
Recitation 12: Probablistic TMs,
Arithmetization, Interactive Proofs

In this recitation, we’ll cover the definition of BPP and its basic prop-
erties, the arithmetization-based algorithm for testing equivalence of
read-once branching programs, and the definition of interactive proofs.
These concepts are particularly tricky but they are very powerful tech-
niques that you will likely encounter if you continue to learn about
complexity theory or adjacent fields like algorithms and cryptography.

If you’re curious about this or have ques-
tions about other complexity-related
classes to take, please ask Prof. Sipser
or the TAs, we’re always happy to talk
about this!

Probablistic Algorithms

In designing efficient algorithms, it is often much easier to give a ran-
domized procedure that has a pretty good chance of working than it is to
give a deterministic algorithm that works 100% of the time. The natu-
ral question for a complexity theorist to ask is: are there cases where
this randomness is necessary to get an efficient algorithm?

The way we formalize this question is by defining a notion of prob-
ablistic Turing machine (PTM). Just like a nondeterministic Turing
machine, a probabilistic Turing machine is allowed at any point to
“branch” into two possibilities. However, in the case of NTMs we
imagined that the algorithm always “got lucky”, and would accept if
(and only if) any of the branches accepted. In the case of a PTM, we al-
ternatively imagine the algorithm taking each side of each branch with
probability 1/2, so that instead of always giving the same answer, it
just has some probability of ending up accepting a particular input.

Definition 1. A probablistic Turing machine is a Turing machine with the
additional ability to “flip a coin”. That is, at any point it can choose to
generate a random bit. The acceptance probability of a PTM A on input x
is the probability (over the coin tosses of the algorithm) that A accepts when
run on x.

We would like to talk about a PTMs as deciding a language — but

2

what does that even mean if a given PTM sometimes outputs different
answers for the same input? To address this, we will focus on PTMs
that get the right answer “most of the time”:

Definition 2. The class BPP consists of all languages L such that there
exists a PTM A running in polynomial time (i.e. every branch takes at
most polynomially many steps in the input length), and such that

• For x ∈ L, the acceptance probability of A on x is at least 2
3 .

• For x ̸∈ L, the acceptance probability of A on x is at most 1
3 .

One fact worth noting is that not every
polynomial-time PTM decides a BPP
language: you could imagine a PTM
which, on some inputs, accepts with
probability 1/2, which we don’t count
as either a YES or NO instance. If you
wanted, you could instead define a lan-
guage where you include every x with
acceptance probability at least 1/2, and
exclude every x with acceptance proba-
bility less than 1/2. However, the class
of languages definable this way is not
BPP — this is a seemingly much larger
class, known as PP (which in particu-
lar is known to contain NP). It’s worth
thinking about why our amplification ar-
gument doesn’t work if you only have
a guarantee on whether the acceptance
probability is at least 1/2 or not.

The specific choice of 2
3 and 1

3 here may seem arbitrary — that’s
because it is. It turns out we get the exact same class if you replace
2
3 and 1

3 with any constants strictly greater and strictly less than 1
2 ,

respectively.

Lemma 1 (Amplification). Suppose there exists a probabilistic poly-time
Turing machine A that accepts x ∈ L with probability at least .500001, and
acceots x ̸∈ L with probability at most .499999. Then, there exists a probab-
listic poly-time Turing machine B that accepts x ∈ L with probability at least
.999999, and accepts x ̸∈ L with probability at most .000001.

Proof. The idea is to just repeatedly run A on x, and take the majority
answer. If we run A on x for poly(n) many times, tools from probability
(see Chernoff bounds, or an alternative argument in Prof. Sipser’s
textbook) ensure that we are extremely unlikely to err on more than
half of them — in fact, by running enough iterations of A, we can
not only make B’s error probability less than .000001, we can make it
less than 1

2nk for any constant k we like. (And for some arguments it
actually is useful to drive the error probability that low, although we
will probably not see them in this class.)

Let’s also note here a couple of small observations about probab-
listic Turing machines. The following question came up after lecture,
and is worth addressing:

Question 1. When we describe randomized algorithms, sometimes we want
to choose a uniformly random element from some set — for instance, the set of
integers mod some large prime. But our definition of PTMs only allow access
to coin tosses — how do we choose a uniform random element of a larger set?

