18.700 - LINEAR ALGEBRA, DAY 11 THE MINIMAL POLYNOMIAL

SAM SCHIAVONE

CONTENTS

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. 5A: Invariant subspaces and Eigenvectors, cont.	2
II.3. The Minimal Polynomial	4

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn what it means to evaluate a polynomial at a linear operator.
- (2) Students will learn the definition of the minimal polynomial.
- (3) Students will learn that the roots of the minimal polynomial are exactly the eigenvalues.
- (4) Students will learn how to compute the eigenvalues and eigenvectors of a linear operator.

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

(0:00)

Announcements: • Exam grades posted?

II.1. Last time.

- $V \cong W \iff \dim(V) = \dim(W)$.
- For a fixed choice of basis *B*, the coordinate map

$$V \to \mathbb{F}^n$$
$$v \mapsto [v]_{\mathcal{B}}$$

is an isomorphism.

• Let *V* and *W* have dimension *n* and *m* with bases \mathcal{B} and \mathcal{C} , respectively. Then

$$\mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F})$$

 $T \mapsto_{\mathcal{C}}[T]_{\mathcal{B}}$

is an isomorphism.

• $[T(v)]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[v]_{\mathcal{B}}$

•

Proposition 1 (Change of basis formula). *Suppose* \mathcal{B} *and* \mathcal{C} *are both bases of* V. *Given* $T \in \mathcal{L}(V)$, *then*

$${}_{\mathcal{B}}[T]_{\mathcal{B}} = ({}_{\mathcal{C}}[I]_{\mathcal{B}})^{-1} {}_{\mathcal{C}}[T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}}.$$

• Defined eigenvalues and eigenvectors.

II.2. 5A: Invariant subspaces and Eigenvectors, cont.

Definition 2. Let $T \in \mathcal{L}(V)$. A scalar $\lambda \in \mathbb{F}$ is an *eigenvalue* of T if there exists $v \in V$ with $v \neq 0$ such that $T(v) = \lambda v$. Such a v is called an *eigenvector* corresponding to λ .

Remark 3.

- "eigen-" means "self" or "own". An eigenvector maps into its own span under T.
- We require that $v \neq 0$ because $T(0) = \lambda 0$ for all $\lambda \in \mathbb{F}$.

[Show gif depicting eigenvectors in \mathbb{R}^2 : https://upload.wikimedia.org/wikipedia/ commons/a/ad/Eigenvectors-extended.gif.]

Theorem 4. Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. TFAE.

- (*i*) λ *is an eigenvalue of T*.
- (*ii*) $T \lambda I$ is not injective.
- (*iii*) $T \lambda I$ is not surjective.
- (*iv*) $T \lambda I$ *is not invertible.*

Proof. (a) \implies (b): Assume λ is an eigenvalue of T with corresponding eigenvector $v \neq 0$, so $T(v) = \lambda v$. Then

$$0 = T(v) - \lambda v = (T - \lambda I)(v)$$

so $0 \neq v \in \text{ker}(T)$. Thus *T* is not one-to-one.

(b) \implies (a): Assume $T - \lambda I$ is not injective. Then $\ker(T - \lambda I) \neq \{0\}$ so there exists $0 \neq v \in \ker(T - \lambda I)$. Then

$$0 = (T - \lambda I)(v) = T(v) - \lambda v \implies T(v) = \lambda v$$

so *v* is an eigenvector with eigenvalue λ .

We previously showed the equivalence of (b), (c), and (d).

Proposition 5. Let $T \in \mathcal{L}(V)$. Suppose that $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of T with corresponding eigenvectors v_1, \ldots, v_k . Then v_1, \ldots, v_k are linearly independent.

Proof. We proceed by induction on *k*, the number of eigenvalues.

<u>Base case</u>: k = 1. An eigenvector is nonzero by definition, so the list v_1 is linearly independent by a previous homework problem.

Inductive step: Assume the result holds for k - 1 and assume *T* has *k* distinct eigenvalues. Suppose that

$$a_1v_1 + \dots + a_kv_k = 0 \tag{6}$$

for some $a_1, \ldots, a_k \in \mathbb{F}$. <u>Goal</u>: $a_i = 0$ for all *i*. Note that

$$(T - \lambda_k I)(v_i) = T(v_i) - \lambda_k v_i = \lambda_i v_i - \lambda_k v_i = (\lambda_i - \lambda_k) v_k$$

for all i = 1, ..., k. Applying $T - \lambda_k I$ to (6), we find

$$0 = (T - \lambda_k I)(a_1v_1 + \dots + a_kv_k)$$

= $a_1(\lambda_1 - \lambda_k)v_1 + \dots + a_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} + a_k(\lambda_k - \lambda_k)v_k$.

Since v_1, \ldots, v_{k-1} are linearly independent by the inductive hypothesis, then $a_i(\lambda_i - \lambda_k) = 0$ for all $i = 1, \ldots, k - 1$. Since the λ_i are distinct, then $a_i = 0$ for all $i = 1, \ldots, k - 1$. Then (6) becomes

 $a_k v_k = 0$.

