18.700 - LINEAR ALGEBRA, DAY 10
INVARIANT SUBSPACES AND EIGENVECTORS

SAM SCHIAVONE
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I. PRE-CLASS PLANNING

1.1. Goals for lesson.

(1) Students will learn that if dim (V) = nand dim(W) = m, then L(V, W) = Mpxn(F).

(2) Students will learn that [T(v)]|¢ = ¢[T]|g[v]5-

(3) Students will learn the change of basis formula.

(4) Students will learn the defintion of invariant subspace, eigenvalue, and eigenvec-
tor

[.2. Methods of assessment.

(1) Student responses to questions posed during lecture
(2) Student responses to worksheet

1.3. Materials to bring. (1) Laptop + adapter (2) Worksheets
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II. LESSON PLAN

Announcements: e Exam 1: Wednesday in class. No pset this week; instead review
packet. ® TA review session: Tuesday, 7:00 - 9:00pm, 2-361

II.1. Last time.

e Defined matrix multiplication.

e Gave several interpretations of matrix multplication.

e Row rank = column rank of a matrix.

e Defined invertibility and isomorphism.

e Proved results on invertibility. (Invertible <= bijective, case of dim(V) =
dim(W).)

Definition 1. Let X and Y be sets. A function f : X — Y is bijective (or a bijection) if it is
both injective and surjective.

Remark 2. Suppose T € L(V,W). The result that, when dim(V) = dim(W), then T
invertible <= T one-to-one <= T onto is similar to a result about finite sets.

Lemma 3. Suppose X and Y are finite sets such that #X = #Y, and f : X — Y is a function.
TFAE.
(i) f is bijective.
(ii) f is injective.
(iii) f is surjective.
I1.1.1. Isomorphic vector spaces, continued.

Theorem 4 (Dimension determines isomorphism). Two finite-dimensional vector spaces over
IF are isomorphic iff they have the same dimension.

Proof. Suppose V and W are finite-dimensional vector spaces.
(=): Assume V and W are isomorphic. Then there exists an isomorphism T : V. — W.
Then T is injective and surjective so

ker(T) = {0} and img(T) =W.
By Rank-Nullity, then [ask students]

0
dim(V) = di ) + dim(img(T)) = dim(W).

(<): Assume dim(V) = dim(W). Let vy,...,v, be a basis for V and w;y, ..., w, be a
basis for W. By a previous result, there is a unique linear map T : V' — W such that
T(v;)) = w; foralli = 1,...,n. Since wy, ..., w, span W, then T is surjective. Either by
Rank-Nullity, or by using the fact that wy, ..., w, are linearly independent, T is injective.
(Details left as exercise.) Thus T is injective and surjective, hence an isomorphism. U

Corollary 5. Let V be an n-dimensional vector space. Then V is isomorphic to F".

Proof. Both have dimension 7. 0



Remark 6. We can also give an explicit isomorphism. Choose a basis B = (vy,...,v,) for
V and consider the coordinate vector map

pp:V — F"
v [v]s
and the linear map
S:F'—=V

(ay,...,an) — a1o1+ -+ a,v, .
Exercise: show these maps are mutually inverse isomorphisms.

Example 7. P,,(FF) has dimension [ask students] m -+ 1, hence is isomorphic to F" L,

Proposition 8. Suppose B := (v1,...,vy) isabasis of Vand C := (ws, ..., wn ) is a basis of W
(so dim (V') = n and dim(W) = m). Then the map

L(V,W) = My xn(F)
T — ¢[T]s
is an isomorphism.
Proof. Exercise. (Similar to previous result.) U
Corollary 9. Suppose V and W are finite-dimensional. Then dim(L(V,W)) = dim(V') dim(W).
I1.1.2. Linear maps as matrices.

Proposition 10 (Multiplication by a matrix is linear). Let A € M xn(IF). The left multipli-
cation map

Ly :F"— F"
v— Av

is linear.

