18.700 - LINEAR ALGEBRA, DAY 10 INVARIANT SUBSPACES AND EIGENVECTORS

SAM SCHIAVONE

Contents

I. Pre-class Planning	1
I.1. Goals for lesson	1
I.2. Methods of assessment	1
I.3. Materials to bring	1
II. Lesson Plan	2
II.1. Last time	2
II.2. Summary of Ch. 4 of Axler	5
II.3. 5A: Invariant subspaces and Eigenvectors	5

I. PRE-CLASS PLANNING

I.1. Goals for lesson.

- (1) Students will learn that if dim(*V*) = *n* and dim(*W*) = *m*, then $\mathcal{L}(V, W) \cong M_{m \times n}(\mathbb{F})$.
- (2) Students will learn that $[T(v)]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[v]_{\mathcal{B}}$.
- (3) Students will learn the change of basis formula.
- (4) Students will learn the definition of invariant subspace, eigenvalue, and eigenvector

I.2. Methods of assessment.

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. Materials to bring. (1) Laptop + adapter (2) Worksheets

II. LESSON PLAN

<u>Announcements</u>: • Exam 1: Wednesday in class. No pset this week; instead review packet. • TA review session: Tuesday, 7:00 - 9:00pm, 2-361

II.1. Last time.

- Defined matrix multiplication.
- Gave several interpretations of matrix multplication.
- Row rank = column rank of a matrix.
- Defined invertibility and isomorphism.
- Proved results on invertibility. (Invertible \iff bijective, case of dim $(V) = \dim(W)$.)

Definition 1. Let *X* and *Y* be sets. A function $f : X \to Y$ is *bijective* (or a *bijection*) if it is both injective and surjective.

Remark 2. Suppose $T \in \mathcal{L}(V, W)$. The result that, when dim $(V) = \dim(W)$, then T invertible $\iff T$ one-to-one $\iff T$ onto is similar to a result about finite sets.

Lemma 3. Suppose X and Y are finite sets such that #X = #Y, and $f : X \to Y$ is a function. *TFAE*.

(i) f is bijective.
(ii) f is injective.
(iii) f is surjective.

II.1.1. Isomorphic vector spaces, continued.

Theorem 4 (Dimension determines isomorphism). *Two finite-dimensional vector spaces over* \mathbb{F} *are isomorphic iff they have the same dimension.*

Proof. Suppose *V* and *W* are finite-dimensional vector spaces.

(⇒): Assume *V* and *W* are isomorphic. Then there exists an isomorphism $T : V \to W$. Then *T* is injective and surjective so

 $\ker(T) = \{0\} \quad \text{and} \quad \operatorname{img}(T) = W.$

By Rank-Nullity, then [ask students]

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{img}(T)) = \dim(W).$$

(\Leftarrow): Assume dim(V) = dim(W). Let v_1, \ldots, v_n be a basis for V and w_1, \ldots, w_n be a basis for W. By a previous result, there is a unique linear map $T : V \to W$ such that $T(v_i) = w_i$ for all $i = 1, \ldots, n$. Since w_1, \ldots, w_n span W, then T is surjective. Either by Rank-Nullity, or by using the fact that w_1, \ldots, w_n are linearly independent, T is injective. (Details left as exercise.) Thus T is injective and surjective, hence an isomorphism.

Corollary 5. Let V be an n-dimensional vector space. Then V is isomorphic to \mathbb{F}^n .

Proof. Both have dimension *n*.

(0:00)

Remark 6. We can also give an explicit isomorphism. Choose a basis $\mathcal{B} = (v_1, \ldots, v_n)$ for *V* and consider the coordinate vector map

$$\varphi_{\mathcal{B}}: V \to \mathbb{F}^n$$
$$v \mapsto [v]_{\mathcal{B}}$$

and the linear map

$$S: \mathbb{F}^n \to V$$
$$(a_1, \ldots, a_n) \mapsto a_1 v_1 + \cdots + a_n v_n.$$

Exercise: show these maps are mutually inverse isomorphisms.

Example 7. $\mathcal{P}_m(\mathbb{F})$ has dimension [ask students] m + 1, hence is isomorphic to \mathbb{F}^{m+1} .

