18.700 - LINEAR ALGEBRA, DAY 12 UPPER TRIANGULAR MATRICES AND DIAGONALIZATION

SAM SCHIAVONE

Contents

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. The Minimal Polynomial, continued	2
II.3. Worksheet	3
II.4. 5C Upper triangular matrices	3
II.5. Diagonalizable Operators	5

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn that the roots of the minimal polynomial are exactly the eigenvalues.
- (2) Students will learn how to compute the eigenvalues and eigenvectors of a linear operator.
- (3) Students will learn that the eigenvalues of an upper triangular matrix are the diagonal entries.
- (4) Students will learn the definition of eigenspace.
- (5) Students will learn criteria for diagonalizability.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

<u>Announcements</u>: • Exam grades posted. Median 77, Mean 74. [Show distribution, if possible.]

II.1. Last time.

- Proved some properties of eigenvalues.
- Defined p(T) where p is a polynomial and T is a linear operator.
- Showed the existence of the minimal polynomial.
- Proved that the roots of minpoly(*T*) are eigenvalues of *T*.

II.2. The Minimal Polynomial, continued.

Corollary 1. Let V be a nonzero finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an eigenvalue.

Proof. Let m := minpoly(T). Note that m is nonconstant: if m = c were constant, then we would have cI = 0, contradicting the fact that $V \neq 0$.

By the Fundamental Theorem of Algebra, there exists $\lambda \in \mathbb{C}$ such that $m(\lambda) = 0$. Then

$$m(z) = (z - \lambda)q(z)$$

for some monic $q \in \mathcal{P}(\mathbb{C})$. Then

$$0 = m(T) = (T - \lambda I)q(T).$$

Since deg(*q*) < deg(*m*) and *m* is the minpoly, then $q(T) \neq 0$. Then there is some vector $v \in V$ such that $q(T)(v) \neq 0$. Then

$$0 = m(T)(v) = (T - \lambda I)(q(T)(v))$$

so q(T)(v) is an eigenvector of *T* with eigenvalue λ .

Remark 2. Here we used the fact that \mathbb{C} is algebraically closed in an important way. The result is not true over \mathbb{R} !

Corollary 3. With notation as above, the eigenvalues of T are exactly the roots of minpoly(T).

Proof. We have seen that all the roots of m := minpoly(T) are eigenvalues of T. Conversely, suppose $\lambda \in \mathbb{F}$ is an eigenvalue of T. Then there exists $0 \neq v \in V$ such that $T(v) = \lambda v$. Applying T to both sides repeatedly, we see that $T^k(v) = \lambda^k v$ for all $k \in \mathbb{Z}_{\geq 0}$. Taking linear combinations of these monomials, we have [write " $0 = \dots$ " last]

$$0 = m(T)v = m(\lambda)v.$$

Since $v \neq 0$, then $m(\lambda) = 0$.

<u>Q</u>: Given a linear operator *T*, how can we compute its eigenvalues and eigenvectors? \underline{A} :

(1) To compute minpoly(T), we need to find the smallest d such that

$$c_0 I + c_1 T + \dots + c_{d-1} T^{d-1} = -T^d$$

has a solution for $c_0, \ldots, c_{d-1} \in \mathbb{F}$. We can choose a basis \mathcal{B} for V and apply $[\cdot]_{\mathcal{B}}$ to the above equation. This produces a matrix equation which can be thought of as a linear system of $(\dim(V))^2$ equations in d unknowns.

(0:00)

This yields the following algorithm: for each d = 1, 2, ..., see if the above system of equations has a solution. By the theorem, this algorithm terminates at the latest when $d = \dim(V)$.

(2) Usually faster, but not guaranteed to always work: choose $v \in V, v \neq 0$ and consider the equation

$$c_0 v + c_1 T(v) + \dots + c_{n-1} T^{n-1}(v) = -T^n(v)$$

where $n := \dim(V)$. Again, by choosing a basis for *V* and applying $[\cdot]_{\mathcal{B}}$, we obtain a system of *n* equations in the *n* unknowns c_0, \ldots, c_{n-1} . If the solution to this system is unique, this yields the coefficients of minpoly(*T*).

(3) Choose a basis \mathcal{B} and let $A = [T]_{\mathcal{B}}$. Compute ker $(A - \lambda I)$, treating λ as a variable.

Proposition 4. Suppose *V* is finite-dimensional, $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then q(T) = 0 iff minpoly(*T*) divides *q*, *i.e.*, q = minpoly(T)f for some $f \in \mathcal{P}(\mathbb{F})$.