Answer 1. The basic answer, which you probably came up with on your pset,
is that to generate a uniformly random element of a set of size 2k, it suffices to
flip k coins, since there are 2k equally-likely outcomes for the sequence of bits
you get as a result. But this question is getting at a more subtle point1: what 1 Which you shouldn’t worry if you

didn’t address in your pset — we
weren’t expecting you to.

if the set S you want to choose from has a size that isn’t a power of 2? For
instance, what if you wanted to choose a random value from {1, 2, 3}? The

3

idea is still to flip ⌈log |S|⌉ coins, and associate each element of S with some
sequence of resulting bits — but now, up to half of the resulting sequences
of flips might not correspond to any element of S. So, with probability up to
1/2, this procedure might fail to generate an element of S. But, fine, in that
case we’ll just run it again over and over again up to n times until it does.
The probability that we still haven’t found one after n attempts is at most 1

2n ,
at that point we can just give up, since getting this branch wrong will only
give a tiny increase to the algorithm’s overall error probability.

Another good question is “where does BPP lie in relation to the
other classes we know about?”. It turns out not a whole lot is known
— for instance, we don’t know whether either of BPP or NP contains
the other. However, we do know the following:

Claim 1. P ⊆ BPP ⊆ PSPACE.

Proof. The inclusion P ⊆ BPP is easy: any deterministic TM deciding
L can be thought of as a PTM that just happens to make no coin flips,
and happens to have 0% error rate, so L ∈ P =⇒ L ∈ BPP. To show
BPP ⊆ PSPACE, observe that in polynomial space we can just simulate
every branch of a poly-time PTM one at a time, and keep track of the
total acceptance probability.

In contrast to the case of P and NP, which are strongly suspected to
be unequal, perhaps somewhat surprisingly there is good evidence2 to 2 If you make some assumptions about

which problems are hard for small cir-
cuits of ands/ors/nots to solve, you
can construct pseudorandom generators,
which output sequences of bits that
“look random” to poly-time algorithms,
letting you simulate randomized algo-
rithms deterministically. If you want to
hear this story properly, consider taking
18.405 in the spring!

believe that P = BPP, although this is not known for sure.

Branching Programs

Now, let’s talk about one of the few problems which is known to be
in BPP but not known to be in P. First, recall the model of branching
programs (BPs). A branching program consists of a directed acyclic
graph, with a starting node, and two output nodes labeled 0 and 1,
respectively. All nodes except those output nodes are labeled with the
name of some variable xi, and have exactly two outgoing edges, la-
beled 0 and 1. We call these nodes query nodes since the computation
of the BP will take one of the two edges depending on the value of xi

in the input.

We now describe the computation of a BP B on some input x. From
the starting node, the B will take either the 0-edge or the 1-edge de-
pending on the value of its label xi. From there, at each query node,
the BP continues to choose one of the two outgoing edges based on the
input until it reaches an output node. At this point, B outputs either
0 or 1 depending on which output node it is in. This defines some

4

function f : {0, 1}n → {0, 1}.

As with other computation models, we are often interested in the
question of whether two BPs are equivalent. Even if two BPs B1 and
B2 have different underlying graphs, they might still agree at every
possible input (we’ll see an example of this later).

Definition 3. We say that two BPs B1 and B2 are equivalent if for all inputs
x ∈ {0, 1}n, B1(x) = B2(x). In other words, they compute the same boolean
function.

Based on this, we define the following language.

Definition 4. EQBP = {⟨B1, B2⟩ | B1 and B2 are equivalent BPs}

This problem turns out to be quite hard. In fact, you saw on the
pset that it is coNP-complete!

So let’s instead look at a restricted form of branching program. We’ll
call a branching program a read-once branching program (ROBP) if it
only queries each variable at most once on any given computation
branch. Note that this does not mean that each variable only appears
in one query node of the DAG, it just means that each variable only
appears once on each path from the starting node to an output node.
It is also worth noting that for different inputs x and x′, the variables
might get queried in different orders. So even though this model is
more restricted than a regular BP, it is still quite expressive.

We can now define a language for the problem of testing equiva-
lence for ROBPs.

Definition 5. EQROBP = {⟨B1, B2⟩ | B1 and B2 are equivalent ROBPs}

This problem turns out to be really interesting from a complexity
perspective. Similarly to EQBP, this language is not known to be in
P. Nonetheless, we can actually show that this language is in BPP! What would happen if EQBP ∈ P?