Proof. Considering v as an n x 1 matrix, this follows by properties of matrix multiplica-
tion. g

Let V and W be vector spaces with bases B := (vy,...,v,) and C = (wy,...,Wn),
respectively. Recall, for T : V. — W linear, the matrix of T with respect to B and C is given

by
| |
clTlp = [T(U’l)]c [T(U‘n)]c

Proposition 11. With notation as above,

[T(0)]c = c[T]sl0ls
forallv e V.



Proof. Given v € V, there exist unique scalars ay,...,a, € F such thatv = ajv1 +--- +
a,vy,. Since T is linear, then

T(v) = T(a101+ - + a,0y) = a1T(v1) + - - + a,T(vn) .
Since the coordinate vector map is linear, then
[T(@)le = [T (v1) + -+ anT(vn)le = a1 [T(v1)]e + - - - + an[T(vn)]c

| | “

| | ay
[

The equality [T(v)]|¢ = ¢[T]g [v] can be stated by saying the following diagram “com-
mutes.”

1% T W
(PBl l%
F" F™
Lc[T]B

[Draw image of v traveling both directions.]

Proposition 12. Suppose V and W are finite-dimensional and T € L(V,W). Then the rank of
T (ie., dim(img(T))) is equal to the (column) rank of [T)].

Proof. Exercise. U

I1.1.3. Change of basis. Q: How does the matrix ¢[T]z change if we change the bases 3 and
C?

Definition 13. Let n € Z>¢. The n x n identity matrix I is the n x n matrix with 1s on the
diagonal and Os elsewhere:

1

Remark 14. We use I for both the identity operator and the identity matrix. With respect
to any basis, the matrix of the identity operator Iy is I.

Definition 15. An n X n matrix A is invertible if there is a n x n matrix B such that AB =
BA = I. We call B the inverse of A and denote it AL,

Lemma 16. The inverse of a matrix is unique.
Proof. Same as for linear maps. g

Theorem 17. Let U,V, and W be vector spaces with bases BB,C, and D, respectively. Given
TeL(U,V)andS € L(V,W), then

DBﬂBzaﬁkcﬁw-



Proof. Follows by the definition of matrix multiplication. U

Corollary 18 (Change of basis matrix). Suppose B and C are both bases for V. Then

[l =l
Proof.
I'=p[llg = sll]ccll]s-
O
Proposition 19 (Change of basis formula). Suppose B and C are both bases of V. Given
T e L(V),let A:=[T|g, B:=[T|¢, and C = g[I]¢. Then
A=CBC.
Proof.

8lT]5 = slllc c[Tle cll)s = (cll]g) "e[Tle cll]B-
U

Definition 20. Two n x n matrices A and B are similar or conjugate if there is an invertible
matrix P such that B = PAP™".

II.2. Summary of Ch. 4 of Axler. Let p € P(IF) be a polynomial.

e There is a division algorithm for polynomials.

e If p(r) = 0 for some r € F, then there exists g € P(F) such that p(z) = (z —r)q(z).

e A degree m polynomial has at most m roots in IF.

e The fundamental theorem of algebra: A degree m polynomial in P(C) has exactly
m roots in C. Equivalently, every polynomial in P(C) splits into linear factors:

pz) =c(z—r1)---(z—rm)
for somec,rq,...,1y € C.
e Every polynomial in P(R) splits into factors of degree at most 2.

I1.3. 5A: Invariant subspaces and Eigenvectors. Throughout this section, let V be a vec-
tor space over FF. Recall that a linear operator is a linear map T : V — V, i.e., from a vector
space to itself.

Definition 21. Let T € L(V). A subspace U of V is stable or invariant under T (or T-stable
or T-invariant) if T(u) € U for all u € U.

Remark 22. If U is T-invariant, then the restriction T|; : U — U is well-defined, and is a
linear operator on U.

Example 23. Let T € £L(P(R)) be the differentiation operator T(f) = f'. Then P4(R) is
T-stable: if deg(f) < 4, then deg(f’) = deg(f) — 1 < 4. Similarly, P,,(R) is T-stable for
every m € Zx>o.

Lemma 24. Let T € L(V). Then {0}, V, ker(T), and img(T) are all T-invariant.
Remark 25. These are not necessarily all distinct!

Proof. Exercise. U



Q: Does every linear operator have an invariant subspace other than {0} and V?