Proposition 8. Suppose $\mathcal{B} := (v_1, \ldots, v_n)$ is a basis of V and $\mathcal{C} := (w_1, \ldots, w_m)$ is a basis of W (so dim(V) = n and dim(W) = m). Then the map

$$\mathcal{L}(V,W) \to M_{m \times n}(\mathbb{F})$$
$$T \mapsto_{\mathcal{C}}[T]_{\mathcal{B}}$$

is an isomorphism.

Proof. Exercise. (Similar to previous result.)

Corollary 9. Suppose V and W are finite-dimensional. Then $\dim(\mathcal{L}(V, W)) = \dim(V) \dim(W)$.

II.1.2. *Linear maps as matrices.*

Proposition 10 (Multiplication by a matrix is linear). *Let* $A \in M_{m \times n}(\mathbb{F})$. *The left multiplication map*

$$L_A: \mathbb{F}^n \to \mathbb{F}^m$$
$$v \mapsto Av$$

is linear.

Proof. Considering *v* as an $n \times 1$ matrix, this follows by properties of matrix multiplication.

Let *V* and *W* be vector spaces with bases $\mathcal{B} := (v_1, \ldots, v_n)$ and $\mathcal{C} := (w_1, \ldots, w_m)$, respectively. Recall, for $T : V \to W$ linear, the matrix of *T* with respect to \mathcal{B} and \mathcal{C} is given by

$$_{\mathcal{C}}[T]_{\mathcal{B}} = \begin{pmatrix} | & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & | \end{pmatrix}$$

Proposition 11. With notation as above,

$$T(v)]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}}[v]_{\mathcal{B}}$$

for all $v \in V$.

Proof. Given $v \in V$, there exist unique scalars $a_1, \ldots, a_n \in \mathbb{F}$ such that $v = a_1v_1 + \cdots + a_nv_n$. Since *T* is linear, then

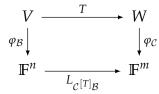
$$T(v) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n).$$

Since the coordinate vector map is linear, then

7

$$[T(v)]_{\mathcal{C}} = [a_1 T(v_1) + \dots + a_n T(v_n)]_{\mathcal{C}} = a_1 [T(v_1)]_{\mathcal{C}} + \dots + a_n [T(v_n)]_{\mathcal{C}}$$
$$= \begin{pmatrix} | & | \\ [T(v_1)]_{\mathcal{C}} & \dots & [T(v_n)]_{\mathcal{C}} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = {}_{\mathcal{C}} [T]_{\mathcal{B}} [v]_{\mathcal{B}}.$$

The equality $[T(v)]_{\mathcal{C}} = {}_{\mathcal{C}}[T]_{\mathcal{B}} [v]_{\mathcal{B}}$ can be stated by saying the following diagram "commutes."



[Draw image of *v* traveling both directions.]

Proposition 12. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then the rank of T (*i.e.*, dim(img(T))) is equal to the (column) rank of [T].

Proof. Exercise.

II.1.3. *Change of basis.* \underline{Q} : How does the matrix $_{\mathcal{C}}[T]_{\mathcal{B}}$ change if we change the bases \mathcal{B} and \mathcal{C} ?

Definition 13. Let $n \in \mathbb{Z}_{\geq 0}$. The $n \times n$ identity matrix *I* is the $n \times n$ matrix with 1s on the diagonal and 0s elsewhere:



Remark 14. We use *I* for both the identity operator and the identity matrix. With respect to *any* basis, the matrix of the identity operator I_V is *I*.

Definition 15. An $n \times n$ matrix A is *invertible* if there is a $n \times n$ matrix B such that AB = BA = I. We call B the *inverse* of A and denote it A^{-1} .

Lemma 16. *The inverse of a matrix is unique.*

Proof. Same as for linear maps.

Theorem 17. Let U, V, and W be vector spaces with bases \mathcal{B}, \mathcal{C} , and \mathcal{D} , respectively. Given $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then

$$_{\mathcal{D}}[ST]_{\mathcal{B}} = _{\mathcal{D}}[S]_{\mathcal{C} \mathcal{C}}[T]_{\mathcal{B}}.$$

Proof. Follows by the definition of matrix multiplication.