This is particularly surprising since it means we are able to determine
if two ROBPs agree at every possible input without actually having to
check all of them!

Arithmetization

Given two branching programs with inputs of length n, it is entirely
possible for them to agree at 2n − 1 possible inputs, but only disagree
at one. So, to check whether two ROBPs are different, we can’t just
guess random boolean inputs and try them both, since the probability

5

that we pick the one at which they disagree could be exponentially low.

Instead, we want to convert the two ROBPs to some other mathe-
matical object where testing equivalence randomly is actually feasible.
At a high level, this means we want an object where two instances are
either equivalent, or very different. It turns out a very common mathe-
matical object satisfies just this: low-degree polynomials. In particular,
we will focus on polynomials over finite fields (which you can just
think of as working over the integers modulo some prime a).

For single variable polynomials, we know that any polynomial of
degree d is either equal to 0 for at most d inputs, or it is 0 everywhere.
Note that this fact can be used to check if two polynomials of degree
d are equivalent by picking a random input r and then checking if
p(r) − q(r) = 0. If they are equivalent, p − q will always be 0 but if
they are not, this will happen with probability at most d/a.

While this exact property does not hold for multivariate polynomi-
als, we have a very similar result. You are not responsible for the proof
of this result, but the statement can be very useful!

Definition 6. (Schwartz-Zippel) Let p be a nonzero degree-d polynomial
over m variables. If we randomly pick inputs r1, · · · , rm from a finite field of
size a, then

Pr[p(r1, · · · , rm) = 0] ≤ md/a.

Now that we have seen how to efficiently use randomness to check
equivalence of polynomials, we need to find a way to convert BPs to
appropriate polynomials. Our goal will be to create an n-variable poly-
nomial p over a field Fa that agrees with the output of some BP B on
all inputs x1, · · · , xn ∈ {0, 1}n. We will do this by sequentially assign-
ing polynomials to the nodes and edges as follows:

• The starting node gets the polynomial 1

• The 0 outgoing edge from a query node with variable xi and poly-
nomial p is assigned the polynomial p(1 − xi)

• The 1 outgoing edge from a query node with variable xi and poly-
nomial p is assigned the polynomial px

• A query node with k incoming edges that have been assigned poly-
nomials p1, · · · , pk is assigned the polynomial p1 + · · ·+ pk.

Then, the polynomial at the output node labelled 1 will be the poly-
nomial that corresponds to the BP.

6

Now we show some explicit examples of this arithmetization for
special Branching Programs that compute the XOR and OR of two
boolean variables.

First we just give the branching programs.

Example 1. The two following BPs compute the XOR of x1 and x2: As an exercise, check that these actually
both compute XOR!

x1start

x2 x2

0 1

0 1

1
0 0

1

x2start

x1 x1

0 1

0 1

1
0 0

1

Example 2. The following branching program computes the OR function: Another exercise! Check that this corre-
sponds to the OR function.

x1start

x2

0

1

0 1

1

0

Now, let’s arithmetize the BPs for XOR. Since we only need the
polynomial at the 1 output node, we only compute the relevant poly-
nomials, which we write in blue:

x1start

x2 x2

0 1

1

x1(1 − x2) + x2(1 − x1)

(1 − x1) x1

x2(1 − x1)

x1(1 − x2)

x2start

x1 x1

0 1

1

x2(1 − x1) + x1(1 − x2)

(1 − x2) x2

x1(1 − x2)

x2(1 − x1)

We can also arithmetize the BP for OR:

7

x1start

x2

0

1

1

x1 + x2(1 − x1)

(1 − x1) x1

x2(1 − x1)

Note that the technique of arithmetiza-
tion is applicable in more cases than just
ROBPs. For instance, we can arithmetize
any boolean formula by simply describ-
ing how to convert NOT, AND and OR.
One way to do this is as follows:

1. a → (1 − a)

2. a ∧ b → a · b

3. a ∨ b → a + b − ab

It is a good exercise to check that these
arithmetizations agree with the original
expression at all boolean inputs.

As an exercise, pick a prime number, then two random inputs from
that field and evaluate the three polynomials on these. If you repeat
this a few times, you should notice that you tend to get different re-
sults.

This gives us our algorithm for deciding equivalence of ROBPs:
we’ll think of both ROBPs as polynomials, and evaluate both of them
on random points from a large finite field. The reason this works is as
follows:

1. If the two ROBPs are different, their associated polynomials will be
different. These are degree-n polynomials over n variables, so their
difference is as well. As long as our finite field has size larger than
n2, Schwartz–Zippel therefore guarantees that we’re likely to find a
nonzero difference.

