Time Hierarchy Theorem and Oracles

In this recitation, we covered the proof of the time hierarchy theorem,
as well as the definitions of oracle Turing machines and complexity
classes P4 and NPA. We discussed the relationships between these or-
acle classes and other complexity classes, and explained how to design
algorithms for oracle Turing machines.

Hierarchy Theorems

Intuitively, it would make sense that having more resources means that
a Turing Machine would be able to solve more problems. In lecture,
we show a result called the space hierarchy theorem, which states that
for any time-constructible function ¢, there exists a language A that
is decidable in O(t(n)) space but not o(t(n)) space. A similar result
holds for time as well!

Time Hierarchy Theorem

Theorem 1. For any time constructible function f : N — IN, there exists a
language A that is decidable in O(f(n)) time but not o(f(n)/log(n)) time.

Proof strategy. The idea of this proof is to construct a TM D that runs
in O(f(n)) time deciding a language A. The key is that, for all TMs
that run in time o(f(n)/log(n)) time, D’s language will differ from
the TM with shorter runtime on at least one input value, via a diago-
nalization argument. This means that every TM that runs in less time
will disagree with D, thus showing that A cannot be decided in less
time.

Proof. We construct D as follows:

1. Given an input x where the length of x is n, the machine first cal-
culates f(n) by time constructibility and stores [f(n)/log(n)] in a
binary counter.

2. Reject if x is not of the form (M)01*.

See the book’s Definition 9.8 for the def-
inition of time-constructibility.

The log factor is annoying, but necessary
for this construction. It allows D to accu-
rately count the amount of time that has
passed.

3. Simulate M on x, and for each step of M on x, decrement the binary
counter created in step 1 by 1. If the counter ever reaches o, reject.
Otherwise if M halts, output the opposite as M.

We now show that this simulation runs in f(n) time. Steps 1 and 2
run in time O(f(n)). Step 3, however, requires some ingenuity. If we
store the counter, M’s transition function, and M’s tape all in separate
parts of D’s tape, it may take O(f(n)) time to simulate just one step of
M, as D’s head must move across the entire tape! The trick we play is
to instead enlarge the tape alphabet to contain thrice the information
as before, thus letting D’s tape head read 3 simulated tapes at the
same time. The first tape contains M’s simulated tape, the second will
contain M’s transition functions, and the third will contain the binary
counter.

At every step of simulating M, D will shift the information on the
other two tapes to start at the cells that contain M’s head. Because
of this shifting, the cost of finding M’s next action depends only on
M (instead of the input), leading to only a constant overhead. By a
similar argument, shifting M’s description also incurs only a constant
overhead. Thus, to simulate M for g(n) steps, D only needs to run for
O(g(n)) steps.

We also need to account for the binary counter. The largest value
the binary counter will take is | f(n)/ log(n)], which is O(f(n)). Thus,
the space required to store the binary counter will be O(log(f(n))),
meaning that shifting and updating the binary counter incurs a log
factor. Since D simulates M for [f(n)/log(n)] steps and we incur
a constant factor from moving M’s description and finding the next
action and a log factor from updating and shifting the binary counter,
D decides A in O(f(n)) time, as desired.

We finally argue correctness. Assume that some TM N decides A in
g(n) € o(f(n)/log(n)) time. Then, D can simulate N for df(n)/ log(n)
steps, for some positive constant d. By definition of g, there must exist
some ng such that for all n > ng, dg(n) < t(n)/log(n), so D’s simula-
tion will run to completion as long as the input has length greater than
np. Consider the input w = (M)10™, which has length longer than n.
The simulation in step 3 will thus run to completion, but D will do the
opposite of N on w, so N does not decide A!

O

Oracle Turing Machine

Oracle Turing machines are a new computation model that extends
the standard Turing machine model. To introduce this model, we will
discuss its definition. We will also introduce complexity classes under

If the original tape had an alphabet of
{0,1}, the new tape would have an al-
phabet of {0,1,2,3,4,5,6,7}.

this model and their relationships with existing complexity classes,
and discuss methods for designing algorithms in the oracle setting.

Definitions

Definition 2. A deterministic Turing Machine M with an oracle for lan-
guage A, denoted M4, is a deterministic Turing machine equipped
with an additional oracle tape. This tape allows the machine to read
and write just as the work tape. It also has an extra transition: let the
content of oracle type be x, then it can "ask" the oracle whether x € A,
replacing the content of oracle tape with the answer in one timestep.

Similarly, a nondeterministic Turing Machine with an oracle for language
A, denoted N4, is a nondeterministic Turing machine, with the same
oracle tape and extra transition as the deterministic version.

Intuition. Intuitively, a (nondeterministic) Turing machine with an A
oracle is a (nondeterministic) Turing machine, that has the additional
ability to determine whether a given string is in the language A by invoking
the oracle.

New Complexity Classes: P4, NP4

With the definition of oracle Turing Machines, we can define classes
PA and NPA.

Definition 3. P4 consists of all the languages decided by some deter-
ministic Turing machine with an oracle for language A in polynomial
time. NP4 consists of all the languages decided by some nondetermin-
istic Turing machine with an oracle for language A in polynomial time.