Corollary 18 (Change of basis matrix). Suppose B and C are both bases for V. Then

$$_{\mathcal{B}}[I]_{\mathcal{C}} = _{\mathcal{C}}[I]_{\mathcal{B}}^{-1}$$

Proof.

$$I = {}_{\mathcal{B}}[I]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}}.$$

Proposition 19 (Change of basis formula). Suppose \mathcal{B} and \mathcal{C} are both bases of V. Given $T \in \mathcal{L}(V)$, let $A := [T]_{\mathcal{B}}$, $B := [T]_{\mathcal{C}}$, and $C = {}_{\mathcal{B}}[I]_{\mathcal{C}}$. Then

$$A = CBC^{-1}$$

Proof.

$${}_{\mathcal{B}}[T]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} {}_{\mathcal{C}}[T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}} = ({}_{\mathcal{C}}[I]_{\mathcal{B}})^{-1} {}_{\mathcal{C}}[T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}}.$$

Definition 20. Two $n \times n$ matrices *A* and *B* are *similar* or *conjugate* if there is an invertible matrix *P* such that $B = PAP^{-1}$.

II.2. Summary of Ch. 4 of Axler. Let $p \in \mathcal{P}(\mathbb{F})$ be a polynomial.

- There is a division algorithm for polynomials.
- If p(r) = 0 for some $r \in \mathbb{F}$, then there exists $q \in \mathcal{P}(\mathbb{F})$ such that p(z) = (z r)q(z).
- A degree m polynomial has at most m roots in \mathbb{F} .
- The fundamental theorem of algebra: A degree *m* polynomial in *P*(ℂ) has exactly *m* roots in ℂ. Equivalently, every polynomial in *P*(ℂ) splits into linear factors:

$$p(z) = c(z - r_1) \cdots (z - r_m)$$

for some $c, r_1, \ldots, r_m \in \mathbb{C}$.

• Every polynomial in $\mathcal{P}(\mathbb{R})$ splits into factors of degree at most 2.

II.3. **5A: Invariant subspaces and Eigenvectors.** Throughout this section, let *V* be a vector space over \mathbb{F} . Recall that a *linear operator* is a linear map $T : V \to V$, i.e., from a vector space to itself.

Definition 21. Let $T \in \mathcal{L}(V)$. A subspace *U* of *V* is *stable* or *invariant under T* (or *T*-stable or *T*-invariant) if $T(u) \in U$ for all $u \in U$.

Remark 22. If *U* is *T*-invariant, then the restriction $T|_U : U \to U$ is well-defined, and is a linear operator on *U*.

Example 23. Let $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ be the differentiation operator T(f) = f'. Then $\mathcal{P}_4(\mathbb{R})$ is *T*-stable: if deg $(f) \le 4$, then deg $(f') = \text{deg}(f) - 1 \le 4$. Similarly, $\mathcal{P}_m(\mathbb{R})$ is *T*-stable for every $m \in \mathbb{Z}_{\ge 0}$.

Lemma 24. Let $T \in \mathcal{L}(V)$. Then $\{0\}$, V, ker(T), and img(T) are all T-invariant.

Remark 25. These are not necessarily all distinct!

Proof. Exercise.

 \square

Q: Does every linear operator have an invariant subspace other than $\{0\}$ and V?

We'll see later that the answer is yes for $\mathbb{F} = \mathbb{C}$ if $\dim(V) \ge 2$, and yes for $\mathbb{F} = \mathbb{R}$ if $\dim(V) \ge 3$.

Let's first consider 1-dimensional invariant subspaces. Given $v \in V$ with $v \neq 0$, let [ask students]

$$U := \operatorname{span}(v) = \{\lambda v : \lambda \in \mathbb{F}\}.$$

If *U* is *T*-invariant, then in particular, $T(v) \in U$, so $T(v) = \lambda v$ for some $\lambda \in \mathbb{F}$. Conversely, if $T(v) = \lambda v$ for some $\lambda \in \mathbb{F}$, then span(v) is *T*-invariant.

Definition 26. Let $T \in \mathcal{L}(V)$. A scalar $\lambda \in \mathbb{F}$ is an *eigenvalue* of T if there exists $v \in V$ with $v \neq 0$ such that $T(v) = \lambda v$. Such a v is called an *eigenvector* corresponding to λ .

Remark 27. • "eigen-" means "self" or "own". • We require that $v \neq 0$ because $T(0) = \lambda 0$ for all $\lambda \in \mathbb{F}$.

[Show gif depicting eigenvectors in \mathbb{R}^2 .]

Theorem 28. Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. TFAE.

- (*i*) λ is an eigenvalue of *T*.
- (*ii*) $T \lambda I$ is not injective.

