18.700 - LINEAR ALGEBRA, DAY 11

THE MINIMAL POLYNOMIAL
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I. PRE-CLASS PLANNING

1.1. Goals for lesson.

(1) Students will learn what it means to evaluate a polynomial at a linear operator.
(2) Students will learn the defintion of the minimal polynomial.
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(3) Students will learn that the roots of the minimal polynomial are exactly the eigen-

values.

(4) Students will learn how to compute the eigenvalues and eigenvectors of a linear

operator.

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN

Announcements: ® Exam grades posted?

II.1. Last time.
e VEW <— dim(V) = dim(W).
e For a fixed choice of basis B, the coordinate map
V= F"
v [vls

is an isomorphism.
e Let V and W have dimension n and m with bases I and C, respectively. Then

L(V,W) = Mpyxn(F)

T+ [T
is an isomorphism.
o [T(v)lc = c[Tlslv)s
1% a W
fPBl l(Pc
n m
IF T F

Proposition 1 (Change of basis formula). Suppose B and C are both bases of V. Given
T € L(V), then

sT]5 = (c[lls) "c[Tle c[ls-
e Defined eigenvalues and eigenvectors.

I.2. 5A: Invariant subspaces and Eigenvectors, cont.

Definition 2. Let T € L(V). A scalar A € F is an eigenvalue of T if there exists v € V with
v # 0 such that T(v) = Av. Such a v is called an eigenvector corresponding to A.

Remark 3.

e “eigen-” means “self” or “own”. An eigenvector maps into its own span under T.
e We require that v # 0 because T(0) = A0 for all A € F.

[Show gif depicting eigenvectors in IR?: https://upload.wikimedia.org/wikipedia/
commons/a/ad/Eigenvectors-extended.gif.]

Theorem 4. Suppose V is finite-dimensional, T € L(V), and A € F. TFAE.

(i) Aisan eigenvalue of T.
(ii) T — Al is not injective.
(iii) T — Al is not surjective.
(iv) T — Al is not invertible.


https://upload.wikimedia.org/wikipedia/commons/a/ad/Eigenvectors-extended.gif
https://upload.wikimedia.org/wikipedia/commons/a/ad/Eigenvectors-extended.gif

Proof. (a) = (b): Assume A is an eigenvalue of T with corresponding eigenvector v # 0,
so T(v) = Av. Then
0=T(v) —Av= (T —Al)(v)
s0 0 # v € ker(T). Thus T is not one-to-one.
(b) = (a): Assume T — Al is not injective. Then ker(T — AI) # {0} so there exists
0 # v € ker(T — AI). Then

0=(T—-A)(v)=T(v) —Av = T(v) =Av

so v is an eigenvector with eigenvalue A.
We previously showed the equivalence of (b), (c), and (d). U

Proposition 5. Let T € L(V). Suppose that A1, ..., A are distinct eigenvalues of T with corre-
sponding eigenvectors vy, ..., 0. Then vy, ..., vy are linearly independent.

Proof. We proceed by induction on k, the number of eigenvalues.

Base case: k = 1. An eigenvector is nonzero by definition, so the list v; is linearly
independent by a previous homework problem.

Inductive step: Assume the result holds for k — 1 and assume T has k distinct eigenval-

ues. Suppose that

a1+ +ave =0 (6)
for some ay,...,a; € [F. Goal: a; = 0 for all i. Note that
(T = AeI) (i) = T(v;) — Avp = Ao — Aoy = (A — Ag)ox
foralli=1,... k. Applying T — A to (6), we find
0= (T — Al (ago1 + - - - + aog)

= a1 (A1 = Ag)or + -+ a1 (A1 — M) vk +M

Since v, ..., v;_1 are linearly independent by the inductive hypothesis, then a;(A; — Ay) =
Oforalli =1,...,k— 1. Since the A; are distinct, thena; =0 foralli =1,...,k— 1. Then
(6) becomes

0

a0, = 0.
But v is an eigenvector, hence is nonzero, so a; = 0 by the base case. O

Corollary 7. If V is finite-dimensional, then every operator T € L(V') has at most dim(V)
distinct eigenvalues.