Proof idea. Use the division algorithm to divide *q* by minpoly(*T*) and consider the remainder. \Box

Corollary 5. With the same assumptions, suppose U is a T-invariant subspace of V. Then $minpoly(T|_U)$ divides minpoly(T).

Corollary 6. With the same assumptions, *T* is not invertible iff the constant term of minpoly(T) is 0.

Proof. Let m := minpoly(T). Then

$$\begin{array}{ll} T \text{ is not invertible} & \Longleftrightarrow & 0 \text{ is an eigenvalue of } T \\ \Leftrightarrow & 0 \text{ is a zero of } m \\ \Leftrightarrow & m(0) = 0 \\ \Leftrightarrow & \text{the constant term of } m \text{ is } 0. \end{array}$$

II.3. Worksheet.

II.4. **5C Upper triangular matrices.** Let $T : V \to W$ be a linear map and $\mathcal{B} = (v_1, \ldots, v_n)$ and $\mathcal{C} = (w_1, \ldots, w_m)$ be bases of *V* and *W*, respectively. Recall that

$$_{\mathcal{C}}[T]_{\mathcal{B}} = \begin{pmatrix} | & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & | \end{pmatrix}$$

When V = W, so *T* is a linear operator, then its matrix is [ask students] square.

<u>Goal</u>: Find a basis of *V* such that $[T]_{\mathcal{B}} = {}_{\mathcal{B}}[T]_{\mathcal{B}}$ is particularly simple. Suppose *V* is a \mathbb{C} -vector space. As we saw, then *T* has an eigenvalue λ ; let $v \neq 0$ be a corresponding eigenvector, so $T(v) = \lambda v$. If we take *v* to be the first element in a basis for \mathcal{B} of *V*, then

$$[T]_{\mathcal{B}} = \begin{pmatrix} \lambda & & & \\ 0 & * & \\ \vdots & & \\ 0 & & \end{pmatrix}$$

(Here the * indicate that we don't know the other entries.)

Definition 7. A square matrix is *upper triangular* if all entries below the diagonal are 0.

Example 8. [Give examples of diagonal and not diagonal matrices.]

Proposition 9. Suppose $T \in \mathcal{L}(V)$ and $\mathcal{B} := (v_1, \ldots, v_n)$ is a basis of V. TFAE.

- (*i*) $[T]_{\mathcal{B}}$ is upper triangular.
- (*ii*) $T(v_k) \in \operatorname{span}(v_1, \ldots, v_k)$ for each $k = 1, \ldots, n$.
- (*iii*) span (v_1, \ldots, v_k) is *T*-invariant for each $k = 1, \ldots, n$.

Proof sketch. (i) \implies (ii): Recall that the k^{th} column of $[T]_{\mathcal{B}}$ is the coordinate vector $[T(v_k)]_{\mathcal{B}}$. Write

$$[T(v_k)]_{\mathcal{B}} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \, .$$

Since $[T]_{\mathcal{B}}$ is upper triangular, then $0 = a_{k+1} = \cdots = a_n$, so

$$T(v_k) = a_1v_1 + \cdots + a_kv_k \in \operatorname{span}(v_1, \ldots, v_k).$$

 \square

- (ii) \implies (i): Similar.
- (ii) \iff (iii): Exercise.

Proposition 10. Suppose $T \in \mathcal{L}(V)$ and V has a basis \mathcal{B} with respect to which $[T]_{\mathcal{B}}$ is upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$. Then

(i)

$$(T-\lambda_1 I)\cdots(T-\lambda_n I)=0.$$

(ii) The eigenvalues of T are exactly $\lambda_1, \ldots, \lambda_n$.

- *Proof.* (i) <u>Claim</u>: $(T \lambda_1 I) \cdots (T \lambda_k I) v_j = 0$ for all $j \le k$, for all k = 1, ..., n. By induction on k.
 - <u>Base case</u>: k = 1. Since $T(v_1) = \lambda_1 v_1$, then $(T \lambda_1 I)v_1 = 0$.

Inductive step: Let $k \ge 2$ and assume the result holds for k - 1. Fix $j \in \{1, ..., k\}$. <u>Case 1</u>: j < k. Then $j \le k - 1$. Note that the $T - \lambda_i I$ commute with each other since they are polynomials in T. Then

$$(T - \lambda_1 I) \cdots (T - \lambda_k I) v_j = (T - \lambda_k) \underbrace{(T - \lambda_1 I) \cdots (T - \lambda_{k-1} I) v_j}_{= (T - \lambda_k)(0) = 0}$$

