18.700 - LINEAR ALGEBRA, DAY 11 THE MINIMAL POLYNOMIAL

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn what it means to evaluate a polynomial at a linear operator.
- (2) Students will learn the defintion of the minimal polynomial.
- (3) Students will learn that the roots of the minimal polynomial are exactly the eigenvalues.
- (4) Students will learn how to compute the eigenvalues and eigenvectors of a linear operator.

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Exam grades posted?

II.1. **Last time.**

- $V \cong W \iff \dim(V) = \dim(W)$.
- For a fixed choice of basis \mathcal{B} , the coordinate map

$$
V \to \mathbb{F}^n
$$

$$
v \mapsto [v]_{\mathcal{B}}
$$

is an isomorphism.

• Let *V* and *W* have dimension *n* and *m* with bases B and C , respectively. Then

$$
\mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F})
$$

$$
T \mapsto c[T]_{\mathcal{B}}
$$

is an isomorphism.

• $[T(v)]_C = c[T]_B[v]_B$

•

Proposition 1 (Change of basis formula)**.** *Suppose* B *and* C *are both bases of V. Given* $T \in \mathcal{L}(V)$, then

$$
B[T]B = (c[I]B)^{-1}c[T]c c[I]B.
$$

• Defined eigenvalues and eigenvectors.

II.2. **5A: Invariant subspaces and Eigenvectors, cont.**

Definition 2. Let $T \in \mathcal{L}(V)$. A scalar $\lambda \in \mathbb{F}$ is an *eigenvalue* of *T* if there exists $v \in V$ with $v \neq 0$ such that $T(v) = \lambda v$. Such a *v* is called an *eigenvector* corresponding to λ .

Remark 3.

- "eigen-" means "self" or "own". An eigenvector maps into its own span under *T*.
- We require that $v \neq 0$ because $T(0) = \lambda 0$ for all $\lambda \in \mathbb{F}$.

[Show gif depicting eigenvectors in **R** 2 : [https://upload.wikimedia.org/wikipedia/](https://upload.wikimedia.org/wikipedia/commons/a/ad/Eigenvectors-extended.gif) [commons/a/ad/Eigenvectors-extended.gif](https://upload.wikimedia.org/wikipedia/commons/a/ad/Eigenvectors-extended.gif).]

Theorem 4. *Suppose V is finite-dimensional,* $T \in \mathcal{L}(V)$ *, and* $\lambda \in \mathbb{F}$ *. TFAE.*

- *(i) λ is an eigenvalue of T.*
- *(ii)* $T \lambda I$ *is not injective.*
- *(iii)* $T \lambda I$ *is not surjective.*
- *(iv)* $T \lambda I$ *is not invertible.*

Proof. (a) \implies (b): Assume λ is an eigenvalue of *T* with corresponding eigenvector $v \neq 0$, so $T(v) = \lambda v$. Then

$$
0 = T(v) - \lambda v = (T - \lambda I)(v)
$$

so $0 \neq v \in \text{ker}(T)$. Thus *T* is not one-to-one.

(b) \implies (a): Assume $T - \lambda I$ is not injective. Then ker $(T - \lambda I) \neq \{0\}$ so there exists $0 \neq v \in \text{ker}(T - \lambda I)$. Then

$$
0 = (T - \lambda I)(v) = T(v) - \lambda v \implies T(v) = \lambda v
$$

so *v* is an eigenvector with eigenvalue λ .

We previously showed the equivalence of (b), (c), and (d). \Box

Proposition 5. Let $T \in \mathcal{L}(V)$. Suppose that $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of T with corre*sponding eigenvectors v*1, . . . , *v^k . Then v*1, . . . , *v^k are linearly independent.*

Proof. We proceed by induction on *k*, the number of eigenvalues.

Base case: $k = 1$. An eigenvector is nonzero by definition, so the list v_1 is linearly independent by a previous homework problem.

Inductive step: Assume the result holds for *k* − 1 and assume *T* has *k* distinct eigenvalues. Suppose that

$$
a_1v_1+\cdots+a_kv_k=0\tag{6}
$$

for some $a_1, \ldots, a_k \in \mathbb{F}$. Goal: $a_i = 0$ for all *i*. Note that

$$
(T - \lambda_k I)(v_i) = T(v_i) - \lambda_k v_i = \lambda_i v_i - \lambda_k v_i = (\lambda_i - \lambda_k)v_k
$$

for all $i = 1, \ldots, k$. Applying $T - \lambda_k I$ to [\(6\)](#page-2-0), we find

$$
0 = (T - \lambda_k I)(a_1 v_1 + \dots + a_k v_k)
$$

= $a_1(\lambda_1 - \lambda_k)v_1 + \dots + a_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} + a_k(\lambda_k - \lambda_k)v_k$.

Since v_1, \ldots, v_{k-1} are linearly independent by the inductive hypothesis, then $a_i(\lambda_i - \lambda_k) =$ 0 for all $i = 1, \ldots, k - 1$. Since the λ_i are distinct, then $a_i = 0$ for all $i = 1, \ldots, k - 1$. Then [\(6\)](#page-2-0) becomes

 $a_k v_k = 0$.