Proof. Apply the previous result and LI < span. U

I1.2.1. Polynomials applied to linear operators. Given a linear operator T : V — V, then we
can compose T with itself: T o T = T2. We similarly define

m times
—
- T---T ifm>0;
) I ifm=0;

(T~HI"if m < 0 and T is invertible.

Lemma 8.



° Tan — Tm—l—n
° (Tm)n — Tmn

Proof. Exercise. U
Definition 9. Given T € £(V), and p € P(F) with
p(z) =ap+amz+ -+ anz",
define the operator p(T) € L(V) by
p(T) :=apl + ;T + -+ a,T".
Definition 10. Let p,q € P(IF). Their product pq is defined pointwise:
(pg)(2) == p(2)q(2)
forallz € F.

Note that multiplication of polynomials is commutative. The same is true when we
apply polynomials to linear operators.

Lemma 11.

(i) (pq)(T) = p(T)q(T);

(i) p(T)q(T) = q(T)p(T).
Proof. Exercise. U
Lemma 12. Let T € L(V) and p € P(F). Then ker(p(T)) and img(p(T)) are T-invariant.
Proof. Exercise. U

II.3. The Minimal Polynomial.

Definition 13. A polynomial is monic if its leading coefficient is 1.

Example 14. 4x3 — 3x + 1 is not monic. x° — 2x? + 3 is monic.

Theorem 15. Let V be a finite-dimensional vector space and T € L(V'). There is a unique monic
polynomial m € P(IFF) of minimum degree such that m(T) = 0. Moreover, deg(m) < dim(V).

Proof. Let n := dim(V).

Existence: We proceed by strong induction on n. Base case: n = 0. Then V = {0}, so I
is the zero operator on V. Thus we can take m to be the constant polynomial 1.

Inductive step: Now assume that n > 1 and the result holds for all vector spaces of

dimension < n. Choose a nonzero u € V and consider
u, T(u), T*(u),..., T"(u).
Since this list consists of n + 1 vectors, then it must be [ask students] linearly dependent.

By the Linear Dependence Lemma, then there is a minimal positive integer d € {1,...,n}
such that

T(u) € span(u, T(u),..., T Y (u)).
Then
cou + 1 T(u) + - +cqg 1T (u) + Tu) =0
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for some ¢y, ...,c4_1 € F, not all zero. Letting

q(z) :==co+cr1z+ -+ ci_1z7 1+ 2% € P(IF),
then g(T)u = 0. Note that

q(T)(T"(u)) = T*(q(T)(u)) = T*(0) = 0 (16)
for all k € Z-g. Since we chose d to be minimal, then u, T(),..., T !(u) is linearly
independent. Since these are all in ker(q(T)) by (16), then dim(ker(q(T))) > d. By Rank-
Nullity, then

dim(img(q(T)) = dim(V) — dim(ker(T)) < dim(V) — 4.

By a previous result, img(q(T)) is T-invariant, so we can apply the inductive hypothe-
sis to the restriction T|ipg(,(7))- Thus there is a monic polynomial s € P(IF) such that

$(T|img(q(r))) =0  and deg(s) < dim(img(gq(T))) < dim(V) — 4.
Consider the product (sq)(z) = s(z)q(z). Given v € V, then

=s
((sq)(T))(0) = s(T)(q(T)(v)) =0
since $(T) limg(T) = S(Tlimg(1)) = 0. Thus sq is a monic polynomial with (sq)(T) = 0 and
deg(sq) < dim(V).
Uniqueness: [Leave as exercise if necessary.] Suppose that m; and my are both monic

polynomials of smallest degree such that m1(T) = 0 and my(T) = 0. Consider m; — my.
We have (mq — my)(T) = 0 and since both m; and my are monic, then deg(m; — my) <
deg(mq). If m; —my # 0, then we can rescale m; — mjy by the reciprocal of its leading
coefficient, obtaining a monic polynomial stricly smaller degree, contradiction. Thus m; —
my = 0, i.e., my = myp. [l

Definition 17. With notation as above, the minimal polynomial of T is m, i.e., the unique
polynomial of smallest degree such that m(T) = 0. It is denoted minpoly(T).