(*iii*) $T - \lambda I$ is not surjective.

(iv) $T - \lambda I$ is not invertible.

Proof. (a) \implies (b): Assume λ is an eigenvalue of T with corresponding eigenvector $v \neq 0$, so $T(v) = \lambda v$. Then

$$0 = T(v) - \lambda v = (T - \lambda I)(v)$$

so $0 \neq v \in \text{ker}(T)$. Thus *T* is not one-to-one.

(b) \implies (a): Assume $T - \lambda I$ is not injective. Then ker $(T - \lambda I) \neq \{0\}$ so there exists $0 \neq v \in \text{ker}(T - \lambda I)$. Then

$$0 = (T - \lambda I)(v) = T(v) - \lambda v \implies T(v) = \lambda v$$

so *v* is an eigenvector with eigenvalue λ .

We previously showed the equivalence of (b), (c), and (d).

Proposition 29. Let $T \in \mathcal{L}(V)$. Suppose that $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of T with corresponding eigenvectors v_1, \ldots, v_k . Then v_1, \ldots, v_k are linearly independent.

Proof. We proceed by induction on *k*, the number of eigenvalues.

<u>Base case</u>: k = 1. An eigenvector is nonzero by definition, so the list v_1 is linearly independent by a previous homework problem.

Inductive step: Assume the result holds for k - 1 and assume *T* has *k* distinct eigenvalues. Suppose that

$$a_1v_1 + \dots + a_kv_k = 0 \tag{30}$$

for some $a_1, \ldots, a_k \in \mathbb{F}$. <u>Goal</u>: $a_i = 0$ for all *i*. Note that

$$(T - \lambda_k I)(v_i) = T(v_i) - \lambda_k v_i = \lambda_i v_i - \lambda_k v_i = (\lambda_i - \lambda_k) v_k$$

for all i = 1, ..., k. Applying $T - \lambda_k I$ to (30), we find

$$0 = (T - \lambda_k I)(a_1 v_1 + \dots + a_m v_m)$$

= $a_1(\lambda_1 - \lambda_k)v_1 + \dots + a_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} + \underline{a_k(\lambda_k - \lambda_k)v_k}.$

Since v_1, \ldots, v_{k-1} are linearly independent by the inductive hypothesis, then $a_i(\lambda_i - \lambda_k) = 0$ for all $i = 1, \ldots, k - 1$. Since the λ_i are distinct, then $a_i = 0$ for all $i = 1, \ldots, k - 1$. Then (30) becomes

$$a_k v_k = 0$$

But
$$v_k$$
 is an eigenvector, hence is nonzero, so $a_k = 0$ by the base case.

Corollary 31. If V is finite-dimensional, then every operator $T \in \mathcal{L}(V)$ has at most dim(V) distinct eigenvalues.

Proof. Apply the previous result and $LI \leq span$.

II.3.1. *Polynomials applied to linear operators.* Given a linear operator $T : V \to V$, then we can compose T with itself: $T \circ T = T^2$. We similarly define

$$T^{m} = \begin{cases} \overbrace{T \cdots T}^{m \text{ times}} & \text{if } m > 0; \\ I & \text{if } m = 0; \\ (T^{-1})^{|m|} & \text{if } m < 0 \text{ and } T \text{ is invertible.} \end{cases}$$

Lemma 32.

•
$$T^m T^n = T^{m+n}$$

• $(T^m)^n = T^{mn}$

Proof. Exercise.

Definition 33. Given $T \in \mathcal{L}(V)$, and $p \in \mathcal{P}(\mathbb{F})$ with

$$p(z) = a_0 + a_1 z + \cdots + a_m z^m,$$

define the operator $p(T) \in \mathcal{L}(V)$ by

$$p(T) := a_0 I + a_1 T + \dots + a_m T^m$$

Definition 34. Let $p, q \in \mathcal{P}(\mathbb{F})$. Their product pq is defined pointwise:

$$(pq)(z) := p(z)q(z)$$

for all $z \in \mathbb{F}$.

Note that multiplication of polynomials is commutative. The same is true when we apply polynomials to linear operators.

Lemma 35.

(i) (pq)(T) = p(T)q(T);(ii) p(T)q(T) = q(T)p(T).

Proof. Exercise.

Lemma 36. Let $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then ker(T) and img(T) are *T*-invariant. *Proof.* Exercise.

 \square