18.700 - LINEAR ALGEBRA, DAY 10 INVARIANT SUBSPACES AND EIGENVECTORS

SAM SCHIAVONE

CONTENTS

I. PRE-CLASS PLANNING

I.1. **Goals for lesson.**

- (1) Students will learn that if dim(*V*) = *n* and dim(*W*) = *m*, then $\mathcal{L}(V, W) \cong M_{m \times n}(F)$.
- (2) Students will learn that $[T(v)]_{\mathcal{C}} = c[T]_{\mathcal{B}}[v]_{\mathcal{B}}$.
- (3) Students will learn the change of basis formula.
- (4) Students will learn the defintion of invariant subspace, eigenvalue, and eigenvector

I.2. **Methods of assessment.**

- (1) Student responses to questions posed during lecture
- (2) Student responses to worksheet

I.3. **Materials to bring.** (1) Laptop + adapter (2) Worksheets

II. LESSON ^PLAN **(0:00)**

Announcements: • Exam 1: Wednesday in class. No pset this week; instead review packet. • TA review session: Tuesday, 7:00 - 9:00pm, 2-361

II.1. **Last time.**

- Defined matrix multiplication.
- Gave several interpretations of matrix multplication.
- Row rank $=$ column rank of a matrix.
- Defined invertibility and isomorphism.
- Proved results on invertibility. (Invertible \iff bijective, case of dim(V) = dim(*W*).)

Definition 1. Let *X* and *Y* be sets. A function $f : X \to Y$ is *bijective* (or a *bijection*) if it is both injective and surjective.

Remark 2. Suppose $T \in \mathcal{L}(V, W)$. The result that, when $dim(V) = dim(W)$, then *T* invertible \iff *T* one-to-one \iff *T* onto is similar to a result about finite sets.

Lemma 3. *Suppose X and Y are finite sets such that* $\#X = \#Y$, and $f : X \to Y$ is a function. *TFAE.*

- *(i) f is bijective. (ii) f is injective.*
- *(iii) f is surjective.*

II.1.1. *Isomorphic vector spaces, continued.*

Theorem 4 (Dimension determines isomorphism)**.** *Two finite-dimensional vector spaces over* **F** *are isomorphic iff they have the same dimension.*

Proof. Suppose *V* and *W* are finite-dimensional vector spaces.

 (\Rightarrow) : Assume *V* and *W* are isomorphic. Then there exists an isomorphism *T* : *V* \rightarrow *W*. Then *T* is injective and surjective so

 $ker(T) = \{0\}$ and $img(T) = W$.

By Rank-Nullity, then [ask students]

$$
\dim(V) = \dim(\ker(T)) + \dim(\text{img}(T)) = \dim(W).
$$

 (\Leftarrow) : Assume dim $(V) = \dim(W)$. Let v_1, \ldots, v_n be a basis for *V* and w_1, \ldots, w_n be a basis for *W*. By a previous result, there is a unique linear map $T: V \rightarrow W$ such that $T(v_i) = w_i$ for all $i = 1, ..., n$. Since $w_1, ..., w_n$ span *W*, then *T* is surjective. Either by Rank-Nullity, or by using the fact that w_1, \ldots, w_n are linearly independent, *T* is injective. (Details left as exercise.) Thus *T* is injective and surjective, hence an isomorphism. \Box

Corollary 5. Let V be an n-dimensional vector space. Then V is isomorphic to \mathbb{F}^n .

Proof. Both have dimension *n*. □

Remark 6. We can also give an explicit isomorphism. Choose a basis $B = (v_1, \ldots, v_n)$ for *V* and consider the coordinate vector map

$$
\varphi_{\mathcal{B}} : V \to \mathbb{F}^n
$$

$$
v \mapsto [v]_{\mathcal{B}}
$$

and the linear map

$$
S: \mathbb{F}^n \to V
$$

 $(a_1, ..., a_n) \mapsto a_1v_1 + \cdots + a_nv_n.$

Exercise: show these maps are mutually inverse isomorphisms.

Example 7. $\mathcal{P}_m(\mathbb{F})$ has dimension [ask students] $m+1$, hence is isomorphic to \mathbb{F}^{m+1} .