Corollary 18. Let V be a nonzero finite-dimensional C-vector space and T € L(V'). Then T has
an eigenvalue.

Proof. Let m := minpoly(T). Note that m is nonconstant: if m = ¢ were constant, then we
would have cI = 0, contradicting the fact that V' # {0}.
By the Fundamental Theorem of Algebra, there exists A € C such that m(A) = 0. Then

m(z) = (2 — A)q(2)
for some monic g € P(C). Then
0=m(T) = (T —Al)g(T).

Since deg(g) < deg(m) and m is the minpoly, then q(T) # 0. Then there is some vector
v € V such that q(T)(v) # 0. Then

0 =m(T)(v) = (T - AI)(q(T)(v))
so q(T)(v) is an eigenvector of T with eigenvalue A. O

Remark 19. Here we used the fact that C is algebraically closed in an important way. The

result is not true over R!
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Example 20. Consider the right shift operator
R:F* — F*
(xl,xz,. . ) — (O, X1,X2,.. ) .

Then R has no eigenvectors and no eigenvalues (exercise). [Ask students why this doesn’t
contradict theorem.]

Corollary 21. With notation as above, the eigenvalues of T are exactly the roots of minpoly(T).

Proof. We have seen that all the roots of m := minpoly(T) are eigenvalues of T. Con-
versely, suppose A € T is an eigenvalue of T. Then there exists 0 # v € V such that

T(v) = Av. Applying T to both sides repeatedly, we see that TX(v) = A*v for all k € Z,.
Taking appropriate linear combinations of these monomials, we have [write “0 =..."” last]

0=m(T)v =m(A)v.
Since v # 0, then m(A) = 0. O

Q: Given a linear operator T, how can we compute its eigenvalues and eigenvectors?

2>

(1) To compute minpoly(T), we need to find the smallest d such that
col+c1T+-+cg T =T
has a solution for ¢y, ...,c;_1 € IF. We can choose a basis B for V and apply || to
the above equation. This produces a matrix equation which can be thought of as a
linear system of (dim(V))? equations in d unknowns.

This yields the following algorithm: for eachd = 1,2, .. ., see if the above system
of equations has a solution. By the theorem, this algorithm terminates at the latest
when d = dim(V).

(2) Usually faster, but not guaranteed to always work: choose v € V,v # 0 and
consider the equation

cov+c1T(0) + -+ 1T Hv) = =T"(v)

where n := dim(V). Again, by choosing a basis for V and applying -] 3, we obtain
a system of n equations in the n unknowns cy,...,c,—1. If the solution to this
system is unique, this yields the coefficients of minpoly(T).

Proposition 22. Suppose V is finite-dimensional, T € L(V) and q € P(IF). Then q(T) = 0 iff
minpoly(T) divides q, i.e., § = minpoly(T) f for some f € P(F).

Proof idea. Use the division algorithm to divide g4 by minpoly(T) and consider the remain-
der. O

Corollary 23. With the same assumptions, suppose U is a T-invariant subspace of V. Then
minpoly(T|y) divides minpoly(T).

Corollary 24. With the same assumptions, T is not invertible iff the constant term of minpoly (T)
is 0.

Proof. Let m := minpoly(T). Then



T is not invertible 0 is an eigenvalue of T

Ois azeroof p
p(0) =0

the constant term of p is 0.
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