<u>Case 2</u>: j = k. Since $[T]_{\mathcal{B}}$ is upper triangular, then

$$T(v_k) = a_1v_1 + \cdots + a_{k-1}v_{k-1} + \lambda_k v_k$$

for some $a_1, \ldots, a_{k-1} \in \mathbb{F}$. Then

$$(T - \lambda_k I)(v_k) = a_1 v_1 + \dots + a_{k-1} v_{k-1} + \underbrace{\lambda_k v_k}_{k-k} \underbrace{\lambda_k v_k}_{k-k} \underbrace{0}_{k-k}$$

Then

$$(T - \lambda_1 I) \cdots (T - \lambda_{k-1} I) (T - \lambda_k I) (v_k) = (T - \lambda_1 I) \cdots (T - \lambda_{k-1} I) (a_1 v_1 + \dots + a_{k-1} v_{k-1})$$

= $a_1 \cdot 0 + \dots + a_{k-1} \cdot 0 = 0$

by the inductive hypothesis.

(ii) Recall that λ is an eigenvalue of *T* iff $T - \lambda I$ is not invertible. Since $T(v_1) = \lambda_1 v_1$, then λ_1 is an eigenvalue.

Given $k \in \{2, ..., n\}$, then $(T - \lambda_k I)v_k \in \text{span}(v_1, ..., v_{k-1})$ by the above. Thus $T - \lambda_k I$ maps $\text{span}(v_1, ..., v_k)$ into $\text{span}(v_1, ..., v_{k-1})$. Since

 $\dim(\operatorname{span}(v_1,\ldots,v_k)) = k$ and $\dim(\operatorname{span}(v_1,\ldots,v_{k-1})) = k-1$

then $T - \lambda_k I$ is not injective by a previous result (consequence of Rank-Nullity). Thus λ_k is an eigenvalue of *T*.

Proposition 11. Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Then V has a basis \mathcal{B} with respect to which $[T]_{\mathcal{B}}$ is upper triangular iff minpoly(T) splits into degree 1 factors, *i.e.*,

minpoly $(T)(z) = (z - \lambda_1) \cdots (z - \lambda_m)$

for some $\lambda_1, \ldots, \lambda_m \in \mathbb{F}$.

Proof sketch. (\Rightarrow): Suppose *T* has an upper triangular matrix with respect to some basis of *V*. Denote the diagonal entries of this matrix by $\alpha_1, \ldots, \alpha_n$. Letting

$$q(z) = (z - \alpha_1) \cdots (z - \alpha_n)$$
,

then q(T) by a previous result. Then minpoly(T) divides q, so minpoly also splits into degree 1 factors.

(\Leftarrow): Suppose minpoly(T)(z) = ($z - \lambda_1$) · · · ($z - \lambda_m$) for some $\lambda_1, ..., \lambda_m \in \mathbb{F}$. If m = 1, done. Otherwise, let $U = img(T - \lambda_m I)$. Then U is T-invariant, so we can consider the restriction $T|_U$. Apply the inductive hypothesis, extend the basis, and prove that this results in an upper triangular matrix.

Corollary 12. Let V be a finite dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then there exists a basis \mathcal{B} of V such that T has an upper triangular matrix with respect to \mathcal{B} .

Proof. By the Fundamental Theorem of Algebra, nonconstant polynomial over \mathbb{C} splits into degree 1 factors, so this is true of minpoly(*T*) in particular.

II.5. **Diagonalizable Operators.** Say we have linear operators $S, T \in \mathcal{L}(V)$ and we want to compute their composition ST with respect to some choice of basis. In general, matrix multiplication is an expensive operation: naively, it requires n^3 operations, where $n = \dim(V)$. But if we can cleverly choose a basis of V that makes it so many of the entries of [S] and [T] are 0, then this will make this computation faster.

Definition 13. A *diagonal matrix* is a square matrix all of whose off-diagonal entries are 0. That is, A is diagonal if $A_{ij} = 0$ when $i \neq j$.

Example 14 (Give example, one where 0 is one of the diagonal entries.).

Proposition 15. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is diagonal, then the eigenvalues of T are precisely the diagonal entries of $[T]_{\mathcal{B}}$.

Proof. Diagonal matrices are upper triangular, so follows from a previous result. \Box

Definition 16. An operator $T \in \mathcal{L}(V)$ is *diagonalizable* if there exists a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is diagonal. Similarly, we say that a square matrix A is diagonalizable if the linear map $L_A : \mathbb{F}^n \to \mathbb{F}^n$ is diagonalizable.

Remark 17. Diagonalizable \neq diagonal!

Example 18. Define

$$T: \mathbb{F}^2 \to \mathbb{F}^2$$
$$v \mapsto Av$$

where

$$A = \left(\begin{array}{rr} -14 & 9\\ -30 & 19 \end{array}\right) \,.$$

Then *A* is not diagonal. However, with respect to the basis \mathcal{B}

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$,

we have

$$[T]_{\mathcal{B}} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \,.$$

Thus *T* (and *A*) is diagonalizable.