Proposition 8. *Suppose* $\mathcal{B} := (v_1, \ldots, v_n)$ *is a basis of V and* $\mathcal{C} := (w_1, \ldots, w_m)$ *is a basis of W* $(s \circ \text{dim}(V)) = n$ and $\text{dim}(W) = m$). Then the map

$$
\mathcal{L}(V,W) \to M_{m \times n}(\mathbb{F})
$$

$$
T \mapsto c[T]_{\mathcal{B}}
$$

is an isomorphism.

Proof. Exercise. (Similar to previous result.) □

Corollary 9. Suppose V and W are finite-dimensional. Then $dim(\mathcal{L}(V, W)) = dim(V) dim(W)$.

II.1.2. *Linear maps as matrices.*

Proposition 10 (Multiplication by a matrix is linear). Let $A \in M_{m \times n}(\mathbb{F})$. The left multipli*cation map*

$$
L_A: \mathbb{F}^n \to \mathbb{F}^m
$$

$$
v \mapsto Av
$$

is linear.

Proof. Considering v as an $n \times 1$ matrix, this follows by properties of matrix multiplication. \Box

Let *V* and *W* be vector spaces with bases $\mathcal{B} := (v_1, \ldots, v_n)$ and $\mathcal{C} := (w_1, \ldots, w_m)$, respectively. Recall, for $T: V \to W$ linear, the matrix of T with respect to B and C is given by

$$
c[T]_{\mathcal{B}} = \begin{pmatrix} | & & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & | & | \end{pmatrix}
$$

Proposition 11. *With notation as above,*

$$
[T(v)]_{\mathcal{C}} = c[T]_{\mathcal{B}}[v]_{\mathcal{B}}
$$

for all $v \in V$.

Proof. Given $v \in V$, there exist unique scalars $a_1, \ldots, a_n \in \mathbb{F}$ such that $v = a_1v_1 + \cdots + a_nv_n$ $a_n v_n$. Since *T* is linear, then

$$
T(v) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n).
$$

Since the coordinate vector map is linear, then

$$
[T(v)]_{\mathcal{C}} = [a_1 T(v_1) + \cdots + a_n T(v_n)]_{\mathcal{C}} = a_1 [T(v_1)]_{\mathcal{C}} + \cdots + a_n [T(v_n)]_{\mathcal{C}}
$$

=
$$
\begin{pmatrix} | & & | \\ [T(v_1)]_{\mathcal{C}} & \cdots & [T(v_n)]_{\mathcal{C}} \\ | & & | \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = c[T]_{\mathcal{B}} [v]_{\mathcal{B}}.
$$

The equality $[T(v)]_C = c[T]_B[v]_B$ can be stated by saying the following diagram "commutes."

[Draw image of *v* traveling both directions.]

Proposition 12. *Suppose V and W are finite-dimensional and* $T \in \mathcal{L}(V, W)$ *. Then the rank of T* (*i.e.*, $dim(img(T))$ *) is equal to the (column) rank of* [*T*]*.*

Proof. Exercise. □

II.1.3. *Change of basis.* Q: How does the matrix $\mathcal{C}[T]$ change if we change the bases B and $C₂$

Definition 13. Let $n \in \mathbb{Z}_{\geq 0}$. The $n \times n$ *identity matrix I* is the $n \times n$ matrix with 1s on the diagonal and 0s elsewhere:

Remark 14. We use *I* for both the identity operator and the identity matrix. With respect to *any* basis, the matrix of the identity operator I_V is I .

Definition 15. An $n \times n$ matrix *A* is *invertible* if there is a $n \times n$ matrix *B* such that $AB =$ $BA = I$. We call *B* the *inverse* of *A* and denote it A^{-1} .

Lemma 16. *The inverse of a matrix is unique.*

Proof. Same as for linear maps. □

Theorem 17. *Let U*, *V, and W be vector spaces with bases* B, C*, and* D*, respectively. Given* $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then

$$
D[ST]_{\mathcal{B}} = D[S]_{\mathcal{C}} C[T]_{\mathcal{B}}.
$$

□

Proof. Follows by the definition of matrix multiplication. □

Corollary 18 (Change of basis matrix)**.** *Suppose* B *and* C *are both bases for V. Then*

$$
B[I]_{\mathcal{C}} = c[I]_{\mathcal{B}}^{-1}
$$

Proof.

$$
I = \mathcal{B}[I]\mathcal{B} = \mathcal{B}[I]\mathcal{C} \mathcal{C}[I]\mathcal{B}.
$$

.