But v_k is an eigenvector, hence is nonzero, so $a_k = 0$ by the base case.

Corollary 7. If V is finite-dimensional, then every operator $T \in \mathcal{L}(V)$ has at most dim(V) distinct eigenvalues.

Proof. Apply the previous result and $LI \leq span$.

II.2.1. *Polynomials applied to linear operators.* Given a linear operator $T : V \to V$, then we can compose T with itself: $T \circ T = T^2$. We similarly define

$$T^{m} = \begin{cases} \overbrace{T \cdots T}^{m \text{ times}} & \text{if } m > 0; \\ I & \text{if } m = 0; \\ (T^{-1})^{|m|} & \text{if } m < 0 \text{ and } T \text{ is invertible} \end{cases}$$

Lemma 8.

 \square

- $T^m T^n = T^{m+n}$
- $(T^m)^n = T^{mn}$

Proof. Exercise.

Definition 9. Given $T \in \mathcal{L}(V)$, and $p \in \mathcal{P}(\mathbb{F})$ with

 $p(z) = a_0 + a_1 z + \cdots + a_m z^m,$

define the operator $p(T) \in \mathcal{L}(V)$ by

$$\omega(T) := a_0 I + a_1 T + \dots + a_m T^m.$$

Definition 10. Let $p, q \in \mathcal{P}(\mathbb{F})$. Their product pq is defined pointwise:

$$(pq)(z) := p(z)q(z)$$

for all $z \in \mathbb{F}$.

Note that multiplication of polynomials is commutative. The same is true when we apply polynomials to linear operators.

Lemma 11.

(*i*) (pq)(T) = p(T)q(T);(*ii*) p(T)q(T) = q(T)p(T).

Proof. Exercise.

Lemma 12. Let $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then $\ker(p(T))$ and $\operatorname{img}(p(T))$ are *T*-invariant.

Proof. Exercise.

II.3. The Minimal Polynomial.

Definition 13. A polynomial is *monic* if its leading coefficient is 1.

Example 14. $4x^3 - 3x + 1$ is *not* monic. $x^5 - 2x^2 + 3$ is monic.

Theorem 15. Let *V* be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. There is a unique monic polynomial $m \in \mathcal{P}(\mathbb{F})$ of minimum degree such that m(T) = 0. Moreover, $\deg(m) \leq \dim(V)$.

Proof. Let $n := \dim(V)$.

<u>Existence</u>: We proceed by strong induction on *n*. <u>Base case</u>: n = 0. Then $V = \{0\}$, so *I* is the zero operator on *V*. Thus we can take *m* to be the constant polynomial 1.

Inductive step: Now assume that $n \ge 1$ and the result holds for all vector spaces of dimension < n. Choose a nonzero $u \in V$ and consider

$$u, T(u), T^2(u), \ldots, T^n(u)$$
.

Since this list consists of n + 1 vectors, then it must be [ask students] linearly dependent. By the Linear Dependence Lemma, then there is a minimal positive integer $d \in \{1, ..., n\}$ such that

$$T^d(u) \in \operatorname{span}(u, T(u), \ldots, T^{d-1}(u)).$$

Then

$$c_0 u + c_1 T(u) + \dots + c_{d-1} T^{d-1}(u) + T^d(u) = 0$$

 \square

for some $c_0, \ldots, c_{d-1} \in \mathbb{F}$, not all zero. Letting

$$q(z) := c_0 + c_1 z + \dots + c_{d-1} z^{d-1} + z^d \in \mathcal{P}(\mathbb{F}),$$

then q(T)u = 0. Note that

$$q(T)(T^{k}(u)) = T^{k}(q(T)(u)) = T^{k}(0) = 0$$
(16)

for all $k \in \mathbb{Z}_{\geq 0}$. Since we chose *d* to be minimal, then $u, T(u), \ldots, T^{d-1}(u)$ is linearly independent. Since these are all in ker(q(T)) by (16), then dim(ker(q(T))) $\geq d$. By Rank-Nullity, then

$$\dim(\operatorname{img}(q(T)) = \dim(V) - \dim(\ker(T)) \le \dim(V) - d$$

By a previous result, $\operatorname{img}(q(T))$ is *T*-invariant, so we can apply the inductive hypothesis to the restriction $T|_{\operatorname{img}(q(T))}$. Thus there is a monic polynomial $s \in \mathcal{P}(\mathbb{F})$ such that

$$s(T|_{img(q(T))}) = 0$$
 and $deg(s) \le dim(img(q(T))) \le dim(V) - d$

Consider the product (sq)(z) = s(z)q(z). Given $v \in V$, then

$$((sq)(T))(v) = s(T)(q(T)(v)) = 0$$

since $s(T)|_{img(T)} = s(T|_{img(T)}) = 0$. Thus *sq* is a monic polynomial with (sq)(T) = 0 and $deg(sq) \le dim(V)$.