2. If the two ROBPs are the same, their associated polynomials will
be the same, and so we will always get the same result. This is
the part that crucially relies on the fact that they are read-once: be-
cause they’re read-once, the associated polynomial will be multilin-
ear, and there’s only one multilinear polynomial agreeing with any
function over {0, 1}n (this particular case is explained in more detail
in Sipser’s book). If you arithmetize arbitrary branching programs,
then their associated polynomials might have e.g. terms with an x2

1,
which equals x1 over boolean inputs but not over arbitrary fields —
so, equivalence of the BPs does not imply equality of their arithme-
tized polynomials.

One crucial point to emphasize is that, in this procedure, we do
not explicitly write down the polynomials associated with each ROBP.
There are examples where doing so would require writing out expo-
nentially many coefficients. We’re making use here of the fact that
we can evaluate the polynomial without writing down the coefficients,
simply by plugging in the variables and working down the DAG, as
may have done to evaluate those examples.

8

Interactive Proof Systems

We finished the recitation with a quick review of Interactive Proof Sys-
tems and the corresponding language class IP, which can be thought
of a more powerful version of NP. Observe that we can restate our
definition of NP in the following terms: a poly-time verifier V has in-
put x, and an unbounded prover P wants to convince V that x ∈ L
(regardless of whether x is actually in L!). The prover will send the
verifier some “certificate” of membership, and the verifier must have
some procedure that accepts if and only the certificate is good. That
is, for any x ∈ L there exists some certificate P can send to convince V
to accept, but for any x ̸∈ L, there’s nothing P could send that would
“trick” V into accepting. The languages L that admit such a verifier
strategy V are exactly those in NP.

To modify this definition, we could imagine that instead of just
sending a single message, P allows V to respond with questions, which
P then answers — intuitively, one might expect that this kind of “back-
and-forth” helps V to examine places where P’s story might be suspi-
cious, and become more easily convinced. Something like this turns Note: this is also good justification for

why you should ask question in lecture!out to be true, but in order for things to be interesting we need to allow
V to be randomized. The reason is simple: suppose V was following
some deterministic procedure. Then, P could just predict the entire
transcript of the interaction and send that in a single message. That
is, instead of actually having a back-and-forth conversation, P could
just say “here’s my proof. You’re going to want to respond with ques-
tions blah blah and blah, to which I would respond blah”. But with
randomness, we get a more interesting notion:

Definition 7. We say a language L ∈ IP if there exists a probabilistic poly-
nomial time Verifier V such that:

• There exists an honest prover P satisfying that for all x ∈::

Pr[V ↔ P accepts x] ≥ 2/3

• For any x ̸∈ L and any prover P̃:

Pr[V ↔ P̃ accepts x] < 1/3

As in the case of NP, we’re imagining a prover that always really
wants to convince the verifier that x ∈ L, regardless of what is actually
true. It’s a valid protocol if, for any x ∈ L, the prover has a strategy
that is likely to be convincing — but, for any x ̸∈ L, no prover strategy
is likely to trick the verifier.

9

It turns out that IP protocols are incredibly powerful. In class on
Tuesday, we’ll show that coNP ⊆ IP. This can actually be strengthened,
and although we do not cover the proof in class, you should know that
the following relationship is true:

Theorem 1. IP = PSPACE

This is an impressive fact, and was considered rather surprising at
the time it was proved. This proof will again make use of the tech-
niques of arithmetization we discussed in the previous section, this
time asking the prover to send certain polynomials related to the prob-
lem, and using the same kind of Schwartz–Zippel polynomial iden-
tity testing tricks to make sure that those polynomials are actually
good. (Note: it’s a little bit of a tricky argument, and we won’t have a
recitation covering it, so if you’re totally baffled after Tuesday’s lecture
please come to office hours and we’ll be happy to talk through things
again!)

Closing Remarks

Since these are the last recitation notes, we just wanted to thank you
for such a fun semester and really hope you enjoyed learning about
computability and complexity. Good luck on the final!

	Recitation 12: Probablistic TMs, Arithmetization, Interactive Proofs
	Probablistic Algorithms
	Branching Programs
	Arithmetization
	Interactive Proof Systems
	Closing Remarks