But v_k is an eigenvector, hence is nonzero, so $a_k = 0$ by the base case. \Box

Corollary 7. If V is finite-dimensional, then every operator $T \in \mathcal{L}(V)$ has at most $\dim(V)$ *distinct eigenvalues.*

Proof. Apply the previous result and $LI \le$ span. \Box

II.2.1. *Polynomials applied to linear operators.* Given a linear operator $T: V \rightarrow V$, then we can compose T with itself: $T \circ T = T^2$. We similarly define

$$
T^{m} = \begin{cases} \overbrace{T \cdots T}^{m \text{ times}} & \text{if } m > 0; \\ I & \text{if } m = 0; \\ (T^{-1})^{|m|} & \text{if } m < 0 \text{ and } T \text{ is invertible.} \end{cases}
$$

Lemma 8.

• $T^m T^n = T^{m+n}$ • $(T^m)^n = T^{mn}$

Proof. Exercise. □

Definition 9. Given $T \in \mathcal{L}(V)$, and $p \in \mathcal{P}(\mathbb{F})$ with

 $p(z) = a_0 + a_1 z + \cdots + a_m z^m$,

define the operator $p(T) \in \mathcal{L}(V)$ by

$$
p(T) := a_0 I + a_1 T + \cdots + a_m T^m.
$$

Definition 10. Let $p, q \in \mathcal{P}(\mathbb{F})$. Their product pq is defined pointwise:

 $(pq)(z) := p(z)q(z)$

for all $z \in \mathbb{F}$.

Note that multiplication of polynomials is commutative. The same is true when we apply polynomials to linear operators.

Lemma 11.

 (i) $(pq)(T) = p(T)q(T)$; *(ii)* $p(T)q(T) = q(T)p(T)$.

Proof. Exercise. □

Lemma 12. Let $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then $\ker(p(T))$ and $\text{img}(p(T))$ are T-invariant.

Proof. Exercise. □

II.3. **The Minimal Polynomial.**

Definition 13. A polynomial is *monic* if its leading coefficient is 1.

Example 14. $4x^3 - 3x + 1$ is *not* monic. $x^5 - 2x^2 + 3$ is monic.

Theorem 15. Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. There is a unique monic *polynomial* $m \in \mathcal{P}(\mathbb{F})$ *of minimum degree such that* $m(T) = 0$ *. Moreover,* $\deg(m) \leq \dim(V)$ *.*

Proof. Let $n := \dim(V)$.

Existence: We proceed by strong induction on *n*. Base case: $n = 0$. Then $V = \{0\}$, so I is the zero operator on *V*. Thus we can take *m* to be the constant polynomial 1.

Inductive step: Now assume that $n \geq 1$ and the result holds for all vector spaces of dimension $\lt n$. Choose a nonzero $u \in V$ and consider

$$
u,T(u),T^2(u),\ldots,T^n(u).
$$

Since this list consists of $n + 1$ vectors, then it must be [ask students] linearly dependent. By the Linear Dependence Lemma, then there is a minimal positive integer $d \in \{1, \ldots, n\}$ such that

$$
T^d(u) \in \mathrm{span}(u, T(u), \ldots, T^{d-1}(u)).
$$

Then

$$
c_0u + c_1T(u) + \cdots + c_{d-1}T^{d-1}(u) + T^d(u) = 0
$$

for some $c_0, \ldots, c_{d-1} \in \mathbb{F}$, not all zero. Letting

$$
q(z) := c_0 + c_1 z + \dots + c_{d-1} z^{d-1} + z^d \in \mathcal{P}(\mathbb{F}),
$$

then $q(T)u = 0$. Note that

$$
q(T)(T^{k}(u)) = T^{k}(q(T)(u)) = T^{k}(0) = 0
$$
\n(16)

for all $k \in \mathbb{Z}_{\geq 0}$. Since we chose *d* to be minimal, then $u, T(u), \ldots, T^{d-1}(u)$ is linearly independent. Since these are all in ker($q(T)$) by [\(16\)](#page-4-0), then dim(ker($q(T)$)) $\geq d$. By Rank-Nullity, then

$$
\dim(\text{img}(q(T)) = \dim(V) - \dim(\text{ker}(T)) \le \dim(V) - d.
$$

By a previous result, $img(q(T))$ is *T*-invariant, so we can apply the inductive hypothesis to the restriction $T|_{\mathrm{img}(q(T))}$. Thus there is a monic polynomial $s \in \mathcal{P}(\mathbb{F})$ such that

$$
s(T|_{\text{img}(q(T))}) = 0 \quad \text{and} \quad \deg(s) \leq \dim(\text{img}(q(T))) \leq \dim(V) - d.
$$

Consider the product $(sq)(z) = s(z)q(z)$. Given $v \in V$, then

$$
((sq)(T))(v) = s(T)(q(T)(v)) = 0
$$

 $\text{since } s(T)|_{\text{img}(T)} = s(T|_{\text{img}(T)}) = 0.$ Thus *sq* is a monic polynomial with $(sq)(T) = 0$ and $deg(sq) < dim(V)$.