Example. P5AT consists of all the languages that can be decided by
some deterministic poly-time Turing Machine with a SAT oracle. This
means that NP U coNP C P54T: any L € NP U coNP can be reduced
to either SAT or SAT, which the oracle can solve in one timestep.

Designing Algorithms for Oracle Turing Machines

Designing algorithms for P is similar to before, except the machine
can now use the added power of the oracle. For NP#, the old paradigm
of designing algorithms still applies: we can come up with a certificate
that can be quickly verified by a checker. The only difference is that
the checker now has the ability to query the A oracle. To use this approach,
we can simply guess a certificate and then use the checker to verify its
correctness using the A oracle. Here is an example of this process in
action.

Proposition 4. MinFormula = {¢ | ¢ is a boolean formula, such that there
exists a shorter boolean formula ¢ equivalent to ¢} € NPT,

As in the definiton of P, here "polyno-
mial time" means the run time < Cn€
on any input with length # for some ab-
solute constant C.

As in the definition of NP, we requires
all branches to halt within polynomial
time.

A boolean formula ¢’ is equivalent to ¢
if they are on the same set of variables
X1, -+ ,Xn, and they evaluate to the same
value for any assignment of x1,- -, xy.

Proof strategy. One possible certificate for the language MinFormula
is the shorter boolean formula, ¢’. To check whether ¢ and ¢’ are
equivalent, we can use the SAT oracle to determine whether ¢ and ¢’
differ on any assignments. If they do not, then ¢ and ¢’ are equivalent,
and the certificate is valid.

Proof. Let Equiv = {{¢,¥) | ¢ and ¥ are not equivalent boolean for-

mulas}. Note that Equiv € NP; a nondeterministic Turing Machine can
guess an inequivalent assignment and accept if ¢ and y differ when
evaluated with that assignment. Using this language, we can build a
nondeterministic Turing machine with a SAT oracle, denoted N SAT o
solve the language MinFormula as follows:

1. Given a boolean formula ¢ with variables x1, - - -, x;;, the machine
nondeterministically guesses a boolean formula ¢’ on the same vari-
ables such that |¢'| < |¢|.

2. The machine uses the SAT oracle to check whether ¢’ is equiv-
alent to ¢. Specifically, since Equiv € NP, there is a reduction
Equiv <, SAT. The machine calculates f({¢,¢’)), and checks if
the resulting formula is satisfiable. If not, ¢’ and ¢ are equivalent,
and the machine accepts.

The last step is to show that the proposed algorithm obeys the re-
quired space bounds. Note that the first step is the machine guessing
a poly-size formula, so will only take polynomially long. The second
step performs the reduction, which takes polynomial time, and writes
the result to the oracle tape, again taking polynomial time. Thus, each
thread will take polynomial time, showing that MinFormula € NPSAT
as desired.

O

Oracle such that P4 = NPA

The diagonalization method has been a powerful tool for us in the
past, so a natural idea is to apply the diagonalization method to the
P vs. NP question. However, there exists languages A and B where
PA £ NP4 and PP = NPB. This means that any proof strategy that
works by simulating one machine with another will likely not be able
to solve P vs. NP, as the proof will probably not change when oracles
are added to the machines. Here, we show the existence of language
B. Language A is shown in the book’s Theorem 9.20.

Theorem 5. There exists a language B such that P2 = NP5,

Proof. We take B to be TQBF. Then, we know that PTQBE C NPpTQBE,
Any deterministic polynomial time Turing machine that has a TQBF

oracle can be simulated by a nondeterministic polynomial time Turing
machine with a TQBF oracle; the nondeterminstic machine can just
not use its nondeterminism. All that remains to be shown is the other
inclusion: that NPTQBF C pTQBF,

We show this result by showing the following relationships:

NPTQBF c pspACETQBF C pSPACE C pTQBF,

The first inclusion in the result, NPTRBF C PSPACETQEF, can be
shown by noting that we can enumerate all the branches of a poly-
time NTM using a poly-space TM with the same oracle, since each
branch can only take poly-space.

To show the next inclusion, PSPACETQBF C PSPACE, note that
TQBF € PSPACE. Then, every time a poly-space TM calls the oracle, a
poly-space TM without the oracle can simply solve the TQBF instance
itself!

Finally, we want to show that PSPACE C PTQBF. For any L €
PSPACE, L <p TQBF since TQBF is PSPACE complete. We can build
poly-time deterministic Turing machine MT?BF deciding L as follows:

¢ On instance x of L, compute f(x) where f is the reduction function
from L to TQBF.

e Use the TQBF oracle to check if f(x) € TQBF, accepts if true.

The correctness follows from the fact that x € L if and only if f(x) €
TQBF. Therefore, L € PTRBF "and we have that PSPACE C PTQBF,
proving our result.

O

Remark. Essentially, the part of the proof that shows PTQBF C
NPTQBE and that NPTRBE C PSPACETQBF relies on the fact that the
inclusion relationships P € NP C PSPACE is preserved when the
same oracle is added to the original classes. This is known as the
property of relativization. The diagonalization proof of time hierarchy
theorem from lectures also has this property of relativization. How-
ever, Theorem 5 implies that the relationship P # NP (if true) does not
have this property, and therefore cannot be proved using a diagonal-
ization argument that can relativize.

	Time Hierarchy Theorem and Oracles
	Hierarchy Theorems
	Oracle Turing Machine