Proposition 19 (Change of basis formula)**.** *Suppose* B *and* C *are both bases of V. Given* $T \in \mathcal{L}(V)$, let $A := [T]_{\mathcal{B}}$, $B := [T]_{\mathcal{C}}$, and $C = B[I]_{\mathcal{C}}$. Then

$$
A = CBC^{-1}.
$$

Proof.

$$
B[T]B = B[I]c c[T]c c[I]B = (c[I]B)^{-1}c[T]c c[I]B.
$$

Definition 20. Two $n \times n$ matrices A and B are *similar* or *conjugate* if there is an invertible matrix *P* such that $B = PAP^{-1}$.

II.2. **Summary of Ch. 4 of Axler.** Let $p \in \mathcal{P}(\mathbb{F})$ be a polynomial.

- There is a division algorithm for polynomials.
- If $p(r) = 0$ for some $r \in \mathbb{F}$, then there exists $q \in \mathcal{P}(\mathbb{F})$ such that $p(z) = (z r)q(z)$.
- A degree *m* polynomial has at most *m* roots in **F**.
- The fundamental theorem of algebra: A degree *m* polynomial in $\mathcal{P}(\mathbb{C})$ has exactly *m* roots in C. Equivalently, every polynomial in $\mathcal{P}(\mathbb{C})$ splits into linear factors:

$$
p(z) = c(z - r_1) \cdots (z - r_m)
$$

for some $c, r_1, \ldots, r_m \in \mathbb{C}$.

• Every polynomial in $\mathcal{P}(\mathbb{R})$ splits into factors of degree at most 2.

II.3. **5A: Invariant subspaces and Eigenvectors.** Throughout this section, let *V* be a vector space over **F**. Recall that a *linear operator* is a linear map $T: V \rightarrow V$, i.e., from a vector space to itself.

Definition 21. Let $T \in \mathcal{L}(V)$. A subspace *U* of *V* is *stable* or *invariant under T* (or *T*-stable or *T*-invariant) if $T(u) \in U$ for all $u \in U$.

Remark 22. If *U* is *T*-invariant, then the restriction $T|_{U}: U \rightarrow U$ is well-defined, and is a linear operator on *U*.

Example 23. Let $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ be the differentiation operator $T(f) = f'$. Then $\mathcal{P}_4(\mathbb{R})$ is *T*-stable: if $\deg(f) \leq 4$, then $\deg(f') = \deg(f) - 1 \leq 4$. Similarly, $\mathcal{P}_m(\mathbb{R})$ is *T*-stable for every $m \in \mathbb{Z}_{\geq 0}$.

Lemma 24. Let $T \in \mathcal{L}(V)$. Then $\{0\}$, V, ker(T), and img(T) are all T-invariant.

Remark 25. These are not necessarily all distinct!

Proof. Exercise. □

□

□

Q: Does every linear operator have an invariant subspace other than {0} and *V*?

We'll see later that the answer is yes for $\mathbb{F} = \mathbb{C}$ if $\dim(V) \geq 2$, and yes for $\mathbb{F} = \mathbb{R}$ if dim($V \geq 3$.

Let's first consider 1-dimensional invariant subspaces. Given $v \in V$ with $v \neq 0$, let [ask students]

$$
U := \mathrm{span}(v) = \{\lambda v : \lambda \in \mathbb{F}\}.
$$

If *U* is *T*-invariant, then in particular, $T(v) \in U$, so $T(v) = \lambda v$ for some $\lambda \in \mathbb{F}$. Conversely, if $T(v) = \lambda v$ for some $\lambda \in \mathbb{F}$, then span(*v*) is *T*-invariant.

Definition 26. Let $T \in \mathcal{L}(V)$. A scalar $\lambda \in \mathbb{F}$ is an *eigenvalue* of *T* if there exists $v \in V$ with $v \neq 0$ such that $T(v) = \lambda v$. Such a *v* is called an *eigenvector* corresponding to λ .

Remark 27. • "eigen-" means "self" or "own". • We require that $v \neq 0$ because $T(0) = \lambda 0$ for all $\lambda \in \mathbb{F}$.

[Show gif depicting eigenvectors in **R** 2 .]

Theorem 28. *Suppose V is finite-dimensional,* $T \in \mathcal{L}(V)$ *, and* $\lambda \in \mathbb{F}$ *. TFAE.*

- *(i) λ is an eigenvalue of T.*
- *(ii)* $T \lambda I$ *is not injective.*
- *(iii)* $T \lambda I$ *is not surjective.*
- *(iv)* $T \lambda I$ *is not invertible.*

Proof. (a) \implies (b): Assume λ is an eigenvalue of *T* with corresponding eigenvector $v \neq 0$, so $T(v) = \lambda v$. Then

$$
0 = T(v) - \lambda v = (T - \lambda I)(v)
$$

so $0 \neq v \in \text{ker}(T)$. Thus *T* is not one-to-one.