Uniqueness: [Leave as exercise if necessary.] Suppose that m_1 and m_2 are both monic polynomials of smallest degree such that $m_1(T) = 0$ and $m_2(T) = 0$. Consider $m_1 - m_2$. We have $(m_1 - m_2)(T) = 0$ and since both m_1 and m_2 are monic, then deg $(m_1 - m_2)$ < $deg(m_1)$. If $m_1 - m_2 \neq 0$, then we can rescale $m_1 - m_2$ by the reciprocal of its leading coefficient, obtaining a monic polynomial stricly smaller degree, contradiction. Thus $m_1 - m_2 = 0$, i.e., $m_1 = m_2$ $m_2 = 0$, i.e., $m_1 = m_2$.

Definition 17. With notation as above, the *minimal polynomial* of *T* is *m*, i.e., the unique polynomial of smallest degree such that $m(T) = 0$. It is denoted minpoly(*T*).

Corollary 18. Let V be a nonzero finite-dimensional C-vector space and $T \in \mathcal{L}(V)$. Then T has *an eigenvalue.*

Proof. Let $m := \text{minpoly}(T)$. Note that *m* is nonconstant: if $m = c$ were constant, then we would have $cI = 0$, contradicting the fact that $V \neq \{0\}$.

By the Fundamental Theorem of Algebra, there exists $\lambda \in \mathbb{C}$ such that $m(\lambda) = 0$. Then

$$
m(z) = (z - \lambda)q(z)
$$

for some monic $q \in \mathcal{P}(\mathbb{C})$. Then

$$
0 = m(T) = (T - \lambda I)q(T).
$$

Since $deg(q) < deg(m)$ and *m* is the minpoly, then $q(T) \neq 0$. Then there is some vector $v \in V$ such that $q(T)(v) \neq 0$. Then

$$
0 = m(T)(v) = (T - \lambda I)(q(T)(v))
$$

so $q(T)(v)$ is an eigenvector of *T* with eigenvalue λ . □

Remark 19. Here we used the fact that **C** is algebraically closed in an important way. The result is not true over **R**!

Example 20. Consider the right shift operator

$$
R: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}
$$

$$
(x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots).
$$

Then *R* has no eigenvectors and no eigenvalues (exercise). [Ask students why this doesn't contradict theorem.]

Corollary 21. *With notation as above, the eigenvalues of T are exactly the roots of* minpoly(*T*)*.*

Proof. We have seen that all the roots of $m := \text{minpoly}(T)$ are eigenvalues of T. Conversely, suppose $\lambda \in \mathbb{F}$ is an eigenvalue of *T*. Then there exists $0 \neq v \in V$ such that $T(v) = \lambda v$. Applying *T* to both sides repeatedly, we see that $T^k(v) = \lambda^k v$ for all $k \in \mathbb{Z}_{\geq 0}$. Taking appropriate linear combinations of these monomials, we have [write " $0 = ...$ " last]

$$
0=m(T)v=m(\lambda)v.
$$

Since $v \neq 0$, then $m(\lambda) = 0$.

Q: Given a linear operator *T*, how can we compute its eigenvalues and eigenvectors? A:

(1) To compute minpoly (T) , we need to find the smallest *d* such that

$$
c_0I + c_1T + \cdots + c_{d-1}T^{d-1} = -T^d
$$

has a solution for $c_0, \ldots, c_{d-1} \in \mathbb{F}$. We can choose a basis B for V and apply $[\cdot]_B$ to the above equation. This produces a matrix equation which can be thought of as a linear system of $(\dim(V))^2$ equations in *d* unknowns.

This yields the following algorithm: for each $d = 1, 2, \ldots$, see if the above system of equations has a solution. By the theorem, this algorithm terminates at the latest when $d = \dim(V)$.

(2) Usually faster, but not guaranteed to always work: choose $v \in V, v \neq 0$ and consider the equation

$$
c_0v + c_1T(v) + \cdots + c_{n-1}T^{n-1}(v) = -T^n(v)
$$

where $n := \dim(V)$. Again, by choosing a basis for V and applying $[\cdot]_B$, we obtain a system of *n* equations in the *n* unknowns *c*0, . . . , *cn*−1. If the solution to this system is unique, this yields the coefficients of minpoly(*T*).

Proposition 22. *Suppose V is finite-dimensional,* $T \in \mathcal{L}(V)$ *and* $q \in \mathcal{P}(\mathbb{F})$ *. Then* $q(T) = 0$ *iff* minpoly(*T*) *divides q, i.e., q* = minpoly(*T*)*f* for some $f \in \mathcal{P}(\mathbb{F})$ *.*

Proof idea. Use the division algorithm to divide *q* by minpoly(*T*) and consider the remainder. \Box

Corollary 23. *With the same assumptions, suppose U is a T-invariant subspace of V. Then* minpoly($T|_U$) *divides* minpoly(T)*.*

Corollary 24. *With the same assumptions, T is not invertible iff the constant term of* minpoly(*T*) *is* 0*.*

Proof. Let $m := \text{minpoly}(T)$. Then

 \Box