Uniqueness: [Leave as exercise if necessary.] Suppose that m_1 and m_2 are both monic polynomials of smallest degree such that $m_1(T) = 0$ and $m_2(T) = 0$. Consider $m_1 - m_2$. We have $(m_1 - m_2)(T) = 0$ and since both m_1 and m_2 are monic, then deg $(m_1 - m_2) <$ deg (m_1) . If $m_1 - m_2 \neq 0$, then we can rescale $m_1 - m_2$ by the reciprocal of its leading coefficient, obtaining a monic polynomial strictly smaller degree, contradiction. Thus $m_1 - m_2 = 0$, i.e., $m_1 = m_2$.

Definition 17. With notation as above, the *minimal polynomial* of *T* is *m*, i.e., the unique polynomial of smallest degree such that m(T) = 0. It is denoted minpoly(*T*).

Corollary 18. Let V be a nonzero finite-dimensional \mathbb{C} -vector space and $T \in \mathcal{L}(V)$. Then T has an eigenvalue.

Proof. Let m := minpoly(T). Note that m is nonconstant: if m = c were constant, then we would have cI = 0, contradicting the fact that $V \neq \{0\}$.

By the Fundamental Theorem of Algebra, there exists $\lambda \in \mathbb{C}$ such that $m(\lambda) = 0$. Then

$$m(z) = (z - \lambda)q(z)$$

for some monic $q \in \mathcal{P}(\mathbb{C})$. Then

$$0 = m(T) = (T - \lambda I)q(T).$$

Since deg(*q*) < deg(*m*) and *m* is the minpoly, then $q(T) \neq 0$. Then there is some vector $v \in V$ such that $q(T)(v) \neq 0$. Then

$$0 = m(T)(v) = (T - \lambda I)(q(T)(v))$$

so q(T)(v) is an eigenvector of T with eigenvalue λ .

Remark 19. Here we used the fact that \mathbb{C} is algebraically closed in an important way. The result is not true over \mathbb{R} !

Example 20. Consider the right shift operator

$$R: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$$
$$(x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots).$$

Then *R* has no eigenvectors and no eigenvalues (exercise). [Ask students why this doesn't contradict theorem.]

Corollary 21. With notation as above, the eigenvalues of *T* are exactly the roots of minpoly(T).

Proof. We have seen that all the roots of m := minpoly(T) are eigenvalues of T. Conversely, suppose $\lambda \in \mathbb{F}$ is an eigenvalue of T. Then there exists $0 \neq v \in V$ such that $T(v) = \lambda v$. Applying T to both sides repeatedly, we see that $T^k(v) = \lambda^k v$ for all $k \in \mathbb{Z}_{\geq 0}$. Taking appropriate linear combinations of these monomials, we have [write " $0 = \dots$ " last]

$$0 = m(T)v = m(\lambda)v.$$

Since $v \neq 0$, then $m(\lambda) = 0$.

<u>Q</u>: Given a linear operator *T*, how can we compute its eigenvalues and eigenvectors? \underline{A} :

(1) To compute minpoly(T), we need to find the smallest d such that

$$c_0 I + c_1 T + \dots + c_{d-1} T^{d-1} = -T^d$$

has a solution for $c_0, \ldots, c_{d-1} \in \mathbb{F}$. We can choose a basis \mathcal{B} for V and apply $[\cdot]_{\mathcal{B}}$ to the above equation. This produces a matrix equation which can be thought of as a linear system of $(\dim(V))^2$ equations in d unknowns.

This yields the following algorithm: for each d = 1, 2, ..., see if the above system of equations has a solution. By the theorem, this algorithm terminates at the latest when $d = \dim(V)$.

(2) Usually faster, but not guaranteed to always work: choose $v \in V, v \neq 0$ and consider the equation

$$c_0 v + c_1 T(v) + \dots + c_{n-1} T^{n-1}(v) = -T^n(v)$$

where $n := \dim(V)$. Again, by choosing a basis for *V* and applying $[\cdot]_{\mathcal{B}}$, we obtain a system of *n* equations in the *n* unknowns c_0, \ldots, c_{n-1} . If the solution to this system is unique, this yields the coefficients of minpoly(*T*).

Proposition 22. Suppose *V* is finite-dimensional, $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbb{F})$. Then q(T) = 0 iff minpoly(*T*) divides *q*, *i.e.*, q = minpoly(T)f for some $f \in \mathcal{P}(\mathbb{F})$.

Proof idea. Use the division algorithm to divide *q* by minpoly(*T*) and consider the remainder. \Box

Corollary 23. With the same assumptions, suppose U is a T-invariant subspace of V. Then $minpoly(T|_U)$ divides minpoly(T).

Corollary 24. With the same assumptions, T is not invertible iff the constant term of minpoly(T) is 0.

Proof. Let m := minpoly(T). Then

<i>T</i> is not invertible	\iff	0 is an eigenvalue of T
	\iff	0 is a zero of p
	\iff	p(0) = 0
	\iff	the constant term of p is 0.