(b) \implies (a): Assume $T - \lambda I$ is not injective. Then ker $(T - \lambda I) \neq \{0\}$ so there exists $0 \neq v \in \ker(T - \lambda I)$. Then

$$
0 = (T - \lambda I)(v) = T(v) - \lambda v \implies T(v) = \lambda v
$$

so *v* is an eigenvector with eigenvalue λ .

We previously showed the equivalence of (b), (c), and (d). \Box

Proposition 29. Let $T \in \mathcal{L}(V)$. Suppose that $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of T with *corresponding eigenvectors v*1, . . . , *v^k . Then v*1, . . . , *v^k are linearly independent.*

Proof. We proceed by induction on *k*, the number of eigenvalues.

<u>Base case</u>: $k = 1$. An eigenvector is nonzero by definition, so the list v_1 is linearly independent by a previous homework problem.

Inductive step: Assume the result holds for *k* − 1 and assume *T* has *k* distinct eigenvalues. Suppose that

$$
a_1v_1 + \dots + a_kv_k = 0 \tag{30}
$$

for some $a_1, \ldots, a_k \in \mathbb{F}$. Goal: $a_i = 0$ for all *i*. Note that

$$
(T - \lambda_k I)(v_i) = T(v_i) - \lambda_k v_i = \lambda_i v_i - \lambda_k v_i = (\lambda_i - \lambda_k)v_k
$$

for all $i = 1, \ldots, k$. Applying $T - \lambda_k I$ to (30), we find

$$
0 = (T - \lambda_k I)(a_1 v_1 + \dots + a_m v_m)
$$

= $a_1(\lambda_1 - \lambda_k)v_1 + \dots + a_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} + a_k(\lambda_k - \lambda_k)\overline{v_k}$.

Since v_1, \ldots, v_{k-1} are linearly independent by the inductive hypothesis, then $a_i(\lambda_i - \lambda_k) =$ 0 for all $i = 1, \ldots, k - 1$. Since the λ_i are distinct, then $a_i = 0$ for all $i = 1, \ldots, k - 1$. Then (30) becomes

$$
a_k v_k=0.
$$

But
$$
v_k
$$
 is an eigenvector, hence is nonzero, so $a_k = 0$ by the base case.

Corollary 31. If V is finite-dimensional, then every operator $T \in \mathcal{L}(V)$ has at most $dim(V)$ *distinct eigenvalues.*

Proof. Apply the previous result and $LI \le$ span. \Box

II.3.1. *Polynomials applied to linear operators.* Given a linear operator $T: V \rightarrow V$, then we can compose T with itself: $T \circ T = T^2$. We similarly define

$$
T^{m} = \begin{cases} \overbrace{T \cdots T}^{m \text{ times}} & \text{if } m > 0; \\ I & \text{if } m = 0; \\ (T^{-1})^{|m|} & \text{if } m < 0 \text{ and } T \text{ is invertible.} \end{cases}
$$

Lemma 32.

•
$$
T^m T^n = T^{m+n}
$$

•
$$
(T^m)^n = T^{mn}
$$

Proof. Exercise. □

Definition 33. Given $T \in \mathcal{L}(V)$, and $p \in \mathcal{P}(\mathbb{F})$ with

$$
p(z) = a_0 + a_1 z + \cdots + a_m z^m,
$$

define the operator $p(T) \in \mathcal{L}(V)$ by

$$
p(T) := a_0 I + a_1 T + \cdots + a_m T^m.
$$

Definition 34. Let $p, q \in \mathcal{P}(\mathbb{F})$. Their product pq is defined pointwise:

$$
(pq)(z) := p(z)q(z)
$$

for all $z \in \mathbb{F}$.

Note that multiplication of polynomials is commutative. The same is true when we apply polynomials to linear operators.

Lemma 35.

 (i) $(pq)(T) = p(T)q(T)$; *(ii)* $p(T)q(T) = q(T)p(T)$.

Proof. Exercise. □

Lemma 36. Let $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then ker(*T*) and img(*T*) are *T*-invariant. *Proof.* Exercise. □