We'll see later that the answer is yes for F = C if dim(V) > 2, and yes for F = R if
dim(V) > 3.

Let’s first consider 1-dimensional invariant subspaces. Given v € V with v # 0, let [ask
students]

U :=span(v) = {Av: A € F}.

If U is T-invariant, then in particular, T(v) € U, so T(v) = Av for some A € FF. Conversely,
if T(v) = Av for some A € F, then span(v) is T-invariant.

Definition 26. Let T € L(V). A scalar A € F is an eigenvalue of T if there exists v € V
with v # 0 such that T(v) = Av. Such a v is called an eigenvector corresponding to A.

Remark 27. e “eigen-" means “self” or “own”.
e We require that v # 0 because T(0) = A0 for all A € F.

[Show gif depicting eigenvectors in R?]

Theorem 28. Suppose V is finite-dimensional, T € L(V), and A € F. TFAE.

(i) Aisan eigenvalue of T.
(ii) T — Al is not injective.
(iii) T — Al is not surjective.
(iv) T — Al is not invertible.

Proof. (a) = (b): Assume A is an eigenvalue of T with corresponding eigenvector v # 0,
so T(v) = Av. Then

0=T(v)—Av= (T — Al)(v)
s0 0 # v € ker(T). Thus T is not one-to-one.

(b) = (a): Assume T — Al is not injective. Then ker(T — AI) # {0} so there exists
0 # v € ker(T — AI). Then

0=(T—A)(v)=T(v) —Av = T(v) =Av

so v is an eigenvector with eigenvalue A.
We previously showed the equivalence of (b), (c), and (d). U

Proposition 29. Let T € L(V). Suppose that Aq,..., A, are distinct eigenvalues of T with
corresponding eigenvectors vy, ..., vx. Then vy,. .., vy are linearly independent.

Proof. We proceed by induction on k, the number of eigenvalues.

Base case: k = 1. An eigenvector is nonzero by definition, so the list v; is linearly
independent by a previous homework problem.

Inductive step: Assume the result holds for k — 1 and assume T has k distinct eigenval-

ues. Suppose that

a1+ +ave =0 (30)
for some aq,...,a;, € [F. Goal: a; = 0 for all i. Note that

(T = Ap)(v;) = T(vi) — Ao = Ao — Aoy = (A — Aok
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foralli =1,..., k. Applying T — AI to (30), we find
0= (T—AeI)(mv1+ - + amom)

= a1(A1 — Aot + -+ F a1 (Ao — Ag)ve +M

Since vy, ..., vg_1 are linearly independent by the inductive hypothesis, then a;(A; — Ax) =
Oforalli =1,...,k— 1. Since the A; are distinct, thena; = 0foralli =1,...,k — 1. Then
(30) becomes

0

a0 = 0.
But v is an eigenvector, hence is nonzero, so a; = 0 by the base case. 4

Corollary 31. If V is finite-dimensional, then every operator T € L(V) has at most dim(V)
distinct eigenvalues.

Proof. Apply the previous result and LI < span. U

I1.3.1. Polynomials applied to linear operators. Given a linear operator T : V' — V, then we
can compose T with itself: T o T = T2. We similarly define

m times

/_/\ .
— T---T ifm>Q0;
) I ifm=0;
(T_I)W| if m < 0 and T is invertible.
Lemma 32.
° Tan — Tm+n
° (Tm)n — Tmn
Proof. Exercise. OJ

Definition 33. Given T € £L(V), and p € P(F) with
p(2) = to+ @z + - +an2",
define the operator p(T) € L(V) b
p(T) :=apl + T+ - +a,T".
Definition 34. Let p,q € P(IFF). Their product pq is defined pointwise:
(p9)(z) == p(2)q(z)

<

forallz € FF.

Note that multiplication of polynomials is commutative. The same is true when we
apply polynomials to linear operators.

Lemma 35.
(i) (pg)(T) = p(T)q(T),
(@) p(T)q(T) = q(T)p(T).
Proof. Exercise. U
Lemma 36. Let T € L(V) and p € P(F). Then ker(T) and img(T) are T-invariant.
Proof. Exercise. U



