$
\dim(V)=\dim(E(\lambda_1,T))+\cdots+\dim(E(\lambda_m,T)).
$$

Choose a basis for each $E(\lambda_k, T)$, and concatenate these to form a list v_1, \ldots, v_n . Claim: These vectors are linearly independent. (Exercise.) Since this list has length dim(*V*), then it also spans, hence is a basis. \Box

Remark 24.

- Every linear operator on a finite-dimensional **C**-vector space has an eigenvalue.
- Every linear operator on a finite-dimensional **C**-vector space can be upper triangularized.
- Not every linear operator on a finite-dimensional **C**-vector space can be diagonalized.

Example 25. Define

$$
T: \mathbb{F}^3 \to \mathbb{F}^3
$$

$$
v \mapsto Av
$$

where

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Note that *A* is upper triangular, but not diagonal. [Compute A^2 , A^3 .] Thus $T^3 = 0$, so 0 is the only possible eigenvalue of *T*. Since $E(0, T) = \text{ker}(T)$, we see that

$$
E(0,T) = \{(a,0,0) \in \mathbb{F}^3 : a \in \mathbb{F}\},\
$$

which is 1-dimensional. Thus (d) fails, so *T* is not diagonalizable.

Proposition 26. Let V be finite-dimensional and suppose $T \in \mathcal{L}(V)$ has $dim(V)$ distinct eigen*values. Then T is diagonalizable.*

Proof. Let $n := \dim(V)$ and suppose *T* has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Then $\dim(E(\lambda_i)) \geq$ 1 for each *i*, so

 $dim(E(\lambda_1)) + \cdots + dim(E(\lambda_n)) \ge 1 + \cdots + 1 = n = dim(V).$

The reverse inequality is always true so we have equality, hence T is diagonalizable. \Box