Remark 19. Note that if *v* is an eigenvector of *T*, then so is *cv* for all $0 \neq c \in \mathbb{F}$:

$$T(cv) = cT(v) = c\lambda v = \lambda(cv).$$

Definition 20. Let $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The *eigenspace* of *T* corresponding to λ is the subspace

$$E(\lambda) := E(\lambda, T) := \ker(T - \lambda I) = \{v \in V : T(v) = \lambda v\}.$$

So $E(\lambda, T)$ is the set of all eigenvectors of *T* corresponding to λ , along with the 0 vector.

Remark 21. λ is an eigenvalue of *T* iff $E(\lambda, T) \neq \{0\}$.

Theorem 22 (Sum of eigenspaces is direct). Let $T \in \mathcal{L}(V)$ and suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T. Then

 $E(\lambda_1,T)\oplus\cdots\oplus E(\lambda_m,T)$

is a direct sum. Moreover, if V is finite-dimensional, then

$$\dim(E(\lambda_1,T)) + \cdots + \dim(E(\lambda_m,T)) \leq \dim(V).$$

Proof. Suppose $v_1 + \cdots + v_m = 0$ where $v_k \in E(\lambda_k)$ for all $k = 1, \ldots, m$. Since eigenvectors corresponding to distinct eigenvalues are linearly independent, then $v_k = 0$ for all k. (Otherwise, this would be a nontrivial linear relation.) Thus the sum is direct.

If *V* is finite-dimensional, then

$$\dim(E(\lambda_1,T)) + \cdots + \dim(E(\lambda_m,T)) = \dim(E(\lambda_1) \oplus \cdots \oplus E(\lambda_m)) \leq \dim(V).$$

Q: How can we tell when a linear operator is diagonalizable?

Theorem 23 (Criteria for diagonalizability). Let V be finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T. TFAE.

- (*i*) *T* is diagonalizable.
- *(ii) V* has a basis consisting of eigenvectors of *T*.
- (iii) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T).$
- (*iv*) dim(V) = dim($E(\lambda_1, T)$) + · · · + dim($E(\lambda_m, T)$).

Proof. (a) \iff (b): *T* has a diagonal matrix

$$\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

with respect to a basis v_1, \ldots, v_n iff $T(v_k) = \lambda_k$ for each *k*.

(b) \implies (c): Assume *V* has a basis of eigenvectors of *T*. Then every $v \in V$ can be written as a linear combination of eigenvectors, so

$$V = E(\lambda_1, T) + \cdots + E(\lambda_m, T),$$

and we know the sum is direct from the previous result.

- (c) \implies (d): Dimension of direct sum is sum of dimensions of the summands.
- (d) \implies (b): Assume

$$\dim(V) = \dim(E(\lambda_1, T)) + \cdots + \dim(E(\lambda_m, T)).$$

Choose a basis for each $E(\lambda_k, T)$, and concatenate these to form a list v_1, \ldots, v_n . <u>Claim</u>: These vectors are linearly independent. (Exercise.) Since this list has length dim(V), then it also spans, hence is a basis.

Remark 24.

- Every linear operator on a finite-dimensional C-vector space has an eigenvalue.
- Every linear operator on a finite-dimensional C-vector space can be upper triangularized.
- <u>Not</u> every linear operator on a finite-dimensional C-vector space can be diagonalized.

Example 25. Define

$$T: \mathbb{F}^3 \to \mathbb{F}^3$$
$$v \mapsto Av$$

where

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Note that *A* is upper triangular, but not diagonal. [Compute A^2 , A^3 .] Thus $T^3 = 0$, so 0 is the only possible eigenvalue of *T*. Since E(0, T) = ker(T), we see that

$$E(0,T) = \{(a,0,0) \in \mathbb{F}^3 : a \in \mathbb{F}\},\$$

which is 1-dimensional. Thus (d) fails, so *T* is not diagonalizable.

Proposition 26. Let V be finite-dimensional and suppose $T \in \mathcal{L}(V)$ has dim(V) distinct eigenvalues. Then T is diagonalizable.

Proof. Let $n := \dim(V)$ and suppose *T* has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Then $\dim(E(\lambda_i)) \ge 1$ for each *i*, so

 $\dim(E(\lambda_1)) + \cdots + \dim(E(\lambda_n)) \ge 1 + \cdots + 1 = n = \dim(V).$

The reverse inequality is always true so we have equality, hence *T* is diagonalizable. \Box